Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Mechanical Characterization of Lithium-Ion Battery Micro Components for Development of Homogenized and Multilayer Material Models

Thumbnail
Download
IconMiller (2014) - CIVINS MIT Thesis.pdf (5.902Mb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Miller, Kyle M.
Date
2014-06
Advisor
Wierzbicki, Tomasz
Metadata
Show full item record
Abstract
The overall battery research of the Impact and Crashworthiness Laboratory (ICL) at MIT has been focused on understanding the battery’s mechanical properties so that individual battery cells and battery packs can be characterized during crash events. The objective of this research is to better understand the battery component (electrode and separator) properties under different loading conditions. In this work, over 200 tests were conducted on battery components. These tests include uniaxial stress, biaxial punch, multilayer, single layer, short-circuit testing, wet vs dry specimen testing, strain rate testing, and more. Additionally, a scanning electron microscope was used to view the battery components at a micro level for the purpose of better understanding the aforementioned test results. During these tests, it was observed that many of the electrodes in the Li-ion batteries are damaged during the battery manufacturing process. Also, the two methods of manufacturing battery separator were analyzed and their resulting mechanical properties were characterized. These results will be used to further refine and validate a high-level, robust, and accurate computational tool to predict strength, energy absorption, and the onset of electric short circuit of batteries under real-world crash loading situations. The cell deformation models will then be applied to the battery stack and beyond, thereby enabling rationalization of greater optimization of the battery pack/vehicle combination with respect to tolerance of battery crush intrusion behavior. Besides improving crash performance, the finite element models contribute substantially to the reduction of the cost of prototyping and shorten the development cycle of new electric vehicles.
Description
CIVINS (Civilian Institutions) Thesis document
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
URI
https://hdl.handle.net/10945/43074
Collections
  • 1. Thesis and Dissertation Collection, all items
  • 3. CIVINS (Civilian Institutions) Theses and Dissertations

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Bidirectional Charging Panel 

    Fleming, Austin Galya; Geiss, Elizabeth Ann; Rathwell, Benjamin William; Pollman, Anthony Gerard (The United States of America, as represented by the Secretary of the Navy, Washington, DC (US), 2022-04-05);
    The invention relates to a bidirectional charging panel (BCP). The BCP includes a relay for controlling a combustion engine and a battery voltage sensor for monitoring a battery voltage. The BCP also includes a grid switch ...
  • Thumbnail

    Removal of direct current link harmonic ripple in single-phase voltage source inverter systems using supercapacitors 

    Hernandez, Gabriel D. (Monterey, California: Naval Postgraduate School, 2016-09);
    For an Energy Management System (EMS)-controlled microgrid that uses a single-phase voltage source inverter (VSI) configuration to supply power for AC loads from DC energy storage devices, the DC link connecting the VSI ...
  • Thumbnail

    Battery Simulation and Investigation Utilizing Matlab Simulink 

    Klussmann, Annika (Monterey, California. Naval Postgraduate School, 2016-08); NPS-SP-16-002 CR
    As a self-sufficient power system, a satellite has to be equipped with an electrical energy storage system enabled with a rechargeable battery. To improve the quality of the energy supply at space satellite systems the ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.