Show simple item record

dc.contributor.advisorBenjamin, Michael R.
dc.contributor.advisorLeonard, John J.
dc.contributor.authorWoerner, Kyle
dc.date.accessioned2014-08-20T23:01:47Z
dc.date.available2014-08-20T23:01:47Z
dc.date.issued2014-06
dc.identifier.urihttp://hdl.handle.net/10945/43076
dc.descriptionCIVINS (Civilian Institutions) Thesis documenten_US
dc.description.abstractHigh contact density environments are becoming ubiquitous in autonomous marine vehicle (AMV) operations. Safely managing these environments and their mission greatly taxes platforms. AMV collisions will likely increase as contact density in- creases. In situations where AMVs are not performing a collaborative mission but are using shared physical space such as multiple vehicles in the same harbor, a high demand exists for safe and e cient operation to minimize mission track deviations while preserving the safety and integrity of mission platforms. With no existing pro- tocol for collision avoidance of AMVs, much e ort to date has focused on individual ad hoc collision avoidance approaches that are self-serving, lack the uniformity of eet-distributed protocols, and disregard the overall eet e ciency when scaled to being in a contact-dense environment. This research shows that by applying interval programming and a collision avoidance protocol such as the International Regulations for Prevention of Collisions at Sea (COLREGS) to a eet of AMVs operating in the same geographic area, the eet achieves nearly identical e ciency concurrent with signi cant reductions in the collisions observed. A basic collision avoidance protocol was analyzed against a COLREGS-based algorithm while parameters key to collision avoidance were studied using Monte Carlo methods and regression analysis of both real-world and simulated statistical data. A testing metric was proposed for declaring AMVs as \COLREGS-compliant" for at-sea operations. This work tested ve AMVs simultaneously with COLREGS collision avoidance{the largest test known to date.en_US
dc.publisherMonterey, California. Naval Postgraduate Schoolen_US
dc.rightsThis publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. As such, it is in the public domain, and under the provisions of Title 17, United States Code, Section 105, may not be copyrighted.en_US
dc.titleCOLREGS-Compliant Autonomous Collision Avoidance Using Multi-Objective Optimization with Interval Programmingen_US
dc.typeThesisen_US
dc.contributor.departmentMechanical Engineering
etd.thesisdegree.nameNaval Engineeren_US
etd.thesisdegree.nameM.S. in Mechanical Engineeringen_US
etd.thesisdegree.levelMastersen_US
etd.thesisdegree.disciplineMechanical Engineeringen_US
etd.thesisdegree.grantorMassachusetts Institute of Technologyen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record