Simulation of hydrodynamic ram phenomenon using MSC Dytran

Download
Author
Yang, Kangjie Roy
Date
2014-09Advisor
Kwon, Young
Adams, Christopher A.
Metadata
Show full item recordAbstract
Hydrodynamic ram (HRAM) refers to the damage process due to high pressures generated when a high-velocity projectile penetrates a compartment or vessel containing a fluid. A Finite Element model was developed using MSC Dytran to investigate the structural response during the initial phase of HRAM and conduct parametric studies on factors that could affect the tank wall response. The Lagrangian structural shell elements were coupled to the fluid Euler elements using the ALE coupling technique, whereas the projectile was coupled to the fluid using the general coupling technique. This study focused mainly on the structural back wall response where critical components or main structural members on the aircraft could be located. Results from this study show that initial shock wave pressure upon projectile impact is unlikely to have detrimental effects on the exit wall of tank due to its rapid extinction in the fluid. The presence of free surface with lower filling levels reduced both the initial shock pressure and subsequent drag phase pressure. Projectile mass was found to have a strong effect on the exit wall response during the shock phase, but once projectile penetrated the entry wall, results for the drag phase for different projectile mass investigated were inconclusive. Other factors examined included the tank’s material properties and fluid density. Of all the factors being studied, projectile’s velocity was found to have the strongest influence on exit wall response and fluid pressures. Therefore, the damage to exit wall of the tank could be greatly reduced if the entry wall is able to slow the projectile significantly.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
Hydraulic ram effect on composite fuel entry walls.
Duva, Alfred Nicholas (1976);Catastrophic failure of a partially filled aircraft fuel cell due to impact and penetration by a high speed projectile often occurs due to a phenomenon known as hydraulic ram. The structural response of the fuel tank ... -
Structural Response of Fluid Containing Tanks to Penetrating Projectiles (Hydraulic Ram) - A Comparison of Experimental and Analytical Results
Ball, R.E. (Monterey, California. Naval Postgraduate School, 1976-05); NPS-57Bp76051This report presents the results of a study of (1) the fluid hydraulic ram pressures in a fluid-containing-tank caused by a penetrating projectile, and (2) the transient response of the entry and exit walls of the tank due ... -
Modeling the biodynamical response of the human thorax with body armor from a bullet impact.
Lobuono, John A.; Kwon, Young W. (Monterey, California. Naval Postgraduate School, 2001); NPS-ME-01-003The objective of this study is to develop a finite element model of the human thorax with a protective body armor system so that the model can adequately determine the thorax's biodynamical response from a projectile impact. ...