Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Microstructural study of IF-WS2 Failure Models

Thumbnail
Download
Iconinorganics-02-00377.pdf (6.153Mb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Cook, Jamie
Rhyans, Steven
Roncase, Lou
Hobson, Garth
Luhrs, Claudia C.
Date
2014
Metadata
Show full item record
Abstract
This manuscript summarizes the failure mechanisms found in inorganic fullerene-type tungsten disulfide (IF-WS2) nanoparticles treated with diverse pressure loading methods. The approaches utilized to induce failure included: the use of an ultrasonic horn, the buildup of high pressures inside a shock tube which created a shock wave that propagated and impinged in the sample, and impact with military rounds. After treatment, samples were characterized using electron microscopy, powder X-ray diffraction, energy dispersive X-ray spectroscopy, and surface area analysis. The microstructural changes observed in the IF-WS2 particulates as a consequence of the treatments could be categorized in two distinct fracture modes. The most commonly observed was the formation of a crack at the particles surface followed by a phase transformation from the 3D cage-like structures into the 2D layered polymorphs, with subsequent agglomeration of the plate-like sheets to produce larger particle sizes. The secondary mechanism identified was the incipient delamination of IF-WS2. We encountered evidence that the IF-WS2 structure collapse initiated in all cases at the edges and vertices of the polyhedral particles, which acted as stress concentrators, independent of the load application mode or its duration.
Description
The article of record as published may be found at http://dx.doi.org/10.3390/inorganics2030377
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
URI
http://hdl.handle.net/10945/44162
Collections
  • Faculty and Researchers' Publications
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.