Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Evaluation of a Heuristic Model for Tropical Cyclone Resilience

Thumbnail
Download
IconEvaluation_JAS-D-14-0318.1.pdf (1.655Mb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Reasor, Paul D.
Montgomery, Michael T.
Date
2015-05
Metadata
Show full item record
Abstract
This work examines the applicability of a previously postulated heuristic model for the temporal evolution of the small-amplitude tilt of a tropical cyclone–like vortex under vertical shear forcing for both a dry and cloudy atmosphere. The heuristic model hinges on the existence of a quasi-discrete vortex Rossby wave and its ability to represent the coherent precession and tilt decay of a stable vortex in the free-alignment problem. Linearized numerical solutions for a dry and cloudy vortex confirm the model predictions that an increase in the magnitude of the radial potential vorticity (PV) gradient within the vortex skirt surrounding the core yields a more rapid evolution of a sheared vortex toward the equilibrium, left-of-shear tilt configuration. However, in the moist-neutral limit, in which the effective static stability vanishes in rising and sinking regions, the heuristic model yields a poor approximation to the simulated vortex core evolution, but a leftof- shear tilt of the near-core vortex, radially beyond the heating region, remains the preferred long-time solution. Within the near-core skirt, the PV perturbation generated by vertical shearing exhibits continuousspectrum- type vortex Rossby waves, features that are not captured by the heuristic model. Nevertheless, the heuristic model continues to predict the rapid vertical alignment and equilibrium, left-of-shear tilt configuration of the simulated near-core vortex in the moist-neutral limit.
Description
The article of record as published may be found at http://dx.doi.org/10.1175/JAS-D-14-0318.1
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
URI
http://hdl.handle.net/10945/45762
Collections
  • Faculty and Researchers' Publications

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    A theory for vortex rossby‐waves and its application to spiral bands and intensity changes in hurricanes 

    Montgomery, Michael T.; Kallenbach, Randall T. (RMetS, 1997);
    In this paper we examine further the physics of vortex axisymmetrization, with the goal of elucidating the dynamics of outward‐propagating spiral bands in hurricanes. the basic shysics is illustrated most simply for stable ...
  • Thumbnail

    Axisymmetric Balance Dynamics of Tropical Cyclone Intensification and its Breakdown Revisited 

    Smith, Roger K.; Montgomery, Michael T.; Bui, Hai (American Meteorological Society, 2018-09);
    This paper revisits the evolution of an idealized tropical cyclone–like vortex forced by a prescribed distribution of diabatic heating in the context of both inviscid and frictional axisymmetric balance dynamics. Prognostic ...
  • Thumbnail

    Interaction of a vortex pair with a free surface : measurements and computations 

    Suthon, Peter B. R. (Monterey, California: Naval Postgraduate School, 1990-06);
    An investigation of the interaction of two-counter-rotating vortices with a free surface has been undertaken. Experiments were carried out in two water basins and in a long towing tank through the use of measurements, flow ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.