Spacecraft Proximity Navigation and Autonomous Assembly based on Augmented State Estimation: Analysis and Experiments
Author
Pellegrini, Veronica
Bevilacqua, Riccardo
Romano, Marcello
Curti, Fabio
Date
2010-08Metadata
Show full item recordAbstract
This paper presents a spacecraft relative navigation scheme based on a tracking
technique. The augmented state estimation technique is a variable-dimension filtering
approach, originally introduced by Bar-Shalom and Birmiwal [1]. In this technique, the state
model for a target spacecraft is augmented by introducing, as extra state components, the
target's control inputs. The maneuver, modeled as accelerations, is estimated recursively
along with the other states associated with position and velocity, while a target maneuvers.
By using the proposed navigation method, a chaser spacecraft can estimate the relative
position, the attitude and the control inputs of a target spacecraft, flying in its proximity. It
is assumed that the chaser spacecraft is equipped with on-board sensors able to measure the
relative position and relative attitude of the target spacecraft. The available sensors would
provide a measurement update sample time of the order of one second and be subject to
random measurement interruption longer than one second. As preliminary analysis, this
work introduces the technique applied to the planar, three-degree-of-freedom, spacecraft relative motion. The proposed approach is validated via hardware-in-the-loop
experimentation, using four autonomous three-degree-of-freedom robotic spacecraft
simulators, floating on a flat floor. The proposed navigation method is proved to be more
robust than a standard Kalman Filter estimating relative position and attitude only.
Description
AIAA Guidance, Navigation, and Control Conference
2 - 5 August 2010, Toronto, Ontario Canada
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
Guidance Navigation and Control for Autonomous Multiple Spacecraft Assembly: Analysis and Experimentation
Bevilacqua, R.; Romano, M.; Curti, F.; Caprari, A.; Pellegrini, V. (2011);This work introduces theoretical developments and experimental verification for Guidance, Navigation, and Control of autonomous multiple spacecraft assembly. We here address the in-plane orbital assembly case, where two ... -
Laboratory Experimentation of Multiple Spacecraft Autonomous Assembly
Bevilacqua, Riccardo; Caprari, Andrew P.; Hall, Jason; Romano, Marcello (2009-08);This work introduces a novel approach and its experimental verification for propellant sub-optimal multiple spacecraft assembly via a Linear Quadratic Regulator (LQR). The attitude dynamics of the spacecraft are linearized ... -
Multiple spacecraft rendezvous maneuvers by differential drag and low thrust engines
Bevilacqua, Riccardo; Hall, Jason S.; Romano, Marcello (2010);A novel two-phase hybrid controller is proposed to optimize propellant consump- tion during multiple spacecraft rendezvous maneuvers in Low Earth Orbit. This controller exploits generated differentials in aerodynamic drag ...