The Appearance and Disappearance of Ship Tracks on Large Spatial Scales
Author
Coakley, J.A.
Durkee, P.A.
Nielsen, K.
Taylor, J.P.
Platnick, S.
Albrecht, B.A.
Babb, D.
Chang, F.-L.
Tahnk, W.R.
Bretherton, C.S.
Hobbs, P.V.
Date
2000-08-15Metadata
Show full item recordAbstract
The 1-km advanced very high resolution radiometer observations from the morning, NOAA-12, and afternoon,
NOAA-11, satellite passes over the coast of California during June 1994 are used to determine the altitudes,
visible optical depths, and cloud droplet effective radii for low-level clouds. Comparisons are made between
the properties of clouds within 50 km of ship tracks and those farther than 200 km from the tracks in order to
deduce the conditions that are conducive to the appearance of ship tracks in satellite images. The results indicate
that the low-level clouds must be sufficiently close to the surface for ship tracks to form. Ship tracks rarely
appear in low-level clouds having altitudes greater than 1 km. The distributions of visible optical depths and
cloud droplet effective radii for ambient clouds in which ship tracks are embedded are the same as those for
clouds without ship tracks. Cloud droplet sizes and liquid water paths for low-level clouds do not constrain the
appearance of ship tracks in the imagery. The sensitivity of ship tracks to cloud altitude appears to explain why
the majority of ship tracks observed from satellites off the coast of California are found south of 358N. A small
rise in the height of low-level clouds appears to explain why numerous ship tracks appeared on one day in a
particular region but disappeared on the next, even though the altitudes of the low-level clouds were generally
less than 1 km and the cloud cover was the same for both days. In addition, ship tracks are frequent when lowlevel
clouds at altitudes below 1 km are extensive and completely cover large areas. The frequency of imagery
pixels overcast by clouds with altitudes below 1 km is greater in the morning than in the afternoon and explains
why more ship tracks are observed in the morning than in the afternoon. If the occurrence of ship tracks in
satellite imagery data depends on the coupling of the clouds to the underlying boundary layer, then cloud-top
altitude and the area of complete cloud cover by low-level clouds may be useful indices for this coupling.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
The Impact of Ship-Produced Aerosols on the Microstructure and Albedo of Warm Marine Stratocumulus Clouds: A Test of MAST Hypotheses 1i and 1ii
Durkee, P.A.; Noone, K.J.; Ferek, R.J.; Johnson, D.W.; Taylor, J.P.; Garrett, T.J.; Hobbs, P.V.; Hudson, J.G.; Bretherton, C.S.; Innis, G.; Frick, G.M.; Hoppel, W.A.; O'Dowd, C.D.; Russell, L.M.; Gasparovic, R.; Nielsen, K.E.; Tessmer, S.A.; Őstrőm, E.; Osborne, S.R.; Flagan, R.C.; Seinfeld, J.H.; Rand, H. (2000-08-15);Anomalously high reflectivity tracks in stratus and stratocumulus sheets associated with ships (known as ship tracks) are commonly seen in visible and near-infrared satellite imagery. Until now there have been only ... -
The Role of Background Cloud Microphysics in the Radiative Formation of Ship Tracks
Platnick, S.; Durkee, P.A.; Nielsen, K.; Taylor, J.P.; Tsay, S.-C.; King, M.D.; Ferek, R.J.; Hobbs, P.V.; Rottman, J.W. (2000-08-15);The authors investigate the extent to which the contrast brightness of ship tracks, that is, the relative change in observed solar reflectance, in visible and near-infrared imagery can be explained by the microphysics of ... -
Polluting of winter convective clouds upon transition from ocean inland over central California: contrasting case studies
Rosenfeld, Daniel; Chemke, Rei; Prather, Kimberly; Suski, Kaitlyn; Comstock, Jennifer M.; Schmid, Beat; Tomlinson, Jason; Jonsson, Haflidi (Elsevier, 2014);In-situ aircraft measurements of aerosol chemical and cloud microphysical properties were conducted during the CalWater campaign in February and March 2011 over the Sierra Nevada Mountains and the coastal waters of central ...