A review of biomass burning emissions part III: intensive optical properties of biomass burning particles
Author
Reid, J.S.
Eck, T.F.
Christopher, S.A.
Koppmann, R.
Dubovik, O.
Eleuterio, D.P.
Holben, B.N.
Reid, E.A.
Zhang, J.
Date
2004Metadata
Show full item recordAbstract
Because of its wide coverage over much of the globe, biomass burning has been widely
studied in the context of direct radiative forcing. Such study is warranted as smoke
particles scatter and at times absorb solar radiation efficiently. Further, as much of what is known about smoke transport and impacts is based on remote sensing measurements,
the optical properties of smoke particles have far reaching effects into numerous
aspects of biomass burning studies. Global estimates of direct forcing have
been widely varying, ranging from near zero to −1Wm−2. A significant part of this
difference can be traced to varying assumptions on the optical properties of smoke. This manuscript is the third part of four examining biomass-burning emissions. Here
we review and discuss the literature concerning measurement and modeling of optical
properties of biomass-burning particles. These include available data from published
sensitivity studies, field campaigns, and inversions from the Aerosol Robotic Network
(AERONET) of Sun photometer sites. As a whole, optical properties reported in the literature are varied, reflecting both the dynamic nature of fires, variations in smoke aging
processes and differences in measurement technique. We find that forward modeling
or “internal closure” studies ultimately are of little help in resolving outstanding
measurement issues due to the high degree of degeneracy in solutions when using
“reasonable” input parameters. This is particularly notable with respect to index of refraction and the treatment of black carbon. Consequently, previous claims of column
closure may in fact be more ambiguous. Differences between in situ and retrieved !o
values have implications for estimates of mass scattering and mass absorption efficiencies.
In this manuscript we review and discuss this community dataset. Strengths and lapses are pointed out, future research topics are prioritized, and best estimates and uncertainties of key smoke particle parameters are provided.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
A review of biomass burning emissions, part II: Intensive physical properties of biomass burning particles
Reid, J.S.; Koppmann, R.; Eck, T.F.; Eleuterio, D.P. (European Geosciences Union, 2005);The last decade has seen tremendous advances in atmospheric aerosol particle research that is often performed in the context of climate and global change science. Biomass burning, one of the largest sources of accumulation ... -
A multi-year data set on aerosol-cloud-precipitationmeteorology interactions for marine stratocumulus clouds
Sorooshian, Armin; Jonsson, Haflidi H.; Murphy, Shane M.; Rissman, Tracey A.; Flagan, Richard C.; Wang, Zhen; Lin, Jack J.; Maudlin, Lindsay C.; Prabhakar, Gouri; Nenes, Athanasios; Chuang, Patrick Y.; Woods, Roy K.; Varutbangkul, Varuntida; Shingler, Taylor; Padró, Luz T.; Metcalf, Andrew R.; Marty, Arnaldo Negrón; Hodas, Natasha; Hersey, Scott P.; Crosbie, Ewan; Craven, Jill S.; Coggon, Matthew M.; Bates, Kelvin H.; Dadashazar, Hossein; MacDonald, Alexander B.; Seinfeld, John H. (Nature, 2018-02-27);Airborne measurements of meteorological, aerosol, and stratocumulus cloud properties have been harmonized from six field campaigns during July-August months between 2005 and 2016 off the California coast. A consistent set ... -
A multi-year data set on aerosol-cloud-precipitation-meteorology interactions for marine stratocumulus clouds
Sorooshian, Armin; MacDonald, Alexander B.; Dadashazar, Hossein; Bates, Kelvin H.; Coggon, Matthew M.; Craven, Jill S.; Crosbie, Ewan; Hersey, Scott P.; Hodas, Natasha; Lin, Jack J.; Marty, Arnaldo Negr�n; Maudlin, Lindsay C.; Metcalf, Andrew R.; Murphy, Shane M.; Padr�, Luz T.; Prabhakar, Gouri; Rissman, Tracey A.; Shingler, Taylor; Varutbangkul, Varuntida; Wang, Zhen; Woods, Roy K.; Chuang, Patrick Y.; Nenes, Athanasios; Jonsson, Haflidi H.; Flagan, Richard C.; Seinfeld, John H. (nature.com, 2018-02);Airborne measurements of meteorological, aerosol, and stratocumulus cloud properties have been harmonized from six field campaigns during July-August months between 2005 and 2016 off the California coast. A consistent set ...