A Numerical Study of Wind- and Thermal-Forcing Effects on the Ocean Circulation off Western Australia
Author
Batteen, Mary L.
Rutherford, Martin J.
Bayler, Eric J.
Date
1992Metadata
Show full item recordAbstract
A high-resolution, multilevel, primitive equation model is initialized with climatological data to investigate
the combined effects of wind and thermal forcing on the ocean circulation off Western Australia during the
austral fall and winter, corresponding to the period of strongest flow for the anomalous Leeuwin Current. This
process-oriented study builds on previous modeling studies, which have elucidated the role of thermal forcing
in the generation of the Leeuwin Current and eddies, by including the additional effects of wind forcing for the
eastern boundary current region off Western Australia. The ocean circulation is generated by the model using
a combination of density forcing from the climatological Indian Ocean thermal structure, the influx of warm
low-salinity waters from the North West (NW) Shelf, and the climatological wind stress. In the first experiment
(case I), forcing by the Indian Ocean and wind stress are imposed, while in the second experiment (case 2),
the additional effects of the North West (NW) Shelf waters are considered. In the absence of the NW Shelf
waters (case I), geostrophic flow, driven by the Indian Ocean thermal gradient, dominates the wind forcing at
the poleward end of the domain and establishes an equatorward undercurrent and a poleward surface current
(the Leeuwin Current), which accelerates poleward into the prevailing wind. Wind-forcing effects are discernible
only offshore at the equatorward end of the region. The inclusion of NW Shelf waters (case 2) completely
dominates the wind forcing at the equatorward end of the model. The effects of the NW Shelf waters weaken
away from the source region but they continue to augment the Indian Ocean forcing, resulting in a stronger
flow along the entire coastal boundary. The ocean circulation also has significant mesoscale variability. In the first experiment, both the Indian Ocean
thermal structure and wind forcing lead to the dominance of barotropic (horizontal shear) instability over
baroclinic (vertical shear) instability. In the second ~xperiment, the NW Shelf waters add baroclinicity, which
weakens poleward, to the Leeuwin Current and locally increase the barotropic instability near their source.
Away from the source waters, where there is a mixed instability, the combined effect of the Indian Ocean thermal
structure and wind forcing is stronger than the NW Shelf waters and leads to a dominance of barotropic over
baroclinic instability. Several scales of eddies are found to be dominant. The forcing by the Indian Ocean and
wind stress (case I ) leads to an eddy wavelength of -330 km. With the inclusion of the NW Shelf waters (case
2), the wavelengths associated with mesoscale variability are -150 and 330 km, consistent with observed. eddy
length scales.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
Modeling Studies of Eddies in the Leeuwin Current: The Role of Thermal Forcing
Batteen, Mary L.; Rutherford, Martin J. (1990-09);A high resolution, multilevel, primitive equation (PE) model is used to investigate the generation and stability of the Leeuwin Current and eddies off the west coast of Australia. Two numerical experiments are conducted to ... -
Modeling Studies of the Leeuwin Current off Western and Southern Australia
Batteen, Mary L.; Butler, Christopher L. (1998-11);The Leeuwin Current strengthens considerably from February to May each year, following the slackening of southerly coastal winds; strong eddies develop. A high-resolution, multilevel, primitive equation ocean model is ... -
Modeling studies of the effects of seasonal wind forcing and thermohaline gradients on the Leeuwin Current System
Cox, Anthony W. (Monterey, California. Naval Postgraduate School, 1998-12);A high resolution, multi-level, primitive equation ocean model is used to investigate the effects of seasonal thermohaline gradients and wind forcing in the generation of currents and eddies off the western and southwestern ...