Rapid slewing of flexible space structures
Author
Wojdakowski, Steven W.
Date
2015-09Advisor
Karpenko, Mark
Second Reader
Ross, I. Michael
Metadata
Show full item recordAbstract
This thesis addresses the problem of computing rapid slew maneuvers for a spacecraft antenna mounted on a double-axis gimbal with elastic joints. The performance of the system can be enhanced by designing antenna maneuvers in which the flexible effects are properly constrained, thus reducing the load on the spacecraft control system. The motion of a mass-spring-damper system is shown to be analogous to a spacecraft antenna slew with linear dynamics. This model is extended to a nonlinear double-gimbal mechanism with flexible joints, which better represents real spacecraft antenna dynamics. Rather than increase maneuver times to control flexible motion, this thesis presents optimal solutions that decrease maneuver times while allowing designers to easily constrain flexibility. Since it is impossible to recast the nonlinear system into a modal representation, an innovative approach is used to map the nonlinear dynamics into a linear system with a fictitious force. The fictitious force captures the effects of the nonlinearities so the vibrational motion can be constrained for a time-optimal slew. It is shown that by constructing an appropriate optimal control problem, the maneuver time for a flexible DGM can be decreased by approximately 42% compared to a conventional computed torque control solution.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Related items
Showing items related by title, author, creator and subject.
-
Rest-to-Rest Slew Maneuver of Three-Axis Rotational Flexible Spacecraft
Kim, J.J.; Agrawal, B.N. (2008);This paper presents a slew maneuver control design of three-axis rotational flexible spacecraft. The focus of the work is to investigate the nonlinear effect of the three axis maneuver for a flexible spacecraft when a ... -
Vibration Reduction for Flexible Spacecraft Attitude Control Using PWPF Modulator and Smart Structures
Song, Gangbing; Agrawal, Brij N. (1999);This paper presents a new approach to vibration reduction of flexible spacecraft during attitude control by using Pulse Width Pulse Frequency (PWPF) Modulator for thruster firing and smart materials for active vibration ... -
Spacecraft Design Program at the Naval Postgraduate School
Agrawal, B.N. (2005);This paper presents a review of the spacecraft design program at the Naval Postgraduate School. This program is part of the space systems engineering curriculum. In this curriculum, the students take at least one course ...