Transmit Energy Efficiency of Two Cognitive Radar Platforms for Target Identification
Abstract
Cognitive radar (CRr) is a recent radar paradigm that can potentially help drive
aerospace innovation forward. Two specific platforms of cognitive radar used for target
identification are discussed. One uses sequential hypothesis testing (SHT) in the receiver
processing and is referred to as SHT-CRr and the other one uses maximum a posteriori
(MAP) and is referred to as MAP-CRr. Our main goal in this article is to make a practical
comparison between SHT-CRr and MAP-CRr platforms in terms of transmission energy
efficiency. Since the performance metric for the SHT-CRr is the average number of
illuminations (ANI) and the performance metric for MAP-CRr is the percentage of correct
decisions (Pcd), a direct comparison between the platforms is difficult to perform. In this
work, we introduce a useful procedure that involves a metric called total transmit energy
(TTE) given a fixed Pcd as a metric to measure the transmit energy efficiency of both
platforms. Lower TTE means that the platform is more efficient in achieving a desired
Pcd. To facilitate a robust comparison, a transmit-adaptive waveform that consistently
outperforms the pulsed waveform in terms of both Pcd and ANI is needed. We show
that a certain adaptive waveform called the probability weighted energy signal-to-noise
ratio-based (PWE-SNR) waveform outperforms the pulsed wideband waveform (i.e., flat
frequency response) in terms of ANI and Pcd for all ranges of transmit waveform energy.
We also note that the Pcd performance of SHT-CRr can be drastically different from the
probability threshold (i.e., the probability value that is used to stop radar illumination for the
purposes of classification), which is critically important for CRr system designers to realize.
Indeed, this fact turns out to be key in accomplishing our goal to compare SHT-CRr and
MAP-CRr in terms of transmit energy efficiency.
Description
The article of record as published may be found at http://dx.doi.org/10.3390/aerospace2030376
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
Air vehicle target recognition with jammer nulling adaptive waveforms in cognitive radar using high-fidelity RCS responses
Tan, Q. Jeanette; Romero, Ric (IEEE, 2018);In this paper, we introduce two new jammer nulling transmit-adaptive waveforms applied to cognitive radar (CRr) framework for air vehicle (or aircraft) target response recognition in the presence of narrowband jammer noise ... -
Ambiguity Function and Detection Probability Considerations for Matched Waveform Design
Romero, Ric A.; Nieh, Jo-Yen (IEEE, 2013);In this paper we investigate the range resolution of transmit waveform designs matched to extended targets. We specifically look at eigenwaveform design which is also known as SNR-based illumination waveform design. To ... -
CLUTTER-COMPENSATING ADAPTIVE WAVEFORMS WITH COGNITIVE RADAR USING ACTUAL TARGET MEASUREMENTS FOR TARGET CLASSIFICATION
Bey, Ben Muwei (Monterey, California. Naval Postgraduate School, 2019-09);In this work, we investigate the target classification performance of a cognitive radar (CRr) using EM-simulated ground-based target responses and EM-measured aerial target responses in the presence of transmit ...