On weak and strong 2k-bent Boolean functions
Abstract
In this paper we introduce a sequence of discrete Fourier trans-
forms and de ne new versions of bent functions, which we shall call
(weak, strong) octa/hexa/2k-bent functions. We investigate relation-
ships between these classes and completely characterize the octabent
and hexabent functions in terms of bent functions.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
Characteristics of the binary decision diagrams of Boolean Bent Functions
Schafer, Neil Brendan. (Monterey, California: Naval Postgraduate School, 2009-09);Boolean bent functions have desirable cryptographic properties in that they have maximum nonlinearity, which hardens a cryptographic function against linear cryptanalysis attacks. Furthermore, bent functions are extremely ... -
Minimization of SOPs for bi-decomposable functions and non-orthodox/orthodox functions
Ulker, Birol (Monterey, Calif. Naval Postgraduate School, 2002-03);A logical function f is AND bi-decomposable if it can be written as f x1, x2)= h1 (x1) h2(x2), where x1 and x2 are disjoint. Such functions are important because they can be efficiently implemented. Also many benchmark ... -
An analysis of bent function properties using the transeunt triangle and the SRC-6 reconfigurable computer
Shafer, Jennifer L. (Monterey, California: Naval Postgraduate School, 2009-09);Linear attacks against cryptosystems can be defeated when combiner functions are composed of highly nonlinear Boolean functions. The highest nonlinearity Boolean functions, or bent functions, are not common- especially ...