Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Photonic analog-to-digital converters preprocessing using the robust symmetrical number system for direct digitization of antenna signals

Thumbnail
Download
Icon10Dec_Tong.pdf (1.614Mb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Tong, Kee Leong
Date
2010-12
Advisor
Pace, Phillip E.
Second Reader
Jenn, David C.
Metadata
Show full item record
Abstract
The need to realize pervasive battlespace awareness is placing an increasing demand on the bandwidth and resolution performance of modern sensors, communication receivers and electronic warfare. Fundamental to realizing this demand is the omnipresent highspeed analog-to-digital converters. The need constantly exists for converters with lower power consumption. To reduce the number of power-consuming components, high-performance ADCs employ parallel configuration of analog folding circuits to symmetrically fold the input signal prior to quantization by high-speed comparators. In this thesis, a prototype of an optical folding 6-bit ADC utilizing a 7-bit preprocessing architecture was implemented using the Robust Symmetrical Number System (RSNS). The RSNS preprocessing architecture is a modular scheme in which the integer values within each modulus (comparator states), when considered together, change one at a time at the next position i.e. Gray-code property. MATLAB simulations are used to help determine the properties of the RSNS. These properties include the dynamic range (largest number of distinct consecutive vectors) and the location of the dynamic range within the number system. Since the waveform repeats every fundamental period, a method that reduces all indexes to the 'lowest common denominator' is developed to find the symmetrical residues of each channel. Using the symmetrical residues determined, the corresponding DC shifts on each waveform can be calculated. The architecture employs a three-modulus (mod 7, 8, 9) scheme to preprocess the antenna signal. Electro-optic modulation of the input signal to generate the required number of folds within the dynamic range was successfully carried out in the three-modulus realization using modulators with a small half-wave voltage. The detection output are carefully aligned and postprocessed before amplitude analyzing with a high-speed comparator circuit responsible for the sampling and quantization of the signal (designed under a separate thesis). Low frequency analysis of the results using a 1 kHz input signal indicate a 5.42 effective number of bits (ENOB), a signal-to-noise ratio plus distortion (SINAD) of 34.42 dB, and a total harmonic distortion (THD) of -- 62.84 dB.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
URI
http://hdl.handle.net/10945/4970
Collections
  • 1. Thesis and Dissertation Collection, all items

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    FPGA implementation of robust symmetrical number system in high-speed folding analog-to-digital converters 

    Lim, Han Wei (Monterey, California. Naval Postgraduate School, 2010-12);
    Analog-To-Digital Converters (ADCs) are integral building blocks of most sensor and communication systems today. As the need for ADCs with faster conversion speeds and lower power dissipation increases, there is a growing ...
  • Thumbnail

    Use of symmetrical number systems in electronic warfare 

    Tedesso, Thomas W. (Monterey California. Naval Postgraduate School, 2013-12);
    The use of symmetrical number systems and wideband technologies is investigated to develop novel concepts for use in electronic warfare (EW) receivers. A computationally efficient algorithm for determining the dynamic range ...
  • Thumbnail

    A Robust Symmetrical Number System with Gray code properties for applications in signal processing 

    Akin, Ilker Aydin (Monterey, California. Naval Postgraduate School, 1996-09);
    A new symmetrical number system with applications in parallel signal processing is investigated. The Robust Symmetrical Number System (RSNS) is a modular system in which the integer values within each modulus, when considered ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.