Optimizing classification in intelligence processing

Download
Author
Costica, Yinon
Date
2010-12Advisor
Kress, Moshe
Szechtman, Roberto
Second Reader
Jacobs, Patricia
Metadata
Show full item recordAbstract
The intelligence making process, often described as the intelligence cycle, consists of phases. Congestion may be experienced in phases that require time consuming tasks such as translation, processing and analysis. To ameliorate the performance of those timeconsuming phases, a preliminary classification of intelligence items regarding their relevance and value to an intelligence request is performed. This classification is subject to false positive and false negative errors, where an item is classified as positive if it is relevant and provides valuable information to an intelligence request, and negative otherwise. The tradeoff between both types of errors, represented visually by the Receiver Operating Characteristic curve, depends on the training and capabilities of the classifiers as well as the classification test performed on each item and the decision rule that separates between positives and negatives. An important question that arises is how to best tune the classification process such that both accuracy of the classification and its timeliness are adequately addressed. An analytic answer is presented via a novel optimization model based on a tandem queue model. This thesis provides decision makers in the intelligence community with measures of effectiveness and decision support tools for enhancing the effectiveness of the classification process in a given intelligence operations scenario. In addition to the analytic study, numerical results are presented to obtain quantitative insights via sensitivity analysis of input parameters.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
New perspectives on intelligence collection and processing
Tekin, Muhammet (Monterey, California: Naval Postgraduate School, 2016-06);Intelligence-production activities are typically viewed as part of an intelligence cycle, consisting of planning, collection, processing, analysis, and dissemination stages. Once a request for information is issued, the ... -
2035 AND U.S. NAVY INTELLIGENCE: COMMUNITY MANNING FOR SUCCESS IN THE INDO-PACIFIC
Goorsky, Luke W. (Monterey, CA; Naval Postgraduate School, 2022-09);This thesis seeks to understand the best method for employing the Naval intelligence community in 2035 and beyond. Naval intelligence manning has remained largely unchanged since the end of the Cold War. As the United ... -
The use of agent-based simulation for cooperative sensing of the battlefield
Liang, Lawrence A. H. (Monterey, California. Naval Postgraduate School, 2005-12);Many military Intelligence Surveillance and Reconnaissance (ISR) operations would benefit greatly from a fleet of disparate sensor-bearing UAVs that are tightly integrated via a communications network, work cooperatively ...