Laboratory Experimentation of Guidance and Control of Spacecraft During On-orbit Proximity Maneuvers
Abstract
The traditional spacecraft system is a monolithic structure with a single mission focused design and lengthy production and qualification schedules coupled with enormous cost. Additionally, there rarely, if ever, is any designed preventive maintenance plan or re-fueling capability. There has been much research in recent years into alternative options. One alternative option involves autonomous on-orbit servicing of current or future monolithic spacecraft systems. The U.S. Department of Defense (DoD) embarked on a highly successful venture to prove out such a concept with the Defense Advanced Research Projects Agency’s (DARPA’s) Orbital Express program. Orbital Express demonstrated all of the enabling technologies required for autonomous on-orbit servicing to include refueling, component transfer, autonomous satellite grappling and berthing, rendezvous, inspection, proximity operations, docking and undocking, and autonomous fault recognition and anomaly handling (Kennedy, 2008). Another potential option involves a paradigm shift from the monolithic spacecraft system to one involving multiple interacting spacecraft that can autonomously assemble and reconfigure. Numerous benefits are associated with autonomous spacecraft assemblies, ranging from a removal of significant intra-modular reliance that provides for parallel design, fabrication, assembly and validation processes to the inherent smaller nature of fractionated systems which allows for each module to be placed into orbit separately on more affordable launch platforms (Mathieu, 2005).
Description
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
Spacecraft Design Program at the Naval Postgraduate School
Agrawal, B.N. (2005);This paper presents a review of the spacecraft design program at the Naval Postgraduate School. This program is part of the space systems engineering curriculum. In this curriculum, the students take at least one course ... -
Rendezvous Maneuvers of Multiple Spacecraft Using Differential Drag Under J2 Perturbation
Bevilacqua, R.; Romano, M. (2008);In this work, the residual atmospheric drag is exploited to perform rendezvous maneuvers among multiple spacecraft in low Earth orbits. These maneuvers are required, for instance, for autonomous on-orbit assembly. By varying ... -
Design and integration of a three degrees-of freedom robotic vehicle with control moment gyro for the Autonomous Multiagent Physically Interacting Spacecraft (AMPHIS) testbed
Hall, Jason S. (Monterey, California. Naval Postgraduate School, 2006-09);The use of fractionated spacecraft systems in on-orbit spacecraft assembly has the potential to provide benefits to both the defense and civil space community. To this end, much research must be conducted to develop and ...