Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Analysis of the performance of an optimization model for time-shiftable electrical load scheduling under uncertainty

Thumbnail
Download
Icon16Dec_Olabode_John.pdf (3.344Mb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Olabode, John A.
Date
2016-12
Advisor
Sanchez, Susan M.
Craparo, Emily M.
Second Reader
Carlyle, W. Matthew
Metadata
Show full item record
Abstract
To ensure sufficient capacity to handle unexpected demands for electric power, decision makers often over-estimate expeditionary power requirements. Therefore, we often use limited resources inefficiently by purchasing more generators and investing in more renewable energy sources than needed to run power systems on the battlefield. Improvement of the efficiency of expeditionary power units requires better managing of load requirements on the power grids and, where possible, shifting those loads to a more economical time of day. We analyze the performance of a previously developed optimization model for scheduling time-shiftable electrical loads in an expeditionary power grids model in two experiments. One experiment uses model data similar to the original baseline data, in which expected demand and expected renewable production remain constant throughout the day. The second experiment introduces unscheduled demand and realistic fluctuations in the power production and the demand distributions data that more closely reflect actual data. Our major findings show energy grid power production composition affects which uncertain factor(s) influence fuel con-sumption, and uncertainty in the energy grid system does not always increase fuel consumption by a large amount. We also discover that the generators running the most do not always have the best load factor on the grid, even when optimally scheduled.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
URI
http://hdl.handle.net/10945/51591
Collections
  • 1. Thesis and Dissertation Collection, all items

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Demand Assigned Channel Allocation Applied to Full Duplex Underwater Acoustic Networking 

    Gibson, J.; Kaminski, A.; Xie, Geoffrey (2005-06);
    Acoustic communications provide a viable means for underwater networking. However, extreme propagation delays, limited bandwidth, and half duplex communications, with its inherent use of delay inducing collision avoidance ...
  • Thumbnail

    PEAK POWER CONTROL WITH AN ENERGY MANAGEMENT SYSTEM 

    Peck, Nathan J. (Monterey, California. Naval Postgraduate School, 2013-03);
    The Department of Defense (DoD) is researching methods to enhance energy security and reduce energy costs. The energy security of DoD installations relies on the commercial electricity grid. One method being considered to ...
  • Thumbnail

    A wholesale level consumable item inventory model for non-stationary demand patterns 

    Robillard, Glenn C. (Monterey, California. Naval Postgraduate School, 1994-03);
    The U.S. military presently manages about 88 billion dollars in spare and repair parts, consumables, and other support items. Department of Defense (DOD) inventory models which help wholesale item managers make inventory ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.