Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Energy Capture Module (ECM) for use in Unmanned Mobile Vehicles (UMVS) with a specific study of the Draganflyer X6 UAV

Thumbnail
Download
Icon10Sep_DeDeaux.pdf (594.8Kb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
DeDeaux, Cedric N.
Date
2010-09
Second Reader
Harney, Robert
Goshorn, Rachel
Stevens, Mark
Metadata
Show full item record
Abstract
Unmanned drones, robots, and vehicles are often chosen to perform tasks in harsh and dangerous environments. Autonomous vehicles are ideal in tactical situations when these vehicles can perform functions for warfighters when the risk to human life is significantly too high. In particular, unmanned aerial vehicles (UAVs) have become a common staple of military operations. Common sizes range from slingshot-launched spy bots to global guardians. Small UAV of all types have limited mission endurance due to volume and weight constraints of their energy storage and power sources. In many cases, UAVs are limited in the extent to which they could provide tactical advantage because of their need to be recharged or refueled. Even with the use of highly efficient energy and power sources, it is extremely difficult to design a feasible energy system that will provide power for prolonged duration missions. A method, energy capture, exists to provide recharging of an energy source remotely. By utilizing electromagnetic waves, energy can be transmitted wirelessly over great distances. This method has been implemented in several forms today, and shows promise as a possible way to provide for much greater UAV mission endurance. An Energy Control Module (ECM) is proposed as a scalable and Modular Open System (MOS) design concept that can utilize either a tuned laser photovoltaic cell or a microwave receiver to convert received electromagnetic energy to maintain the onboard UAV platform battery charged. The ECM can utilize ground or shipboard based power supply to wirelessly transmit power to a UAV. This thesis presents a study of the characteristics needed for an ECM that allows a small UAV platform to remain on station and perform its designed functions while recharging its energy source for prolonged duration missions.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
URI
http://hdl.handle.net/10945/5172
Collections
  • 1. Thesis and Dissertation Collection, all items
  • Systems Engineering Technical Reports

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    INTEGRATION OF REGENERATIVE BRAKING SYSTEMS INTO DOD TACTICAL VEHICLES, AND THEIR POTENTIAL TO PROVIDE A SHORT-TERM POWER SOURCE 

    Barrion, Tyrone A.; Zempel, Dianna (Monterey, CA; Naval Postgraduate School, 2018-12);
    This paper analyzes the introduction of regenerative braking systems into DoD tactical vehicles, with a focus on Marine Corps logistics vehicles. The analysis addresses a regenerative braking system’s ability to provide a ...
  • Thumbnail

    Investigation of new materials and methods of construction of personnel armor 

    Poh, Choon Wei. (Monterey California. Naval Postgraduate School, 2008-12);
    There has been a considerable amount of research done over the years on personnel and vehicle armor. However, much of this work has focused on finding materials that were very 'strong' to resist penetration of objects ...
  • Thumbnail

    Cost analysis of utilizing electric vehicles and photovoltaic solar energy in the United States Marine Corps commercial vehicle fleet 

    Clevenger, Jeremy; McGraw, Kenneth; Kelley, Billy (Monterey, California. Naval Postgraduate School, 2009-12);
    The purpose of this MBA project is to examine the upfront cost associated with purchasing electric vehicles and installing photovoltaic (PV) solar energy for the Federal Fleet at Marine Corps Logistics Base (MCLB) Barstow. ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.