Vision-based hand-gesture applications

Download
Author
Wachs, Juan Pablo
Kölsch, Mathias
Stern, Helman
Edan, Yael
Date
2011-02Metadata
Show full item recordAbstract
There is strong evidence that future human-computer interfaces will enable more natural, intuitive communication between people and all kinds of sensor-based devices, thus more closely resembling human-human communication. Progress in the field of human-computer interaction has introduced innovative technologies that empower users to interact with computer systems in increasingly natural and intuitive ways; systems adopting them show increased efficiency, speed, power, and realism. However, users comfortable with traditional interaction methods like mice and keyboards are often unwilling to embrace new, alternative interfaces. Ideally, new interface technologies should be more accessible without requiring long periods of learning and adaptation. They should also provide more natural human-machine communication. As described in Myron Krueger’s pioneering 1991 book Artificial Reality “natural interaction” means voice and gesture. Pursuing this vision requires tools and features that mimic the principles of human communication. Employing hand-gesture communication, such interfaces have been studied and developed by many researchers over the past 30 years in multiple application areas. It is thus worthwhile to review these efforts and identify the requirements needed to win general social acceptance.
Description
The article of record as published may be found at http://dx.doi.org/10.10.1145/1897816.1897838
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
COTS Solution for Adaptive Communications Paths Using Tactical Handhelds
Singh, Gurminder; Prince, Charles; Beverly, Robert (Monterey, California: Naval Postgraduate SchoolMonterey, California. Naval Postgraduate School, 2019-12); NPS-19-M244-BCOTS handheld devices have multiple radios (such as Bluetooth, WiFi Direct, WiFi, Cellular 2/3/4/5G) built into them. Using all of these radios simultaneously can provide great flexibility in communications in limited yet ... -
COTS Solution for Adaptive Communications Paths Using Tactical Handhelds
Singh, Gurminder; Prince, Charles; Beverly, Robert (Monterey, California: Naval Postgraduate SchoolMonterey, California. Naval Postgraduate School, 2019-12); NPS-19-M244-BCOTS handheld devices have multiple radios (such as Bluetooth, WiFi Direct, WiFi, Cellular 2/3/4/5G) built into them. Using all of these radios simultaneously can provide great flexibility in communications in limited yet ... -
Aqua-Quad - Hybrid Mobility and Sensing in Support of Collaborative Undersurface Warfare
Dobrokhodov, Vlad; Jones, Kevin; Smith, Kevin; Leary, Paul; Testa, Joseph (Monterey, California: Naval Postgraduate School, 2018-04); NPS-18-N124-CProject Summary: The project builds an experimental model as a proof of concept of a novel anti-submarine warfare (ASW) platform, AquaQuad. The envisioned vehicle is a hybrid, including features and capabilities of an ...