Show simple item record

dc.contributor.authorJames, Terry
dc.contributor.authorGlazebrook, Kevin
dc.contributor.authorLin, Kyle
dc.date.accessioned2017-06-29T22:55:09Z
dc.date.available2017-06-29T22:55:09Z
dc.date.issued2016
dc.identifier.citationT. James, K. Glazebrook, K. Lin, "Developing effective service policies for multiclass queues with abandonment: asymptotic optimality and approximate policy improvement," INFORMS Journals on Computing, v.28, no.2 (Spring 2016), pp. 251-264.en_US
dc.identifier.urihttps://hdl.handle.net/10945/55152
dc.descriptionThe article of record as published may be found at http://dx.doi.org/10. 1287/tjoc.2015.0675en_US
dc.description.abstractWe study a single server queuing model with multiple classes and impatient customers. The goal is to determine a service policy to maximize the long-run reward rate earned from serving customers net of holding costs and penalties respectively due to customers waiting for and leaving before receiving service. We first show that it is without loss of generality to study a pure-reward model. Since standard methods can usually only compute the optimal policy for problems with up to three customer classes, our focus is to develop a suite of heuristic approaches, with a preference for operationally simple policies with good reward characteristics. One such heuristic is the RµΘ rule - a priority policy that ranks all customer classes based on the product of reward R, service rate µ, and abandonment rate Θ. We show that the RµΘ rule is asymptotically optimal as customer abandonment rates approach zero and often performs well in cases where the simpler Rµ rule performs poorly. The paper also develops an approximate policy improvement method that uses simulation and interpolation to estimate the bias function for use in a dynamic programming recursion. For systems with two or three customer classes, our numerical study indicates that the best of our simple priority policies is near optimal in most cases; when it is not, the approximate policy improvement method invariably tightens up the gap substantially. For systems with five customer classes, our heuristics typically achieve within 4% of an upper bound for the optimal value, which is computed via a linear program that relies on a relaxation of the original system. The computational requirement of the approximate policy improvement method grows rapidly when the number of customer classes or the traffic intensity increases.en_US
dc.format.extent14 p.en_US
dc.publisherInformsen_US
dc.rightsThis publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.en_US
dc.titleDeveloping effective service policies for multiclass queues with abandonment: asymptotic optimality and approximate policy improvementen_US
dc.typeArticleen_US
dc.contributor.corporateNaval Postgraduate School (U.S.)en_US
dc.contributor.departmentOperations Research (OR)en_US
dc.subject.authorMulticlass queueen_US
dc.subject.authorCustomer abandonmenten_US
dc.subject.authorMarkov decision processen_US
dc.subject.authorIndex policyen_US
dc.subject.authorApproximate policy improvementen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record