Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Experimental and computational investigation of cross-flow fan propulsion for lightweight VTOL aircraft

Thumbnail
Download
IconArticle (558.7Kb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Hobson, Garth V.
Cheng, W.T.
Seaton, M. Scot
Gannon, Anthony
Platzer, Max F.
Date
2004-06
Metadata
Show full item record
Abstract
Cross-flow fan propulsion has not been seriously considered for aircraft use since an Vought Systems Division (VSD) study for the U.S. Navy in 1975. A recent conceptual design study of light-weight, single seat VTOL aircraft suggest that rotary-engine powered cross-flow fans may constitute a promising alternative to the conventional lift-fan vertical thrust augmentation systems for VTOL aircraft. The cross-flow fan performance data obtained by VSD supported the hypothesis that they could be improved to the point where their thrust augmentation could be used in a VTOL aircraft. In this paper we report results of a NASA Glenn supported experimental and computational cross-flow fan investigation which is currently in progress and we provide an assessment of the potential suitability of cross-flow fans for VTOL aircraft propulsion. The tests are carried out in the Turbopropulsion Laboratory of the Naval Postgraduate School, using an existing Turbine Test Rig as a power source to drive the cross- flow fan. A 0.305 m (12-inch) diameter, 38.1 mm (1.5-inch) span cross-flow fan test article was constructed to duplicate as closely as possible the VSD fan so that baseline comparison performance data could be obtained. Performance measurements were taken over a speed range of 1,000 to 7,000 RPM and results comparable to those measured by Vought Systems Division were obtained. At 3,000 RPM a 2:1 thrust-to-power ratio was measured which dropped to one as the speed was increased to 6,000 RPM. Performance maps were experimentally determined for the baseline configuration as well as one with both cavities blanked off, for the speed range from 2,000 to 6,000 rpm. Using Flo++, a commercial PC-based computational fluid dynamics software package by Softflo, 2-D numerical simulations of the flow through the cross-flow fan were also obtained. Based on the performance measurements it was concluded that the optimum speed range for this rotor configuration was in the 3,000 to 5,000 rpm range. The lower speed producing the best thrust-to-power ratio and the upper speed range producing the highest efficiency over sizeable throttling range.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
URI
https://hdl.handle.net/10945/55391
Collections
  • Faculty and Researchers' Publications

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Performance measurements, flow visualization, and numerical simulation of a crossflow fan 

    Seaton, M. Scot. (Monterey, California. Naval Postgraduate School, 2003-03);
    A 12-inch diameter, 1.5-inch span crossflow fan test apparatus was constructed and tested using the existing Turbine Test Rig (TTR) as a power source. Instrumentation was installed and a data acquisition program was developed ...
  • Thumbnail

    Investigation of performance improvements including application of inlet guide vanes to a cross-flow fan 

    Cordero, Samuel F. (Monterey, California. Naval Postgraduate School, 2009-09);
    The inherent characteristics of a cross-flow fan allowing for easy thrust vectoring as well as potential airfoil boundary layer control make it an attractive propulsive means for a theoretical vertical takeoff and landing ...
  • Thumbnail

    Experimental investigation and numerical prediction of the performance of a cross-flow fan 

    Yu, Huai-Te. (Monterey California. Naval Postgraduate School, 2006-12);
    The concept of a fan-wing aircraft configuration for the purpose of vertical takeoff and landing has drawn much attention. Recently, more investigations revealed that a cross-flow fan (CFF) was capable of providing the ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.