Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Acceleration of the implicit-explicit non-hydrostatic unified model of the atmosphere (NUMA) on Manycore processors

Thumbnail
Download
IconArticle (1.088Mb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Abdi, Daniel S.
Giraldo, Francis X.
Constantinescu, Emil M.
Carr, Lester E., III
Wilcox, Lucas C.
Warburton, Timothy C.
Date
2017
Metadata
Show full item record
Abstract
We present the acceleration of an IMplicit-EXplicit (IMEX) non-hydrostatic atmospheric model on manycore processors such as GPUs and Intel’s MIC architecture. IMEX time integration methods sidestep the constraint imposed by the Courant-Friedrichs-Lewy condition on explicit methods through corrective implicit solves within each time step. In this work, we implement and evaluate the performance of IMEX on manycore processors relative to explicit methods. Using 3D-IMEX at Courant number C=15 , we obtained a speedup of about 4X relative to an explicit time stepping method run with the maximum allowable C=1. Moreover, the unconditional stability of IMEX with respect to the fast waves means the speedup can increase significantly with the Courant number as long as the accuracy of the resulting solution is acceptable. We show a speedup of 100X at C=150 using 1D-IMEX to demonstrate this point. Several improvements on the IMEX procedure were necessary in order to outperform our results with explicit methods: a) reducing the number of degrees of freedom of the IMEX formulation by forming the Schur complement; b) formulating a horizontally-explicit vertically-implicit (HEVI) 1D-IMEX scheme that has a lower workload and potentially better scalability than 3D-IMEX; c) using high-order polynomial preconditioners to reduce the condition number of the resulting system; d) using a direct solver for the 1D-IMEX method by performing and storing LU factorizations once to obtain a constant cost for any Courant number. Without all of these improvements, explicit time integration methods turned out to be difficult to beat. We discuss in detail the IMEX infrastructure required for formulating and implementing efficient methods on manycore processors. Several parametric studies are conducted to demonstrate the gain from each of the above mentioned improvements. Finally, we validate our results with standard benchmark problems in numerical weather prediction and evaluate the performance and scalability of the IMEX method using up to 4192 GPUs and 16 Knights Landing processors.
Description
The article of record as published may be found at http://dx.doi.org/10.1177/ToBeAssigned
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
URI
http://hdl.handle.net/10945/55668
Collections
  • Faculty and Researchers' Publications

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Analysis of Adaptive Mesh Refinement for IMEX Discontinuous Galerkin Solutions of the Compressible Euler Equations with Application in to Atmospheric Simulations 

    Kopera, Michal A.; Giraldo, F.X. (2013);
    The resolutions of interests in atmospheric simulations require prohibitively large computational resources. Adaptive mesh refinement (AMR) tries to mitigate this problem by putting high resolution in crucial areas of the ...
  • Thumbnail

    High-order semi-implicit time-integrators for a triangular discontinuous Galerkin oceanic shallow water model 

    Giraldo. Francis X.; Restelli, M. (2009);
    We extend the explicit in time high-order triangular discontinuous Galerkin (DG) method to semi-implicit (SI) and then apply the algorithm to the two-dimensional oceanic shallow water equations; we implement high-order SI ...
  • Thumbnail

    A conservative discontinuous Galerkin semi-implicit formulation for the Navier-Stokes equations in nonhydrostatic mesoscale modeling 

    Restelli, Marco; Giraldo, Francis X. (2009);
    A discontinuous Galerkin (DG) finite element formulation is proposed for the solu- tion of the compressible Navier–Stokes equations for a vertically stratified fluid, which are of interest in mesoscale nonhydrostatic ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.