Application of a Flux Vector Splitting Methodology Towards the Solution of Unsteady Transonic Flows, With Future Emphasis On the Blade Flutter Problem
Abstract
The study presents a method, based on the flux vector splitting approach, to the problem of unsteady two-dimensional inviscid transonic flows, with emphasis on the numerical determination of the shock position through nozzles with varying backpressure. The methodology, governed by the Euler equations, is first explained for one and two dimensional steady state applications, and the accuracy of the results is validated by comparison with exact (one dimension) and numerical (two dimensions) solutions. The model is then applied to the problem of fluctuating backpressure in quasi one-dimensional and two dimensiona1 flows. The one-dimensional results are validated by comparison with a small perturbation analytical unsteady solution, where after sample cases are performed with the objective to understand fundamental aspects of unsteady flows. It is concluded that both the amplitude and frequency of the imposed fluctuating exit pressure are important parameters for the location or the unsteady shock. It is also shown that the average unsteady shock position is not identical with the steady state position, and that the unsteady shock may, under certain circumstances; propagate upstream into the subsonic flow domain. The pressure jump over the shock, as well as the unsteady post-shock pressure, is different for identical shock positions during the cycle of fluctuation, which implies that an unsteady shock movement, imposed by oscillating backpressure, may Introduce- a significant unsteady lift and moment. This may be or importance for flutter predictions. It is also noted that, although the sonic velocity is obtained in the throat of steady state quasi one-dimensional flow, this is not necessarily true for the unsteady solution. During part of the period with fluctuating backpressure, the flow velocity may be subsonic at the throat, and still reach a supersonic value later in the nozzle. This phenomenon depends on the frequency and amplitude of the imposed pressure fluctuation, as well as on the nozzle geometry.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.NPS Report Number
NPS-67-87-006Collections
Related items
Showing items related by title, author, creator and subject.
-
3D DISCRETE ELEMENT SIMULATIONS OF ACOUSTIC DISPERSION IN SEDIMENTS
Phua, So Bing (Monterey, CA; Naval Postgraduate School, 2023-03);Sound speed dispersion and frequency dependence of attenuation in marine sediments are important for any undersea activities using acoustics, such as remote sensing and target detection. Current established models use grain ... -
Oscillating-flow wind tunnel studies for a circulation control circular cylinder.
Christopoulos, George P. (Monterey, California. Naval Postgraduate School, 1991-03);A two-dimensional circulation control (4.25 inch diameter by 24 inch span) model was designed for installation in the Naval Postgraduate School oscillating flow, low speed wind tunnel. An adjustable, tangential blowing ... -
Finite-Amplitude Standing Waves in Rigid-Walled Tubes
Coppens, Alan B.; Sanders, James V. (Acoustical Society of America, 1980-07);A perturbation expansion is formulated for the one‐dimensional, nonlinear, acoustic‐wave equation with dissipative term describing the viscous and thermal energy lossesencountered in a rigid‐walled, closed tube with large ...