A real-time system for abusive network traffic detection

Loading...
Thumbnail Image
Authors
Kakavelakis, Georgios.
Subjects
Advisors
Beverly, Robert
Date of Issue
2011-03
Date
Publisher
Monterey, California. Naval Postgraduate School
Language
Abstract
Abusive network traffic--to include unsolicited e-mail, malware propagation, and denial-of-service attacks--remains a constant problem in the Internet. Despite extensive research in, and subsequent deployment of, abusive-traffic detection infrastructure, none of the available techniques addresses the problem effectively or completely. The fundamental failing of existing methods is that spammers and attack perpetrators rapidly adapt to and circumvent new mitigation techniques. Analyzing network traffic by exploiting transport-layer characteristics can help remedy this and provide effective detection of abusive traffic. Within this framework, we develop a real-time, online system that integrates transport layer characteristics into the existing SpamAssasin tool for detecting unsolicited commercial e-mail (spam). Specifically, we implement the previously proposed, but undeveloped, SpamFlow technique. We determine appropriate algorithms based on classification performance, training required, adaptability, and computational load. We evaluate system performance in a virtual test bed and live environment and present analytical results. Finally, we evaluate our system in the context of Spam Assassin's auto-learning mode, providing an effective method to train the system without explicit user interaction or feedback.
Type
Thesis
Description
Department
Computer Science
Organization
Naval Postgraduate School (U.S.)
Identifiers
NPS Report Number
Sponsors
Funder
Format
xvi, 71 p. ;
Citation
Distribution Statement
Approved for public release; distribution is unlimited.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
Collections