How agent based models can be utilized to explore and exploit non-linearity and intangibles inherent in guerrilla warfare
Loading...
Authors
Ipekci, Arif Ilker
Subjects
Advisors
Lucas, Thomas
Date of Issue
2002-06
Date
Publisher
Monterey, Calif. Naval Postgraduate School
Language
Abstract
Since the end of WWII, a host of groups and states have pursued their interests in the Low Intensity Conflict (LIC) environment. One of the characteristics of LIC is that it is executed mostly by the rules of asymmetric war or guerrilla warfare. This thesis utilizes the recently developed agent-based model Map Aware Non-Uniform Automata (MANA) to explore nonlinearity and intangibles inherent in guerrilla warfare. An infiltration scenario is developed based on the author's experiences fighting guerrillas in the mountains of Southeast Turkey. To simultaneously investigate the effects of as many as 22 input variables, recently developed Near Orthogonal Latin Hypercube Designs and Fractional Factorial Designs are used. Utilizing a personal computer and the computational capabilities of supercomputers run by Mitre for the Marine Corps Combat Development Center (MCCDC), approximately 200,000 MANA runs were completed. Several statistical models are developed and compared using a variety of diverse statistical techniques, including Cluster Analysis, Neural Networks, Regression Trees, Linear Regression, and Bayesian Networks. The results of the analysis suggest that the outcome of an infiltration scenario is heavily dependent on the Red agent parameters. The analysis also reveals the Red Stealth parameter as the most important factor in predicting the MOEs.
Type
Thesis
Description
Series/Report No
Department
Operations Research
Organization
Identifiers
NPS Report Number
Sponsors
Funder
Format
xxiv, 152 p. : col. ill. ;
Citation
Distribution Statement
Approved for public release; distribution is unlimited.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.