Semigroups -- A Computational Approach
Author
Kohl, Florian
Li, Yanxi
Rauh, Johannes
Yoshida, Ruriko
Date
2017Metadata
Show full item recordAbstract
The question whether there exists an integral solution to the system of linear equations with non-negativity constraints, Ax = b, x ≥ 0, where A ∈ Zm×n and b ∈ Zm, finds its applications in many areas such as oper- ations research, number theory, combinatorics, and statistics. In order to solve this problem, we have to understand the semigroup generated by the columns of the matrix A and the structure of the “holes” which are the dif- ference between the semigroup and its saturation. In this paper, we discuss the implementation of an algorithm by Hemmecke, Takemura, and Yoshida that computes the set of holes of a semigroup and we discuss applications to problems in combinatorics. Moreover, we compute the set of holes for the common diagonal effect model and we show that the nth linear ordering polytope has the integer-decomposition property for n ≤ 7.
Description
The software is available at http://ehrhart.math.fu-berlin.de/People/fkohl/HASE/.