Show simple item record

dc.contributor.authorHarrison, D.E. Jr.
dc.date.accessioned2019-01-23T18:05:35Z
dc.date.available2019-01-23T18:05:35Z
dc.date.issued1981-06-01
dc.identifier.citationJournal Name: J. Appl. Phys.; (United States); Journal Volume: 52:6en_US
dc.identifier.otherOSTI ID: 6451137
dc.identifier.otherJournal ID: CODEN: JAPIA; TRN: 81-014408
dc.identifier.urihttps://hdl.handle.net/10945/60954
dc.descriptionThe article of record as published may be found at http://dx.doi.org/10.1063/1.329277
dc.description.abstractA molecular dynamics simulation has been used to investigate the ion mass dependence of single-crystal atom ejection. Atom yield ratios, surface damage cross sections, atoms ejected per single ion (ASI) distributions, ejected atom energy distributions, layer yield ratios, and multimer yield ratios have been computed for normally incident Ne, Ar, Cu, Kr, and Xe ion masses on Cu targets for two very different Born-Mayer ion-atom potential functions. Results are compared with experimental data where feasible. The sputtering yield is found to increase with the ion size, as fixed by the ion-atom potential function, not with the ion mass. Experimental ejected atom energy distribution functions should show an ion mass dependence at higher atom energies. The layer yield ratios decrease as the ion mass increases. The heavier ions show no increased tendency to eject clumps of material or to create large, deep craters in the target surface. Atoms driven into the target may make a significant contribution to near-surface depleted zones and crater formation. The multimer yield ratios show very little ion mass dependence. ASI distributions and surface layer damage distributions show how momentum changes at constant ion energy affect the sputtering dynamics.en_US
dc.formatSize: Pages: 4251-4258
dc.language.isoen_US
dc.publisherAmerican Institute of Physicsen_US
dc.rightsThis publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.en_US
dc.subject71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICSen_US
dc.subjectARGON IONSen_US
dc.subjectCOLLISIONSen_US
dc.subjectCOPPERen_US
dc.subjectDYNAMICSen_US
dc.subjectION COLLISIONSen_US
dc.subjectSIMULATIONen_US
dc.subjectCOPPER IONSen_US
dc.subjectKRYPTON IONSen_US
dc.subjectNEON IONSen_US
dc.subjectXENON IONSen_US
dc.subjectCROSS SECTIONSen_US
dc.subjectDAMAGEen_US
dc.subjectENERGY SPECTRAen_US
dc.subjectLAYERSen_US
dc.subjectMASSen_US
dc.subjectMATHEMATICAL MODELSen_US
dc.subjectMONOCRYSTALSen_US
dc.subjectSURFACESen_US
dc.subjectTHEORETICAL DATAen_US
dc.subjectCHARGED PARTICLESen_US
dc.subjectCRYSTALSen_US
dc.subjectDATAen_US
dc.subjectELEMENTSen_US
dc.subjectINFORMATIONen_US
dc.subjectIONSen_US
dc.subjectMECHANICSen_US
dc.subjectMETALSen_US
dc.subjectNUMERICAL DATAen_US
dc.subjectSPECTRAen_US
dc.subjectTRANSITION ELEMENTSen_US
dc.subject640301* - Atomic, Molecular & Chemical Physics- Beams & their Reactionsen_US
dc.titleMolecular dynamics simulation study of the influence of the ion mass upon atom ejection processesen_US
dc.typeArticleen_US
dc.contributor.corporateDepartment of Physics and Chemistry, Naval Postgraduate School, Monterey, California 93940


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record