Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Detection of gamma-neutron radiation by solid-state scintillation detectors

Thumbnail
Download
IconDetection_of_gamma-neutron_.pdf (1.117Mb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Ryzhikov, V.
Grinyov, B.
Piven, L.
Onyshchenko, G.
Sidletskiy, O.
Naydenov, S.
Pochet, T.
Smith, C.
Date
2015-07-01
Metadata
Show full item record
Abstract
It is known that solid-state scintillators can be used for detection of both gamma radiation and neutron flux. In the past, neutron detection efficiencies of such solid-state scintillators did not exceed 5-7%. At the same time it is known that the detection efficiency of the gamma-neutron radiation characteristic of nuclear fissionable materials is by an order of magnitude higher than the efficiency of detection of neutron fluxes alone. Thus, an important objective is the creation of detection systems that are both highly efficient in gamma-neutron detection and also capable of exhibiting high gamma suppression for use in the role of detection of neutron radiation. In this work, we present the results of our experimental and theoretical studies on the detection efficiency of fast neutrons from a {sup 239}Pu-Be source by the heavy oxide scintillators BGO, GSO, CWO and ZWO, as well as ZnSe(Te, O). The most probable mechanism of fast neutron interaction with nuclei of heavy oxide scintillators is the inelastic scattering (n, n'γ) reaction. In our work, fast neutron detection efficiencies were determined by the method of internal counting of gamma-quanta that emerge in the scintillator from (n, n''γ) reactions on scintillator nuclei with the resulting gamma energies of ∼20-300 keV. The measured efficiency of neutron detection for the scintillation crystals we considered was ∼40-50 %. The present work included a detailed analysis of detection efficiency as a function of detector and area of the working surface, as well as a search for new ways to create larger-sized detectors of lower cost. As a result of our studies, we have found an unusual dependence of fast neutron detection efficiency upon thickness of the oxide scintillators. An explanation for this anomaly may involve the competition of two factors that accompany inelastic scattering on the heavy atomic nuclei. The transformation of the energy spectrum of neutrons involved in the (n, n'γ) reactions towards lower energies and the isotropic character of scattering of the secondary neutrons may lead to the observed limitation of the length of effective interaction, since a fraction of the secondary neutrons that propagate in the forward direction are not subject to further inelastic scattering because of their substantially lower energy. At these reduced energies, it is the capture cross-section (n, γ) that becomes predominant, resulting in lower detection efficiency. Based on these results, several types of detectors have been envisioned for application in detection systems for nuclear materials. The testing results for one such detector are presented in this work. We have studied the possibility of creation of a composite detector with scintillator granules placed inside a transparent polymer material. Because of the low transparency of such a dispersed scintillator, better light collection conditions are ensured by incorporation of a light guide between the scintillator layers. This guide is made of highly transparent polymer material. The use of a high-transparency hydrogen-containing polymer material for light guides not only ensures optimum conditions of light collection in the detector, but also allows certain deceleration of neutron radiation, increasing its interaction efficiency with the composite scintillation panels; accordingly, the detector signal is increased by 5-8%. When fast neutrons interact with the scintillator material, the resulting inelastic scattering gamma-quanta emerge, having different energies and different delay times with respect to the moment of the neutron interaction with the nucleus of the scintillator material (delay times ranging from 1x10{sup -9} to 1.3x10{sup -6} s). These internally generated gamma-quanta interact with the scintillator, and the resulting scintillation light is recorded by the photo-receiver. Since neutron sources are also strong sources of low-energy gamma-radiation, the use of dispersed ZnSe(Te) scintillator material provides high gamma-radiation detection efficiency in that energy range. This new type of gamma-neutron detector is based on a 'sandwich' structure using a ZnSe composite film and light guide with a fast neutron detection efficiency of about 6%. Its high detection efficiency of low-energy gamma-radiation allows a substantial increase (by an order of magnitude) in the efficiency of detection of neutron sources and transuranic materials by means of simultaneous detection of accompanying gamma-radiation. The design and fabrication technology of this detector allows the creation of gamma-neutron detectors characterized by high sensitivity at relatively low costs (as compared with analogs using oxide scintillators) for portable inspection systems. The sandwich structure can be comprised of any number of plates, with no limitations on thickness or area.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
URI
http://hdl.handle.net/10945/60998
Collections
  • Faculty and Researchers' Publications

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    GEANT4 SIMULATION OF FAST NEUTRON INTERACTIONS IN HEAVY OXIDE SCINTILLATORS 

    Batteson, Bruce (Monterey, CA; Naval Postgraduate School, 2019-09);
    Fast neutron detection is critical to the interdiction of illicit special nuclear material, among other potential applications. The use of heavy oxide scintillators to detect fast neutrons is one technology requiring little ...
  • Thumbnail

    Advanced Multilayer Composite Heavy-Oxide Scintillator Detectors for High Efficiency Fast Neutron Detection 

    Ryzhikov, Volodymyr D.; Naydenov, Sergei V.; Pochet, Thierry; Onyshchenko, Gennadiy M.; Smith, Craig F. (IEEE, 2018);
    We have developed and evaluated a new approach to fast neutron and neutron–gamma detection based on large-area multilayer composite heterogeneous detection media consisting of dispersed granules of small-crystalline ...
  • Thumbnail

    Multi-layer fast neutron detectors based on composite heavy-oxide scintillators for detection of illegal nuclear materials 

    Ryzhikov, V.D.; Naydenov, S.V.; Onyshchenko, G.M.; Piven, L.A.; Pochet, T.; Smith, C.F. (Elsevier, 2018);
    We developed and characterized a new type (designated ZEBRA) of multi-layer composite heavy-oxide scintillator detectors for fast neutron detection for homeland security and nuclear safeguards applications. In this ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.