Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Risk of Hearing Loss Caused by Multiple Acoustic Impulses in the Framework of Biovariability

Thumbnail
Download
IconRisk_of_Hearing_Loss_Caused_by_Multiple_Acoustic_Impulses.pdf (1.099Mb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Wang, Hongyun
Burgei, Wesley A.
Zhou, Hong
Date
2018-05
Metadata
Show full item record
Abstract
We consider the hearing loss injury among subjects in a crowd with a wide spectrum of individual intrinsic injury probabilities due to biovariability. For multiple acoustic impulses, the observed injury risk of a crowd vs the effective combined dose follows the logistic dose-response relation. The injury risk of a crowd is the average fraction of injured. The injury risk was measured in experiments as follows: each subject is individually exposed to a sequence of acoustic impulses of a given intensity and the injury is recorded; results of multiple individual subjects were assembled into data sets to mimic the response of a crowd. The effective combined dose was adjusted by varying the number of impulses in the sequence. The most prominent feature observed in experiments is that the injury risk of the crowd caused by multiple impulses is significantly less than the value predicted based on assumption that all impulses act independently in causing injury and all subjects in the crowd are statistically identical. Previously, in the case where all subjects are statistically identical (i.e., no biovariability), we interpreted the observed injury risk caused by multiple impulses in terms of the immunity effects of preceding impulses on subsequent impulses. In this study, we focus on the case where all sound exposure events act independently in causing injury regardless of whether one is preceded by another (i.e., no immunity effect). Instead, we explore the possibility of interpreting the observed logistic dose-response relation in the framework of biovariability of the crowd. Here biovariability means that subjects in the crowd have their own individual injury probabilities. That is, some subjects are biologically less or more susceptible to hearing loss injury than others. We derive analytically the distribution of individual injury probability that produces the observed logistic dose-response relation. For several parameter values, we prove that the derived distribution is mathematically a proper density function. We further study the asymptotic approximations for the density function and discuss their significance in practical numerical computation with finite precision arithmetic. Our mathematical analysis implies that the observed logistic dose-response relation can be theoretically explained in the framework of biovariability in the absence of immunity effect.
Description
The article of record as published may be found at http://dx.doi.org/10.4236/health.2018.105048
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
URI
http://hdl.handle.net/10945/61101
Collections
  • Faculty and Researchers' Publications

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Interpreting Dose-Response Relation for Exposure to Multiple Sound Impulses in the Framework of Immunity 

    Wang, Hongyun; Burgei, Wesley A.; Zhou, Hong (Scientific Research Publishing SCIRP, 2017-12-20);
    Hearing loss is a common military health problem and it is closely related to exposures to impulse noises from blast explosions and weapon firings. In a study based on test data of chinchillas and scaled to humans (Military ...
  • Thumbnail

    Asymptotics and Well-Posedness of the Derived Distribution Density in a Study of Biovariability 

    Wang, Hongyun; Burgei, Wesley A.; Zhou, Hong (Scientific Research Publishing, 2018);
    In our recent work (Wang, Burgei, and Zhou, 2018) we studied the hearing loss injury among subjects in a crowd with a wide spectrum of heterogeneous individual injury susceptibility due to biovariability. The injury risk ...
  • Thumbnail

    Asymptotics and well-posedness of the derived distribution density in a study of biovariability 

    Wang, Hongyoun; Burgei, Wesley; Zhou, Hong (Scientific Research Publishing, 2018);
    In our recent work (Wang, Burgei, and Zhou, 2018) we studied the hearing loss injury among subjects in a crowd with a wide spectrum of heterogeneous individual injury susceptibility due to biovariability. The injury risk ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.