Use of Equivalent Metamaterial Parameters in Finite Element Models of Macro-scale Metamaterial
Author
Grbovic, Dragoslav
Alves, Fabio
Mattish, Richard
Date
2018-03-06Metadata
Show full item recordAbstract
Experimentally measured reflectance and transmittance are used to obtain effective permittivity, permeability and conductivity for a planar microwave metamaterial. These parameters are then used in a finite element models of macro-scale metamaterial objects, where the metamaterial is represented as a homogeneous layer with frequency-dependent permittivity, permeability and conductivity. We demonstrate good agreement between reflectance and absorbance of metamaterial structure and those obtained from modeling homogenized, macro-scale metamaterials. We further demonstrate use of the method for geometrically scaled, oddly-shaped macroscopic objects. This method significantly reduces computation requirements and enables modeling of metamaterial-made, large area objects without modeling their actual intricate metamaterial structure.
Description
APS March Meeting 2018, Volume 63, Number 1, Monday–Friday, March 5–9, 2018; Los Angeles, California
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
Application of equivalent medium parameters in finite element models of microwave metamaterials
Hewitt, C.; Alves, F.; Luscombe, J.; Grbovic, D. (2018-03);Simulated or experimentally measured reflection and transmission are used to obtain effective permittivity (e), permeability (l), and conductivity (r) for a planar microwave metamaterial. These parameters are then used in ... -
MEMS terahertz focal plane array with optical readout
Gonzalez, Hugo A., Jr. (Monterey, California: Naval Postgraduate School, 2016-06);The terahertz (THz) spectral range remains a relatively untapped portion of the electromagnetic spectrum. THz radiation's unique ability to penetrate non-metallic materials presents an exciting opportunity for many imaging ... -
MEMS terahertz-to-infrared band converter using frequency selective planar metamaterial
Alves, Fabio; Pimental, Leroy; Grbovic, Dragoslav; Karunasiri, Gamani (Nature, 2018-08-20);A MEMS terahertz-to-infrared converter has been developed based on the unique properties of metamaterials that allow for selective control of the absorptivity and emissivity of the sensors. The converter consists of a ...