Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

A DETERMINISTIC APPROACH TO UNDERSTANDING THE SENSITIVITY OF SURFACE DUCT PROPAGATION TO SOUND SPEED FEATURES IN THE UPPER OCEAN

Thumbnail
Download
Icon20Dec_Zinicola-Lapin_William.pdf (2.120Mb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Zinicola-Lapin, William N.
Date
2020-12
Advisor
Colosi, John A.
Second Reader
Reeder, Davis B.
Metadata
Show full item record
Abstract
A key sound speed feature of the upper ocean is the Mixed Layer Acoustic Duct (MLAD). Acoustic propagation effects due to mean properties of the duct and spatial and temporal variability are thought to be strong functions of acoustic frequency. Key physical mechanisms at work are diffractive leakage and mode coupling. Using both analytic theory and direct numerical simulation, this thesis will examine 400 and 1000 Hz MLAD propagation characteristics by calculating the sensitivity of duct propagation to various ocean perturbations with horizontal scales ranging from 0.5 to 15 km. As a starting point, sound speed profiles (SSP) typical of the spring-summer transition in the North Atlantic are considered. Tools used are first-order mode scattering theory originally developed for shallow water propagation, and direct numerical simulation. Numerical simulations are compared to theory with the goals of 1) evaluating the utility of the shallow water analytic approach for deep water MLADs and 2) putting forward a metric for estimating MLAD stability as a function of frequency and perturbation scales. Results show that while the shallow water analytic approach is not accurate enough for the MLAD due to higher order mode interaction, first-order mode energy equation motivates the non-dimensional interaction matrix, Γmn, which showed strong correlation between multiple scattering events and increased acoustic variability when Γmn > 1.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
URI
https://hdl.handle.net/10945/66750
Collections
  • 1. Thesis and Dissertation Collection, all items
  • 2. NPS Outstanding Theses and Dissertations

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Development of a labolatory facility for the measurement of sound propagation in shallow water environment 

    Pongsitanont, Nakorn (Monterey, California. Naval Postgraduate School, 1989-12);
    The propagation of sound in a laboratory-modeled, shallow water environment consisting of water overlying a thick layer of water-saturated sand was experimentally investigated. A hydrophone consisting of a small lead-titanate ...
  • Thumbnail

    A smart climatology of evaporation duct height and surface radar propagation in the Indian Ocean 

    Twigg, Katherine L. (Monterey, California. Naval Postgraduate School, 2007-09);
    Surface electromagnetic propagation over the ocean is highly sensitive to near-surface atmospheric variability, particularly the height of the evaporation duct. Seasonal variation in near-surface meterological factors and ...
  • Thumbnail

    An examination of higher-order treatments of boundary conditions in split-step Fourier parabolic equation models 

    Erdim, Savas (Monterey, California: Naval Postgraduate School, 2015-06);
    Parabolic equation models solved using the split-step Fourier (SSF) algorithm, such as the Monterey Miami Parabolic Equation model, are commonly used to predict underwater sound propagation in deep and shallow water ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.