Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  •   Calhoun Home
  • Faculty and Researchers
  • Faculty and Researchers' Publications
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

The Atmospheric Surface Layer Response to Nonlinear Internal Ocean Waves

Thumbnail
Download
IconThe_Atmospheric_Surface_Layer_Abst.pdf (414.7Kb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Ortiz-Suslow, David G.
Kalogiros, John A.
Alappattu, Denny
Welch, Pat
Savelyev, Ivan B.
Paolo, Tony de
Wang, Qing
Yamaguchi, Ryan
Olson, Alex
Shearman, Robert Kipp
Celona, Sean
Terrill, Eric
Date
2020-02-18
Metadata
Show full item record
Abstract
Nonlinear internal ocean waves (NIWs) are regular features of the coastal ocean, where the hydrodynamic flow over changing bathymetry perturbs the isopycnal surfaces generating these high frequency waves. At the air-sea interface, these transient features may be characterized by quasilinear bands of smooth or rough ocean surface that propagate in the direction of the underlying NIWs. Theoretically, this roughness heterogeneity is driven by the phase-locked divergence and convergence of the NIW orbital motions. This NIW action modulates surface wavelengths within the capillary and gravity-capillary band, which also hold the majority of the tangential wind stress. Understanding the spatial-temporal distribution of these small-scale surface waves is critical to constraining air-sea coupling, which is significantly complicated in the case of a heterogeneous surface. The impact NIW-driven surface roughness has on the variability and structure of the atmospheric surface layer is unknown. During a Coupled Air Sea Processes and EM ducting Research (CASPER) field campaign, the Research Platform FLIP was deployed for five weeks in a coastal area with a suite of near-surface oceanographic and meteorological measurements, as well as near-field remote sensing of the surface using both radar, infrared, and optical visualization. This confluence of measurement capability from an ideal platform, enabled us to simultaneously identify and track NIWs while characterizing the variance and structure of the kinematic and thermodynamic state on either side of the interface. NIWs were regularly observed from FLIP, with their characteristic surface banding observed nearly every day of the campaign. Our analysis into one case revealed that NIWs exert a distinct and significant impact on the mean wind gradient, as well as the air-sea momentum flux (i.e. wind stress) on both the scale of individual wave fronts and an entire NIW packet. In particular, the MASL flow adjusts instantaneously to the smooth-rough transitions of individual bands, thereby enhancing the wind stress over the surface. Our presentation will focus on summarizing these findings, as well as highlighting additional NIW events observed during the CASPER campaign from FLIP to discern any underlying or general pattern in the nature of NIW-atmosphere interactions.
Description
Ocean Sciences Meeting 2020
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
URI
http://hdl.handle.net/10945/66926
Collections
  • Faculty and Researchers' Publications

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Simulation of the Bohai Sea circulation and theromohaline structure using COHERENS model 

    Obino, Rodrigo S. (Monterey, California. Naval Postgraduate School, 2002-06);
    The goals of this work are to simulate the Bohai Sea circulation and thermohaline structure and to investigate the physical mechanisms using the Coupled Hydrodynamical-Ecological Model for Regional and Shelf Seas (COHERENS) ...
  • Thumbnail

    Effect of surface ship internal fluid containers on external acoustic intensity measurements 

    Smith, Amy Ruth (Monterey California. Naval Postgraduate School, 1990);
    The nearfield acoustic intensity resulting from vibration transmitted from a main machinery foundation through supporting structure and fluid containing tanks into the hull structure, and then into the surrounding fluid ...
  • Thumbnail

    Interactions Between Nonlinear Internal Ocean Waves and the Atmosphere 

    Ortiz-Suslow, David G.; Wang, Qing; Kalogiros, John; Yamaguchi, Ryan; de Paolo, Tony; Terrill, Eric; Shearman, R. Kipp; Welch, Pat; Savelyev, Ivan (AGU, 2019-08);
    The heterogeneity in surface roughness caused by transient, nonlinear internal ocean waves is readily observed in coastal waters. However, the quantifiable impact this heterogeneity has on the marine atmospheric surface ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.