Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Observations of Hydraulic Roughness and Form Drag in the Wake of a Deep Ice Keel in the Arctic Ocean

Thumbnail
Download
Icon12Mar_Schmidt.pdf (5.934Mb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Schmidt, Brandon K.
Date
2012-03
Advisor
Stanton, Timothy
Second Reader
Shaw, William
Metadata
Show full item record
Abstract
Decrease in Arctic Ocean perennial sea-ice has been observed in recent decades. As sea-ice continues to decline, marine traffic will increase and the United States will require a more active military presence in the Arctic. Future Arctic conditions must be forecasted with increased accuracy to allow for proper planning with regard to the nations changing role in the region. It is the goal of this thesis to contribute to the knowledge of turbulence and mixing associated with ice keels in the Arctic Ocean in order to improve the accuracy of predictive coupled ocean/ice/atmospheric models. At Applied Physics Laboratory Ice Station 2011, a 3-dimensional (3-D) sonar was used to record high resolution morphological measurements of an ice keel approximately 33 m long by 29 m across and 10 m deep. Sensors were deployed in the water column approximately 10 m from the keel to record water properties of salinity, temperature, and 3-D velocity at selected depths in the upper water column. These observations were used to make calculations of turbulence within the mixed layer, in order to gain a greater understanding of how keels affect turbulent drag and heat fluxes in the upper ocean. Results indicate that keels generate significant turbulence and mixing in the upper ocean, even during benign weather conditions in which there is little surface forcing. Keels increase the kinetic energy of the upper ocean through production of turbulent eddies during times of weak stratification and the generation of internal waves during times of strong stratification. Keel-induced turbulence and mixing may lead to entrainment of warmer water underlying the surface mixed layer that could be a contributor to ice melting. Calculation of the quadratic drag coefficient Cw also indicated that Cw varies greatly with water column stratification and ice undersurface roughness. Values as high as 0.08 were seen in the wake of a 10 m ice keel during strong stratification, and as low as 0.002 when the current was not affected by the keel during weak stratification. Most numerical models utilize a constant value of 0.0055 for |Cw|. Varying |Cw| based on ice roughness and water column structure could greatly improve model accuracy.
URI
http://hdl.handle.net/10945/6864
Collections
  • 1. Thesis and Dissertation Collection, all items

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Layered mixing on the New England Shelf in summer 

    Wang, Jianing; Greenan, Blair J.W.; Lu, Youyu; Oakey, Neil S.; Shaw, William J. (2014);
    The layered structure of stratification and mixing on the New England Shelf (NES) in summer is examined by analyzing a comprehensive set of observations of hydrography, currents and turbulence. A clear distinction in ...
  • Thumbnail

    Similarity theory based on the Dougherty-Ozmidov length scale 

    Grachev, Andrey A.; Andreas, Edgar L.; Fairall, Christopher W.; Guest, Peter S.; Persson, P. Ola G. (2014-04);
    This article describes a local similarity theory for developed turbulence in the stably stratified boundary layer that is based on the Brunt–V¨ais¨al¨a frequency and the dissipation rate of turbulent kinetic energy instead ...
  • Thumbnail

    Parametrizing turbulent exchange over summer sea ice and the marginal ice zone 

    Andreas, Edgar L.; Horst, Thomas W.; Grachev, Andrey A.; Persson, P. Ola G.; Fairall, Christopher W.; Guest, Peter S.; Jordan, Rachel E. (2010-04);
    The surface of the Arctic Ocean in summer is a mix of sea ice and water in both leads and melt ponds. Here we use data collected at multiple sites during the year-long experiment to study the SurfaceHeatBudget of the ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.