Physics-Based Modelling and Simulation of Multibeam Echosounder Perception for Autonomous Underwater Manipulation
Author
Choi, Woen-Sug
Olson, Derek R.
Davis, Duane
Zhang, Mabel
Racson, Andy
Bingham, Brian
McCarrin, Michael
Vogt, Carson
Herman, Jessica
Date
2021-09Metadata
Show full item recordAbstract
One of the key distinguishing aspects of underwater manipulation tasks is the perception challenges of the ocean environment, including turbidity, backscatter, and lighting effects. Consequently, underwater perception often relies on sonar-based measurements to estimate the vehicle’s state and surroundings, either standalone or in concert with other sensing modalities, to support the perception necessary to plan and control manipulation tasks. Simulation of the multibeam echosounder, while not a substitute for in-water testing, is a critical capability for developing manipulation strategies in the complex and variable ocean environment. Although several approaches exist in the literature to simulate synthetic sonar images, the methods in the robotics community typically use image processing and video rendering software to comply with real-time execution requirements. In addition to a lack of physics-based interaction model between sound and the scene of interest, several basic properties are absent in these rendered sonar images–notably the coherent imaging system and coherent speckle that cause distortion of the object geometry in the sonar image. To address this deficiency, we present a physics-based multibeam echosounder simulation method to capture these fundamental aspects of sonar perception. A point-based scattering model is implemented to calculate the acoustic interaction between the target and the environment. This is a simplified representation of target scattering but can produce realistic coherent image speckle and the correct point spread function. The results demonstrate that this multibeam echosounder simulator generates qualitatively realistic images with high efficiency to provide the sonar image and the physical time series signal data. This synthetic sonar data is a key enabler for developing, testing, and evaluating autonomous underwater manipulation strategies that use sonar as a component of perception.
Description
17 USC 105 interim-entered record; under review.
The article of record as published may be found at https://doi.org/10.3389/frobt.2021.706646
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.Collections
Related items
Showing items related by title, author, creator and subject.
-
Planned perception within concurrent mapping and localization
Slavik, Michael P. (2002-06);The fundamental requirement of truly autonomous mobile robots is navigation. Navigation is the science of determining one's position and orientation based on information provided by various sensors. Mobile robot navigation, ... -
Soft target security: environmental design and the deterrence of terrorist attacks on soft targets in aviation transportation
Jashari, Linda (Monterey, California: Naval Postgraduate School, 2018-03);Recent attacks on airports exposed an emerging threat to the security of the traveling public, attacks on soft targets. Incidents throughout the world indicate that terrorists, seeking to maximize life loss, and economic ... -
Modeling reduced human performance as a complex adaptive system
Wellbrink, Joerg C.G. (Monterey, California. Naval Postgraduate School, 2003-09);Current cognitive models not only lack flexibility and realism, they fail to model individual behavior and reduced performance. This research analyzes current cognitive theories (namely, symbolism, connectionism, and ...