Carbon Fiber and Tungsten Disulfide Nanoscale Architectures for Armor Applications

Download
Author
Moberg, Michael J.
Date
2012-06Advisor
Luhrs, Claudia
Second Reader
Kwon, Young
Metadata
Show full item recordAbstract
The objective of this research was to generate shock-resistant materials based on inorganic fullerene type tungsten disulfide (IF-WS2) and carbon nanocomposite structures for personal protection armor systems. The aim was to develop a new generation of composites that combine the known energy absorbing properties of carbon nanofibers, with the shock absorbing properties reported for IF-WS2 structures. Various methods were explored to generate the desired WS2carbon fiber composite. Experimentation revealed that in situ growth of carbon fibers from a nickel catalyst with tungsten disulfide particulates had to be performed from particular precursors and fabrication conditions to avoid undesirable byproducts that hinder fiber growth. As a result, tungsten oxide was used as tungsten source, nickel as carbon fiber growth catalyst, ethylene as hydrocarbon and fuel rich oxidative conditions for growth, all followed by a sulfurization process. Fabrication of fibers was performed at moderate temperatures (ca. 550 degrees C) with a sulfurization step at 900 degrees C in a tubular furnace. Microstructural characterization of the samples was primarily conducted using X-ray diffraction and electron microscopy. In order to determine more properties of the nanocomposites, the samples were dispersed into an epoxy matrix. Nano-indentation was utilized as a method of determining mechanical properties of the composites while a gas gun was used to determine shock propagation effects. The inclusion of WS2/C nanocomposites into epoxy matrixes showed a significant improvement in modulus and hardness values when compared to bare carbon fiber epoxy composites. WS2/C fiber epoxy nanocomposites preserved their integrity during gas gun tests while samples without WS2 fractured.
Collections
Related items
Showing items related by title, author, creator and subject.
-
IF-WS2/nanostructured carbon hybrids generation and their characterization
Luhrs, Claudia C.; Moberg, Michael; Maxson, Ashley; Brewer, Luke; Menon, Sarath (2014);With the aim to develop a new generation of materials that combine either the known energy absorbing properties of carbon nanofibers (CNF), or the carbon-carbon bond strength of graphene sheets (G), with the shock resistance ... -
NOVEL SYNTHESIS AND CHARACTERIZATION OF INORGANIC FULLERENE TYPE WS2 AND GRAPHENE HYBRIDS
Maxson, Ashley R. (Monterey, California. Naval Postgraduate School, 2013-03);With the aim to develop personal protection systems with improved mechanical properties and reduced weight, this research combined graphene with tungsten disulfide, and studied this hybrid system included in epoxy resin. ... -
Hybrid composites based on carbon fiber/carbon nanofilament reinforcement
Tehrani, Mehran; Boroujeni, Ayoub Yari; Luhrs, Claudia; Phillips, Jonathan; Al-Haik, Marwan S. (2014);Carbon nanofilament and nanotubes (CNTs) have shown promise for enhancing the mechanical properties of fiber-reinforced composites (FRPs) and imparting multi-functionalities to them. While direct mixing of carbon ...