Naval Postgraduate School
Dudley Knox Library
NPS Dudley Knox Library
View Item 
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  •   Calhoun Home
  • Theses and Dissertations
  • 1. Thesis and Dissertation Collection, all items
  • View Item
  • How to search in Calhoun
  • My Accounts
  • Ask a Librarian
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of CalhounCollectionsThis Collection

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Real-time modeling of cross-body flow for torpedo tube recovery of the Phoenix Autonomous Underwater Vehicle (AUV)

Thumbnail
Download
Iconrealtimemodeling00byrn.pdf (10.27Mb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Byrne, Kevin Michael
Date
1998-03
Advisor
Brutzman, Donald
Second Reader
McGhee, Robert B.
Metadata
Show full item record
Abstract
A virtual world provides an exceptional resource for the testing and development of an Autonomous Underwater Vehicle (AUV). The difficulties associated with the underwater environment are numerous and complex. In order to properly verify vehicle results in the laboratory such a world must accurately model the physics associated with the vehicle, its submerged hydrodynamics characteristics, and interactions with the environment. Environmental effects such as wave motion, currents, and flow forces created by bodies moving through the water can cause unpredicted performance variations and failures in the ocean environment. The current Phoenix AUV virtual world includes steady state ocean currents, but does not take into account the environmental effects of waves and flow forces induced by adjacent vehicles (such as a moving submarine docking target). This work provides a thorough real time simulation of these complex factors using physically based models. The problem is broken down into wave motion effects, submarine induced flow fields, and virtual sensors to improve AUV motion control. Simulated testing is performed across a range of easy to worst case scenarios in order to justify assumptions. Extensive testing using virtual sensors is used to develop adequate control algorithms in the presence of turbulent cross body flow. The result of this research is an enhanced virtual world which more accurately depicts the ocean environment, along with the models and control algorithms required to design and operate an AUV during submarine launch and recovery. A platform independent approach to virtual environment simulation is presented through the use of the Virtual Reality Modeling Language (VRML) and Java. Finally, simulation test results provide strong evidence that AUV control with actual cross body flow sensors can enable stable navigation, first through a turbulent flow field and then for subsequent docking with a moving submarine
URI
http://hdl.handle.net/10945/8888
Collections
  • 1. Thesis and Dissertation Collection, all items

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    A virtual world for an autonomous underwater vehicle 

    Brutzman, Donald P. (Monterey, California. Naval Postgraduate School, 1994-12);
    A critical bottleneck exists in Autonomous Underwater Vehicles (AUV) design and development. It is tremendously difficult to observe, communicate with and test underwater robots, because they operate in a remote and hazardous ...
  • Thumbnail

    Software reference : a virtual world for an autonomous underwater vehicle 

    Brutzman, Donald P. (Monterey, California. Naval Postgraduate School, 1994-12); NPS-CS-94-010
    This Software Reference documents and summarizes all source code produced for a Ph.D. dissertation constructing an underwater virtual world for an Autonomous Underwater Vehicle (AUV). A critical bottleneck exists in ...
  • Thumbnail

    A personal navigation system based on inertial and magnetic field measurements 

    Calusdian, James (Monterey, California. Naval Postgraduate School, 2010-09);
    This work describes the development and testing of a personal navigation system (PNS) for use during normal walking on level ground surfaces. A shoe-worn miniature inertial/magnetic measurement unit (IMMU), which is ...
NPS Dudley Knox LibraryDUDLEY KNOX LIBRARY
Feedback

411 Dyer Rd. Bldg. 339
Monterey, CA 93943
circdesk@nps.edu
(831) 656-2947
DSN 756-2947

    Federal Depository Library      


Start Your Research

Research Guides
Academic Writing
Ask a Librarian
Copyright at NPS
Graduate Writing Center
How to Cite
Library Liaisons
Research Tools
Thesis Processing Office

Find & Download

Databases List
Articles, Books & More
NPS Theses
NPS Faculty Publications: Calhoun
Journal Titles
Course Reserves

Use the Library

My Accounts
Request Article or Book
Borrow, Renew, Return
Tech Help
Remote Access
Workshops & Tours

For Faculty & Researchers
For International Students
For Alumni

Print, Copy, Scan, Fax
Rooms & Study Spaces
Floor Map
Computers & Software
Adapters, Lockers & More

Collections

NPS Archive: Calhoun
Restricted Resources
Special Collections & Archives
Federal Depository
Homeland Security Digital Library

About

Hours
Library Staff
About Us
Special Exhibits
Policies
Our Affiliates
Visit Us

NPS-Licensed Resources—Terms & Conditions
Copyright Notice

Naval Postgraduate School

Naval Postgraduate School
1 University Circle, Monterey, CA 93943
Driving Directions | Campus Map

This is an official U.S. Navy Website |  Please read our Privacy Policy Notice  |  FOIA |  Section 508 |  No FEAR Act |  Whistleblower Protection |  Copyright and Accessibility |  Contact Webmaster

Export search results

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

A logged-in user can export up to 15000 items. If you're not logged in, you can export no more than 500 items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.