

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1964

Proton magnetometer coherence

Anderson, Robert A.

Monterey, California: U.S. Naval Postgraduate School

https://hdl.handle.net/10945/12923

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

NPS ARCHIVE 1964 ANDERSON, R.

PROTON MAGNETOMETER COHERENCE

ROBERT A. ANDERSON

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY, CA. 53043-5101

LIBRARY U.S. NAVAL POSTGRADUATE SCHOO MONTEREY, CALL-URMA

.

Mont 124

PROTON MAGNETOMETER

COHERENCE

* * * * *

Robert A. Anderson

Thore to a mering are

.....

Robert A. Anderson

PROTON MAGNETOMETER

COHERENCE

by

Robert A. Anderson

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING ELECTRONICS

United States Naval Postgraduate School Monterey, California

164 Merson, R.

AX855

Librory U. S. Naval Postgraduate School Monterey, California

PROTON MAGNETOMETER

COHERENCE

by

Robert A. Anderson

This work is accepted as fulfilling

the thesis requirements for the degree of

MASTER OF SCIENCE

IN

ENGINEERING ELECTRONICS

from the

United States Naval Postgraduate School

ABSTRAC T

The results of coherence measurements of three free precession proton magnetometers are discussed. The measuring and data processing instrumentation is described. The noise associated with the instrumentation has been measured and presented in statistical form. The results of measurements with elementary local perturbations are included to illustrate the target detection problem. The limitations of the instrument for target detection are discussed and imporvements suggested.

The writer wishes to express appreciation to Professor Carl E. Menneken for suggesting the problem, and Professor Harold A. Titus for encouragement and assistance in the preparation of this thesis.

TABLE OF CONTENTS

Section	Title	Pagə
1	Introduction	1.
2	Instrumentation	3
3	Data Analysis	22
14	Results	29
5	Conclusions	47
	Bibliography	48
Appendix I	Results of Magnetic Field and Perturbation	
	Experiments	
Appendix II	160 Programs and Operator Instructions	
Appendix III	Fortran Programs	
Appendix IV	Circuit Diagrams	

LIST OF ILLUSTRATIONS

Figure		Page
1	Basic Counter Unit	14
2	Effect of Noncoherent Gating	6
3	Counter Instrument	9
4	Magnetometer Input Section	3.0
5	Magnetometer Instrumentation	2 4 2 2
6	Data Aquisition and Processing	13
7	Storage Tape Format	15
8	Tape Deck Output Register	1.6
9	Interface Input Section	17
10	Output Section Decodeing and Resume	13
11	Proliminary Processing Setup	19
12	Perturbation Experiment Geometry	27
13 - 25	Graphical Results of Ideal Signal Experiment	30 - 42
26	Analog Plot H vs. Time	43
27	Analog Difference Plot	1:14
28	Proton Precession Signals	45
29	Filter Design	24

1. Introduction

The use of magnetometers for target detection requires identification of signals in the presence of the noise associated with the earth's magnetic field. The signal, in many cases, will be smaller in magnitude than the normal diurnal variation of the field, local fixed perturbations and geomagnetic pulsations. The system noise is of major concern in a detection scheme using magnetometers. This paper presents the preliminary results of a study of three proton free precession magnetometers operated under non laboratory conditions at Naval Postgraduate School La Mesa Village site.

The free precession magnetometer consists of a coil of wire in which a source of protons is placed. A strong field is applied to orientate the proton spins in a direction approximately normal to the earth's field. The polarizing field is then removed in a manner such that the spins cannot follow the field. The earth's field then causes the protons to precess about the lines of magnetic force at the Lamour frequency given by:

$$\begin{split} & \mathcal{W} = \mathcal{Y}_{p} H \\ \text{where} \quad & \mathcal{Y}_{p} \equiv \text{gyro magnetic ratio} \\ & \equiv \text{ magnetic moment/angular momentum} \\ \text{and} \\ & H = \text{magnitude of external field} \end{split}$$

(earth's field)

The net precessing magnetic moment causes a voltage to be induced in a coil surrounding the sample. Since the precessional frequency is dependent only on the external magnetic field, the measurement of H consists of measuring the frequency of the induced emf. The inherent

(1)

and the second sec

accuracy of the free precession magnetometer is determined by the spectral line width (1), which is related to the relaxation time T_{2} , and is given by:

where

$$\Delta H = \frac{1}{\gamma_{p} T_{2}}$$

$$= 3.6 \text{ y} \qquad (2)$$

$$H = \text{Half intensity width}$$

$$T_{2} = 1 \text{ sec (meas)}$$

$$= 10^{-5} \text{ GAUSS}$$

The gyromagnetic ratio has been measured by the NBS to better than 1 part in 10^5 . Full advantage of this inherent accuracy has not been utilized because of the problems associated with the frequency measurement. The frequency measurement is complicated by the fact that only a limited time is available for measurement. The signal received from the magnetometer is in the few microvolt range; hence locally generated electronic noise and transients from the polarizing operation cause the signal to noise ratio to be small. Standard counting techniques are used for measurement. To get the required accuracy, the frequency must be obtained from period or multiple period average measurements. The process is digital in nature and lends itself very nicely to computer processing of the data.

The main disadvantage is that any reasonable attempt to obtain an analog signal proportional to the measurement is an analog of period rather than frequency; therefore, the analog is the inverse of the quantity of interest. This does not present serious problems for target detection since the absolute magnitude of field is not of interest.

2. Instrumentation

2.1 Measurement

The engineering aspect of the measurement problem can be stated simply as follows:

<u>Given</u>: Three transient type signals of frequency approximately two kc/s occuring at the same time, with usable duration of about 3/4sec. The signals are in the microvolt range. The recurrance rate is to be 2 sec. The measurements must be conducted in the presense of high electronic noise such as relay transients, contact noise and transients from the collapsing polarizing field. <u>Find</u>: The frequency of the oscillations accurate to 1 part in 10^5

or better, and suitable means of data aquisition and processing.

The funds available excluded the possibility of using commercially constructed instruments or components. Also, modifications and interfacing would have to be done if components were used. Hence, the basic measuring instrumentation was constructed at NPGS. No detailed circuit design is presented; however the circuit diagrams are included in Appendix IV.

Assume the precession signal has been amplified in a suitable, low noise, narrow band preamplifier, and converted to a signal having fast waveform. Referring to the simplified block diagram of Fig. 1, the basic counter operation is as follows: Let the slow and fast counters consist of flip-flop counting units, connected to form a binary counter. The gate control flip-flop is capable of being triggered into either state. The multiplier converts the clock frequency to a harmonic of the precision 100 kc/s oscillator.

Let all counters be reset and ready for operation. The unknown input signal is applied to the gate. After a delay of approximately 150 ms, an external signal triggers the gate control to open the signal gate. The long delay is necessary to allow for damping the polarizing field and relay transients. The first pulse through the signal gate opens the clock gate. The fast counter then counts the number of clock pulses occuring during the time interval determined by the slow counter. The slow counter is increased one for each cycle of unknown input signal. After the slow counter has reached a predetermined number, both signal and clock gates are closed, and the number in the fast counter is a value of the time interval of 2^n cycles of unknown input signal, or can be reduced to the average period of the signal.

-

Let us define

N = number in fast counter 2ⁿ = number of cycles of unknown signal tp = period of clock (// sec.) tp = period of unknown signal

Then we have

.

$$T_{m} = N t_{p}$$

$$t_{m} = \frac{T_{m}}{2^{m}}$$

$$= N t_{p} / 2^{m}$$

Substituting in (1) gives

$$H = \frac{2\pi \cdot 2^{m}}{8p N tp}$$
(3)

and with n = 10,

$$H = \frac{2348400 \times 1024}{N}$$
(4)

The accuracy of such a scheme depends on:

a. The accuracy in determining the zero crossing of the unknown signal.

b. Propagation delay in the slow counter.

c. Gating speed.

d. Accuracy of the clock.

e. Plus or minus the las bit, due to noncoherent gating as illustrated in Fig. 2.

EFFECT OF NONCOHERENT GATING

The errors due to determining the zero crossing are usually the dominant error in using this technique; however when averaged over 1024 cycles they become small and the largest error is the plus or minus last bit, as shown. The accuracy in determining the zero crossing in the presence of noise (2) is:

$$t_n \equiv \frac{v_n}{S}$$

where:

 $t_n \equiv$ maximum error in trigger time in sec. $V_n \equiv$ peak to peak noise in volts.

S = slope of ideal signal at point of trigger level.

For a sinusoidal input:

$$S = \frac{d}{dt} (V_s Sim wt) | wt = m\pi$$
$$= V_s W$$

Assume a signal to noise ratio 2 $\mathtt{V}_{s}/\mathtt{V}_{n}$ Ξ 20 db, and

W = ZTYXZ KC/S

then:

For 1024 periods:

The plus or minus last bit error if the clock is 100 kc, is $\gtrsim 10$ sec., and the other errors mentioned are negligible compared to the 10 μ sec. error.

Consider the \pm l bit limitation in detail for the earth's field 50950 λ , which is the approximate value at Monterey, California. let:

N = 001340518 ± 1 bit

1 bit \$ 10 usec.

then:

A H= ± 1.1 Y

This becomes the sensitivity of the instrument. If the clock is increased to 1 mc/sec, 1 bit = wsec., and:

 Δ H = \pm 0.11 γ ; however other noise becomes appreciable and cannot be neglected. The circuits were designed for 1 mm/sec operation, but the measurements to date were conducted at 100 kc/s and 300 kc/s clock rates. The added complication is to construct 3 meters that will read identical, the input circuitry and slow counters must have identical characteristics. This is impossible from a practical point of view. The result is that the three counters with an ideal signal input can vary \pm 1 bit in comparing their readings.

A simplified block diagram and photo of the magnetometer is shown in Figs. 3, 4 and 5. It must be remembered that operation

is to be in remote locations where extremes of temperature, line voltage fluctuations, poor grounds, etc. will be found; hence circuits that are sensitive to these variations must be carefully compensated.

For the experiments under consideration, locating the sensing coils approximately 500' apart would be sufficient; however for further experiments a distance of greater than 500' might be necessary. Therefore, a provision to place the preamps in the line nearer the sensing coils for improved signal to noise ratio was included. Bias for the preamps is applied to the signal line, from the console to eliminate the need for battery replacement. The relays that provide the two to three amps of polarizing current, and provide for dissapation of the stored energy when polarizing current is turned off, must precede the preamp. Since this unit is placed near the sense coil, it must be magnetically clean.

Referring to the block diagram the components that are common to the three units are the clock, timer, recorders and the power supplies.

3-

Figure 5

Three proton magnetometers and the Rb⁸⁷ vapor magnetometer at La Mesa Village

Site

2.2 Data Aquisition and Processing

Figure 6 shows a block diagram of the data collection and reproduction system.

The scheme used for data handling is certainly not optimum in the sense of tape utilization and ease of operation, but an Ampex CP100 was available and required no additional expenditure for tape recorder. Also with minor modifications a data recorder can be utilized at a later date if funds become available.

Consider the form of the data. The sensing coils are polarized for one second, at the end of this time the polarizing current is turned off, the transients are damped; and the signal is fed to the counting units. After 1024 cycles of the input signal (about 1/2 sec.) the measurement is complete. In the fast counters, there are three binary numbers to be processed. The magnitude of the binary numbers, for H = 50950 X with clock frequency = 100 kc/s, is about 00134146g or 16 bits. With the clock increased to 300 kc/s, the number is 00425260g or 18 bits. Hence, at the end of the counting interval, there are 48 bits to be recorded in a format for computer input. The Ampex CP100 is a "portable" instrumentation recorder with 14 parallel inputs and capable of speeds from 1 7/8 ips to 60 ips. All of the record and reproduce amplifiers that were on hand were not capable of recording D.C. levels; therefore, the information was put on tape in the form of pulses. Also, for reasonable speed in reproduction, the data was recorded at 1.7/8 ips and reproduced at 60 ips. A record of approximately 6.5 hours can be reproduced in 10 minutes. The machine used to read the raw data is a CDC160 com-

second seco

DATA AQUISITION AND PROCESSING

Figure 6

puter capable of reading words of up to 12 parallel bits. The magnetometer words are broken into two, 12 bit words and time multiplexed on tape to satisfy the computer input conditions. Hence, for each sample, there are six 12 bit words to be processed. Even with the time speed up in reproduction the CDC 160 is operating below its capabilities. In an effort to utilize the 160 time, the data was put on tape, so that when it occured, the 160 would read at its maximum rate and use the "no data time" to continue with preliminary processing. Channels 13 and 14 on the tape are input ready and disconnect signals used to control the 160. And of course, for reasonable machine time efficiency, there is on hand enough tape to allow continuous recording for one week.

The Ampex CPLCO was not designed specifically for this type of operation; hence the need for an interface to mate it with the 160. The interface must provide the following functions:

a. Convert the pulse type data to D.C. level signals.

b. Put the data on line when a request is supplied from the computer.

c. Effectively disconnect itself from the lines when other equipment is called.

d. Provide control information, i.e. input ready and disconnect for the 160.

e. Effectively isolate the computer from spurious transients from the tape machine. These normally occur during start - stop operations, but the recorder is somewhat susceptible to power line transients and they sometimes appear in its output.

Figures 8, 9 and 10 shows the block diagram of the interface provided. Fig. 11 is a photo of the preliminary processing setup. The cards were assembled and mounted as a component on a laboratory cart, the tape unit is placed on the top of the cart and computer cable connectors provided. This eliminates the need for a permanent rack in the computer laboratory.

The preliminary processing consists of the following:

a. Reading the raw data.

b. Checking the data and keeping a record of the errors.

c. Writing the storage tape.

d. Providing identifying blocks on the storage tape.

e. Searching the storage tape for any particular record or the end of the data so that one storage tape may be used for many week's records.

f. Direct display of the raw data.

The data storage format used is illustrated in Fig. 7.

STORAGE TAPE FORMAT

ID	22 BLOCKS DATA	ID	22 BLOCKS DATA	ID			

Figure 7

With the time base used there are nearly 38040 twelve bit words per 6.5 hours record. The 6.5 hours record is one 3600 roll of instrumentation tape at 1 7/8 ips. Since the operation is stopped to change tape, it is convenient to put the identifying block at the

TAPE DECK OUTPUT REGISTER

Figure 9

end of this record. Also, this number of data words can be processed in the order of minutes by the CDC1604 so that if the computer is needed for other jobs; it can be stopped at the identifying blocks and return later to the same point with the proper index setting. The block length was set somewhat arbitrarily. The memory storage limit of the 160, write time of the 163 tape unit and suitable records for handling in the 1604, are the factors to be considered when chosing the block length. The instrumentation recorder cannot conveniently be stopped when writing the storage tape; hence one data point is lost when transferring data. This represents 22 points per 6.5 hours record or less than a minute in real time. The block length was chosen to be 345610 twelve bit words per block, the figure being compatable with the above conditions.

The identifying record consists of writing the month, day and year in flex code. The remaining cells of the block are loaded with zeros. It is then easy to separate the data from the identifying blocks since none of the data words will be all zeros.

The fact that the data had to be reconstructed in the 160L was also considered in chosing the block length. The information is buffered into the 160L in 48 bit words. The blocks consist of an even number of data points, i.e. six 12 bit or two 48 bit words. After a block is read into the machine and loaded into the A register, the magnetometer readings can be stored sequentially in memory with a loop of a few machine language instructions. The data analysis is then done using Fortran, allowing easy and versatile manipulation of the data. The 160 and 160L input programs are included in Appendices II and III.

Reassembly is illustrated below.

Magl (24 bits)	Mag 2 (24 bits)
Mag 3 (24 bits)	Mag 1 (24 bits)
Mag 2 (24 bits)	Mag 3 (24 bits)

1604 WORDS

Briefly, the operation is as follows: Magnetometer readings are recorded for long periods of time at a remote site on a protable magnetic tape unit. The tape unit is then returned to the processing site, and using a time speed up of X 32, the intermediate processing is performed and the data stored.

The storage tape along with suitable programs is then placed on file for processing by the computer facility at their convenience. The tape unit is then returned to magnetometer site for more records. The new data obtained is added to the storage tape so as not to destroy the existing data.

and the second second

3. Data Analysis

The experimental measurement program was set up to study the coherence between the magnetometers, i.e. the comparison of simultaneous samples of the field, with the sensors located at different spatial locations. The coherence was to be examined with various local perturbations in the field. With the target detection objective in mind, the least complicated method of obtaining the target signal will result in the best instrumentation for field use. The problem is somewhat analogous to the radar problem where decisions must be made in the presence of noise, with associated probabilities of error in detection.

There are several types of geomagnetic noise that occur. The most dominant is the diurnal variations. Superimposed on this are smaller variations known as micropulsations and noise caused by local disturbances. Sudden eruptions on the sun sometimes cause large fluctuations in the field. Several studies of the various noises have been made (3), (4) and (5). For the proton precession magnetometer, the instrument produces noise of major contribution to the spectra of small geomagnetic pulsations. For target detection, the signal of interest will most likely be of the same order of magnitude as the small micropulsations and local distrubances. For geophysical prospecting and mapping, the signals will be much larger.

As with any raw data, there will be some points that are obviously in error. The cause of errors is usually uncertain, but some provision must be made in the processing to eliminate these errors so as not to distort the data. Care must be taken when performing

these operations so the target signals are not masked. Records of the errors should be kept in order that decisions about the usefulness of the set of data can be made.

The problem of coherence between the spatial samples requires that the instrument noise be determined, with an ideal signal, then measurements be conducted with no local perturbations in the field, and the samples compared. The simplest comparison is to plot the difference signal vs. time. With no local perturbation, this means essentially a plot of the system noise vs. time; hence the need for filtering is obvious. To use this method for target detection will require serious consideration of the filter time constants.

The types of filtering

1. A clipping filter (on the raw data) that clipped at ± 200 ¥. The number of points outside of this range are recorded. This range was about twice the expected diurnal variation. The filter removes the errors from lost high order bits and other instrument sources. The typical error rate was about 1/50000.

2. A simple three point average for display of the raw data on the DD 65 display unit was used. This gives an operator a fast visual display of the raw data. Decisions can then be made about the quality of the data.

3. Eighteen point averaging, i.e. 36 seconds real time, gave partially smoothed 6.5 hours graph records.

4. A simple single section low pass filter was used of the form 1/(s - a). The time constant was set at 100 sec. and 20 min. in real time. The implementation was done using Z transform (6).

The filter design was done by Professor Harold A. Titus.

We have

$$\frac{X_{o}(S)}{X_{in}(S)} = \frac{a}{S-a}$$

which has a Z transform

$$\frac{X_{o}(z)}{X_{in}(z)} = \frac{\beta}{1 - e^{\alpha T} z^{-1}}$$

In block diagram form this is seen in Fig. 29

Figure 29

In terms of the discrete time samples we have

$$X_{o}(k+1) = \beta \underbrace{\underbrace{\mathcal{B}}_{m=0}}_{m=0} e^{-\alpha mT} \mathcal{X}_{in}(k+1-m)$$
$$\beta = \frac{1}{\underbrace{\mathcal{B}}_{m=0}} e^{-\alpha mT}$$

 $T \equiv sample period$ a $\equiv time constant$

The function was trunkated at $n \ge 20$ for values of k > 20. The contribution to the filtered value from the terms multiplied by e^{-anT} for n > 20 is negligible.

The coherency is a statistical parameter, and must be represented as such.

Let:

The differences of the unfiltered values were grouped in a frequency distribution which approximates the continuous density function for large sample size. Since the process is digital, the allowable differences, in bits are: $0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \cdots$. Therefore, the frequency distribution is not a smooth curve. Since the instrument noise is randomly distributed, the envelope of the distribution is a normal density function. The mean was removed before plotting, and the statistic representing the standard deviation was computed according to:

$$s = \frac{1}{N} \sqrt{\frac{2}{1-1}} (\Delta_1 - \overline{\Delta})^2$$

where: N = the number of samples in a 6.5 hour record.

Comparison of the density function curve with an ideal signal input to that of magnetometer input gives a measure of the noise produced by the device.

To further define the coherence, the auto and cross correlation functions were computed and the coherency computed as defined:

- 01

cch11 3

where:

and

$$C_{XY}(T) = \frac{1}{N-m} \sum_{P=1}^{N-m} \chi_P \gamma_{P+N}$$

and

$$C_{XX}(\gamma) = \frac{1}{N-m} \sum_{P=1}^{N-m} \chi_P \chi_{P+N}$$

where:

N = number of data values
n = number of lags
$$\gamma$$
 = n \land t

Since the functions are from finite time series n_{max} can only be made about 0.1 N. The 6.5 hour records will vary in form depending upon the time of day the records were made. Therefore, the correlation

functions will not be the same shape for each record; however the coherence function as defined will be the same, and for perfectly coherent records is unity. The programs are included in Appendix III.

It should be pointed out that when perturbations are placed in the field, the basic assumptions regarding correlation; i.e. a stationary random process, are no longer applicable.

Experimental data was taken to determine typical signatures for elementary perturbations. Fig. 12 shows the geometry of the detector centered coordinate system.

Figure 12
the set of the set of

The dipole moment was orientated parallel to the earth's field and its motion was in the x direction such that dx/dt = constant. The approximation r >> 1 is valid.

At the detector:

$$H = \sqrt{Ho^2 - Hp^2}$$

And:

$$Hp \equiv \frac{K M}{r^3}$$

where:

No attempt was made at this time to compare the measured values with the theoretical values, because the terrain does not lend itself keeping L, d, and v constant. The results are representative of typical signatures that would be found in practice.

and the second sec

4. Results

4.1 Instrumentation:

An ideal signal was substituted for the procession signal and set of records were made, as shown in Figs. 13 through 25. The graph scales were left unchanged because it was desired to show the instrument errors on the same scale as the magnetic field scales. The magnetic field vs. time graphs were not included because the input signal was an audio oscillator and only a small drift puts it off the graph scale. The clock was 300 kc/s which makes 1 bit \equiv 0.36 \checkmark .

Figure 28 shows the precession signal from the various sensors. Figs. 26 and 27 are typical plots made from the analog section of the instrument. For comparison, the Rb^{87} magnetometer output was adjusted to the same scale and plotted on the same graph. The Rb^{87} magnetometer output is an analog of frequency, while the proton magnetometer the analog is of period; hence the reason for the opposite drift on the chart. Figure 27 is an analog record of the differences. The filter was a single section RC filter with time constant = 10 sec. On the multiple curve plots showing coherence, the curves are identical and cannot be distinguished from each other. These curves can be compared with the curves obtained from the sensor with no local perturbations in the field, for the contribution of the measuring instrument noise to the total noise.

Difficulties with both instrumentation and computer tape have been encountered. The use of new computer tape for data storage and scratch tapes, and frequent head cleaning of the instrumentation recorder reduced the difficulties to a minimum.

30

р

X-SCALE = 5.00E+00 LINITS/INCH. Y-SCALE = 2.00E-01 LINITS/INCH. ANDERSON BOX 263 DENSITY FUNCTION X IN GAMMA Y IN FREQ

32

Figure 15

ANDERSON BOX 263 DENSITY FUNCTION X IN GAMMA Y IN FREQ

_

1 - - 4 6-04 -3

TYPICAL ANALOG PLOT OF MAGNETIC INTENSITY VS. TIME FILTER = RC WITH TIME CONSTANT OF 6 SECONDS

FIGURE 26

TYPICAL ANALOG PLOT OF THE DIFFERENCES VS. TIME FILTER = RC WITH TIME CONSTANT OF 6 SECONDS

DIVISION OF CLEVITE CORPORATION

CLEVELAND, OHIO PRINTED IN U.S.A. +

FIGURE 27

.

FRECESSION SIGNALS FROM THE THREE SENSORS AFTER PREAMELIFICATION HORIZONTAL = 0.1 SEC/CM VERTICAL = 0.1 VOLT/CM

FIGURE 28

11 _____

4.2 Magnetic field measurements

Only representative results of the magnetic field measurements are presented, since the measurements are not complete at this time. Samples of plots made with the clock at 100 kc/s are included to illustrate the effect of the clock frequency on the results. For the associated density function of the differences, the allowable values are $0 \leq 1.1, \leq 2.2, \leq \cdot \cdot \cdot$ in gamma, with the clock at 100 kc/s. The expanded difference vs. time shows clearly the 2 last bit limitation. Comparing the density functions with the plots for the clock at 300 kc, shows that most of the noise associated with the measurement is due to the last bit and can be reduced by increasing the clock frequency. The perturbation experiments were conducted with the clock at 300 kc/s. The results of the perturbation experiments show clearly the effect of the digital filtering, and the importance of time constant consideration for target detection. The oscillator is to be run 1 mc/s for further experiments. Also, many of the errors that appear in the data were the direct result of the instrumentation tape. New tape has been purchased and should eliminate most of these errors, in future records.

As pointed out previously, the basic assumptions regarding correlation are not valid, when the noise is not stationary; however, since correlation detectors can be instrumented and may prove useful in the detection problem. Some of the correlation function plots are included to illustrate the effect of local perturbations on the functions.

46

5. Conclusions

For target detection, where the signals under consideration are in the $\frac{1}{2}$ gamma, or less range, it will be difficult to detect the target without resorting to sophisticated signal processing. In this range of signals, consideration should be given to other instruments; such as the Rubidium optically pumped magnetometer, whose theoretical sensitivity is 0.001 gamma, especially where the detector is stationary, and orientation is not a problem. It can be demonstrated that when using the same measurement technique as for the proton magnetometer, the instrument and processing noise will be an order of magnitude less than the theoretical limits imposed by the sensitivity of the instrument.

For signals in the $\frac{1}{2}$ to $1\frac{1}{2}$ gamma range, detection could be accomplished with analog type correlation detectors. These could be implemented with operational amplifiers.

Signals above this range could be detected with the simple differencing technique, and the associated R.C. filters.

Increasing the clock frequency and averaging the period over more than 1024 cycles would reduce the measurement noise to a smaller part of the total noise. The target signals could then be reduced by a factor of three, with no change in the instrumentation.

Full utilization of the inherently narrow line width of proton magnetometer cannot be achieved using the standard measuring technique. Other techniques have been suggested by Professor Carl I. Menneken; such as utilizing a rapid coherent polarization in a phaselock loop arrangement. Further development work needs to be done to explore these possibilities.

47

BIBLIOGRAPHY

- 1. A. Abragam, The Principles of Nuclear Magnetism, University Press, 1961.
- 2. Herman Neidhart, Digital Methods of Measuring Frequencies from DC to 12,000 Mc, Beckman Instruments Publication.
- 3. Alexander Hoffman, Geophysical Interpretations of Power Spectral Analysis of Low Frequency Fluctuations in the Magnetotelluric Field, University of Texas, Ph.D. Thesis, 1962.
- 4. A. W. Green, Jr., B. H. List and J.F.P. Zengel, Theory, Measurement and Applications of Very-Low-Frequency Magnetotelluric Variations, Proceedings of the I. R. E., Vol. 50, No. 11, pp. 2347 2363, Nov., 1962.
- J. A. Jacobs and K. Sinno, Occurrence Frequency of Geomagnetic Micropulsations, Journal of Geophysical Research, Vol. 65, No. 1, pp. 107 - 113, Jan., 1960.
- 6. Ragazzini and Franklin, Sampled Data Control Systems, McGraw Hill, 1958.

APPENDICES

.

RESULTS OF MAGNETIC FIELD AND PERTURBATION EXFERIMENTS

X-SCALE - 108E+00 LINITS/INCH. Y-SCALE - 100E+01 LINITS/INCH. IDERSON BCX 263 ARTHS MAGNETIC FIELD VS TIME T IN HRS H GAMM

I-l

-

T-h

ANDERSON BOX 263 DENSITY FUNCTION X IN GAMMA Y IN FREQ

Y-SCALE = 5,00E+20 UNITS/INCH. Y-SCALE = C.20E-01 UNITS/INCH.

Y-SCALE = 2,80E-01 LINITS/INCH. ANDERSO 263 BCX. [·] FUNCTION X IN GAMMA Y IN FREQ DEMSI TY

X-SCALE = 5.00E+00 LINITS/INCH.

I-6

Y-SCALE - CLAGE-AL UNITS/INCH. ANDERSON BOX 263 DENSITY FUNCTION X IN GAMMA Y IN FREQ

X-SCALE = 5.00E+00 UNITS/INCH.

I-9

014 012 010 H1 H2 H2 800 000 100 Coherence for earth's magnetic field vs. time. No local perturbations 002 Record length = 6.5 hours Clock = 100 kc/s H_{12} = Coherence of H_1 and H_2 H_{13} = Coherence of H_1 and H_3 H_{23} = Coherence of H_2 and H_3 000 6:39 091 263 893 005 884 000 897 X-SCRLE - 100E+01 LINITS/INCH. Y-SCALE - 2008-31 UNITS/INCH ANDERSON BOX 263 COHERENCE FUNCTION Y IN COH X IN LAGS

APPENDIX I

EARTHS MAGNETIC FIELD US TIME T IN HRS H GAMME

Y-SCALE - 2.00E+00 UNITS/INCH. ANDERSON FILTER FILTEREDDIFFERENCE IN MAG FIELD T IN HRS H GAMMA

I-18

X-SCALE = 1.88E+88 LINITS/INCH. Y-SCALE = 2.89E+88 LINITS/INCH.

Y-SCALE = 2.00E-01 LINITS/INCH.

YCTION X IN GAMMA Y IN FREQ

-SCALE = 5.00E+00 LINITS/INCH. Y-SCALE = 2.00E-01 LINITS/INCH.

F

ROX

263

ANDFRSOM

DENSI

ANDERSON BOX 263 DENSITY FUNCTION X IN GAMMA Y IN FREQ

X-SCALE = 5.00E+00 UNITS/INCH. Y-SCALE = 2.00E-01 UNITS/INCH.

APPENDIX I

035

I-22

280 APPENDIX I 020 026 020 015 Cross correlation for earth's magnetic 010 field vs. time. No local perturbations Record length = 6.5 hours Clock = 300 kc/sH12 = Correlation (H1 - mean H1 and H2 - mean H2) H13 = Correlation (H1 - mean H1 and H3 - mean H3) H23 - Correlation (H2 - mean H2 and H3 - mean H3) 300 $Lag = \Delta t$ 000 888 691 032 003 224 685 006 897 X-SCALE = 1.00E+01 LINITS/INCH. Y-SCALE = 5.08E+81 LINITS/INCH. ANDERSON BOX 263 CROSCORRELATION FUNCTION Y IN PRODUCTS X IN LAGS

V 4 5		APPENDIX	<u> </u>			
044						
272						——————————————————————————————————————
200						
006						
604						
2.00	Coherence for earth's magnetic field vs. time. No local perturbations Record length = 6.5 hours Clock = 300 kc/s H ₁₂ = Coherence of H ₁ and H ₂ H ₁₃ = Coherence of H ₁ and H ₃					
832	H ₂₃ = Coherence o	1 H ₂ and H ₃ 12 803	064	825	086	887
0	X-SCRLE = 1.00E+01 UNI Y-SCRLE = 2.00E-01 UNI	TS-INCH. TS-INCH.				
HI C(NUERSON BOX 2 DHERENCE	263 FUNCTION T-24	I Y I	І СОН Х	IN LAGS	

I-30

APPENDIX I

Earth's magnetic field vs. time Filter = 2 point average Clock = 300 kc/s Record length = 1 hour H₁ = H₁ - mean H₁ H₂ = H₂ - mean H₁ H₃ = H₃ - mean H₁ Perturbations: \pm 5 gamma and \pm 10 gamma applied at constant velocity to H₃. -2 gamma, -5 gamma, -5 gamma applied at constant velocity to H₃, H₂ and H₁ during first hour. A 5 gamma step applied to H₃ at t = 1 hour and removed at t = 1 3/4 hours.

X SCALE = 1.00E+00 UNITS/INCH Y SCALE = 1.00E+01 UNITS/INCH

EARTHS MAGNETIC FIELD VS TIME T IN MINUTES H IN GAMMA

Earth's magnetic field vs. time Filter = 2 transform low pass with time constant of 100 seconds. Clock = 300 kc/s Record length = 1 hour H₁ = H₁ - mean H₁ H₂ = H₂ - mean H₁ H₃ = H₃ - mean H₁ Perturbations: = 5 gamma and = 10 gamma applied at constant volocity to H₃. - 2 gamma, - 5 gamma, - 5 gamma applied at constant velocity to H₃, H₂ and H₁ during first hour. A 5 gamma step applied to H₃ at t = 1 hour and removed at t = 1 3/4 hours.

X SCALE = 1.00E-00 UNITS/INCH Y SCALE = 1.00E-01 UNITS/INCH

EARTHS MAGNETIC FIELD VS TIME T IN MINUTES H IN GAMMA

APPENDIX I H2JH21 Cross correlation for earth's magnetic H13 field vs. time. Record length = 1 hour Clock = 300 kc/s $\begin{array}{l} H_{12} = \text{Correlation } (H_1 - \text{mean } H_1 \text{ and } H_2 - \text{mean } H_2) \\ H_{13} = \text{Correlation } (H_1 - \text{mean } H_1 \text{ and } H_3 - \text{mean } H_3) \\ H_{23} = \text{Correlation } (H_2 - \text{mean } H_2 \text{ and } H_3 - \text{mean } H_3) \\ \text{Lag} = \Delta t \end{array}$ Perturbations: ± 5 gamma and ± 10 gamma applied at constant velocity to H3. -2 gamma, -5 gamma, -5 gamma applied at constant velocity to H_3 , H_2 and H_1 during first hour. A 5 gamma step applied to H_3 at t = 1 hour and removed at t = 1 3/4 hours.

160 PROGRAMS AND OPERATOR INSTRUCTIONS

160 PROGRAMS AND OPERATOR INSTRUCTIONS

0000	Rewind
0002	Read
0004	Search
0006	Write
0010	Write identification Block
0100	Main Input Program

Cause

Function

ERROl	77_8 of	current	input	in error
ERRO2	Memory	storage	not co	omplete
ERRO4	End of	storage	tape	
ERR03	163 not	t ready		

Important Counters	Information
0057	Number of blocks written on storage tape
0045	Current storage location in
0046	Number of zero words in mem- ory

Operator Instructions

1. Load program and make the necessary capie col	I	Load	program	and	make	the	necessary	cable	connections.
--	---	------	---------	-----	------	-----	-----------	-------	--------------

- 2. Set identifying records in cells 30_8 to 37_8 .
- 3. Write identifying block (run from P = 010). Stop at P = 100.
- 4. Set cell 100 = 2200

Starting Addresses

Error Stops

Addresses of

57 🕿 0

5. Start Ampex C.P. 100 and run from P = 100. Stop when tape is finished or ERR stop.

II-2

0100	2200	LDFOO
0102	4045	5TD45 (ADDR)
0103	0400	LDNOO
0104	4046	STD46 (CNTR1)
0105	0400	LDNOO
0107	4100 4151	5T150 STI51
0110	4152	STI52
0111	4153	ST153
0112	4154	STI54
0113	4155	STI55
0115	0500	EAF00
0116	7203	INPO3
0117	0620	0620
0120	6102	NZF02
0121	0600	0600
0122	1600	LSFOO
0124	6115	NZFIS
0125	2150	LDI50
0126	6013	ZJF13
0127	2151	LDI51
0131	2152	4J811 I DIS2
0132	6007	ZJF07
0133	2153	LDI53
0134	6005	ZJF05
0135	2154	LDI54 ZIEOZ
0137	2155	
0140	6105	NZF05
0141	5446	AOD46
0142	0771	SBN77
0145	0001	NGB JO FBB01
0145	2050	LBD50
0146	4047	STD47
0147	2147	LDI47
0150	4145 EAAE	ST145
0152	5447	AOD47
0153	3456	SBD56
0154	6505	NZB05
0155	2200	LDFOO
0156	4(((4(((

0157 0160 0161 0162 0163 0164 0165	3445 6653 2044 3445 6003 6657 0002	SBD45 PJB53 LDD44 SBD45 ZJF03 PJB57 ERR02
0166	7101	JFI01
0170	1000	WRITE
1110	7700	HLTOO

ADDITIONAL CELLS USED

· Jahr

0044 0045 0046 0047 0050 0051 0052 0053 0054 0055	LIMIT ADDR CNTR 1 CNTR 2 BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER	STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE	(PUT IN 7600	LIMIT)
0057	NUMBER	OF MEMORY	DUMPS	

II-5

0172	5457	AOD57
0173	2600	LCFOO
0175	4060	STD60
0176	7500	EXFOO
0177	i141	REQ STAT
0200	7600	INAOO
0201	0202	LPNO2
0202	6004	ZJF04
0203	5460	AOD60
0204	6506	NZB06
0205	0003	ERRU 3
0200	200	2111
0210	7303	OUTO 3
0211	7600	TERM OUT (LIMIT + 1)
0212	6102	NZF02
0213	1000	INIT WRIT
0214	7500	EXFOO
0215	1141	REQ STAT
0216	7600	INAUO
0220	6103	NZFO3
0221	7101	JFIO1
0222	0100	00
0223	7700	HIJOO

	DUMP	TO	PAPER	TAPE
0163 0164 0165 0166 0167 0170 0171		7 4 7 6 10 7	500 L04 303 500 L02 200 700	

DAILY IDENTIFICATION

USE	8 CELLS		EXAMPLE
	0030 0031	0070 0064	2 day 3
	0032 0033 0034	0032 0030 0060	J A month N
	0035 0036	0072 0062	$_{4}^{6}$ year
	0037	0045	CAR RET

DAILY RECORD TO M.T.

C226 1000 1000 0227 2031 LDD31 0230 4100 STI00 0231 1001 1001 0232 2032 LDD32 0233 4100 STI00 0234 1002 1002 0235 2033 LDD33 0236 4100 STI00 0237 1003 1003 0240 2034 LDD34 0241 4100 STI00 0242 1004 1004 0243 2035 LDD35 0244 4100 STI00 0245 1005 1005 0246 2036 LDD36 0247 4100 STI00 0250 1006 1006 0251 2037 LDD37 0252 4100 STI00 0253 1007 1007 0254 2200 LDF00 0255 7700 7700	0224	2030 4100	LDD30 STICO
0227 2031 LDD31 0230 4100 STI00 0231 1001 1001 0232 2032 LDD32 0233 4100 STI00 0234 1002 1002 0235 2033 LDD33 0236 4100 STI00 0237 1003 1003 0240 2034 LDD34 0241 4100 STI00 0242 1004 1004 0243 2035 LDD35 0244 4100 STI00 0245 1005 1005 0246 2036 LDD36 0247 4100 STI00 0250 1006 1006 0251 2037 LDD37 0252 4100 STI00 0253 1007 1007 0254 2200 LDF00 0255 7700 7700 0266 4045 ST45	0226	1000	1000
0230 4100 STIO 0231 1001 1001 0232 2032 LDD32 0233 4100 STIO 0234 1002 1002 0235 2033 LDD33 0236 4100 STIOO 0237 1003 1003 0240 2034 LDD34 0241 4100 STIOO 0242 1004 1004 0243 2035 LDD35 0244 4100 STIOO 0245 1005 1005 0246 2036 LDD36 0247 4100 STIOO 0250 1006 1006 0251 2037 LDD37 0252 4100 STIOO 0253 1007 1007 0254 2000 LDF00 0255 7700 7700 0256 4100 STIOO 0260 2200 LDF00	0227	2031	LDD31
0231 1001 1001 0232 2032 LDD32 0233 4100 STI00 0234 1002 1002 0235 2033 LDD33 0236 4100 STI00 0237 1003 1003 0240 2034 LDD34 0241 4100 STI00 0242 1004 1004 0243 2035 LDD35 0244 4100 STI00 0245 1005 1005 0246 2036 LDD36 0247 4100 STI00 0250 1006 1006 0251 2037 LDD37 0252 4100 STI00 0253 1007 1007 0254 2200 LDF00 0255 7700 7700 0260 2200 LDF00 0261 1010 1010 0262 4045 STI45	0230	4100	STIOO
0232 2032 LDD32 0233 4100 STI00 0234 1002 1002 0235 2033 LDD33 0236 4100 STI00 0237 1003 1003 0240 2034 LDD34 0241 4100 STI00 0242 1004 1004 0243 2035 LDD35 0244 4100 STI00 0245 1005 1005 0246 2036 LDD36 0247 4100 STI00 0250 1006 1006 0251 2037 LDD37 0252 4100 STI00 0253 1007 1007 0254 2200 LDF00 0255 7700 7700 0266 4100 STI00 0261 1010 1010 0262 4045 STD45 0263 0400 LDN00 0264 4145 ST45 0265 2044	0231	1001	1001
0233 4100 STI00 0234 1002 1002 0235 2033 LDD33 0236 4100 STI00 0237 1003 1003 0240 2034 LDD34 0241 4100 STI00 0242 1004 1004 0243 2035 LDD35 0244 4100 STI00 0245 1005 1005 0246 2036 LDD36 0247 4100 STI00 0250 1006 1006 0251 2037 LDD37 0252 4100 STI00 0253 1007 1007 0254 2200 LDF00 0255 7700 7700 0256 4100 STI00 0257 0100 0100 0261 1010 1010 0262 4045 STD45 0263 0400 LDN00 0264 4145 SED45 0265 2044	0232	2032	LDD32
0234 1002 1002 0235 2033 LDD33 0236 4100 STI00 0237 1003 1003 0240 2034 LDD34 0241 4100 STI00 0242 1004 1004 0243 2035 LDD35 0244 4100 STI00 0245 1005 1005 0246 2036 LDD36 0247 4100 STI00 0250 1006 1006 0251 2037 LDD37 0252 4100 STI00 0253 1007 1007 0254 2200 LDF00 0255 7700 7700 0256 4100 STI00 0257 0100 0100 0261 1010 1010 0262 4045 STD45 0263 0400 LDN00 0264 4145 ST145	0233	4100	STIOO
0235 2033 LDD33 0236 4100 STI00 0237 1003 1003 0240 2034 LDD34 0241 4100 STI00 0242 1004 1004 0243 2035 LDD35 0244 4100 STI00 0245 1005 1005 0246 2036 LDD36 0247 4100 STI00 0250 1006 1006 0251 2037 LDD37 0252 4100 STI00 0253 1007 1007 0254 2200 LDF00 0255 7700 7700 0256 4100 STI00 0257 0100 0100 0262 4045 STD45 (ADR) 0263 0400 LDN00 0264 4145 ST45 0265 2044 LDD44 0266 3445 SBD	0234	1002	1002
0236 4100 ST100 0237 1003 1003 0240 2034 LDD34 0241 4100 ST100 0242 1004 1004 0243 2035 LDD35 0244 4100 ST100 0245 1005 1005 0246 2036 LDD36 0247 4100 ST100 0250 1006 1006 0251 2037 LDD37 0252 4100 ST100 0253 1007 1007 0254 2200 LDF00 0255 7700 7700 0256 4100 ST100 0257 0100 0100 0260 2200 LDF00 0261 1010 1010 0262 4045 ST145 0263 0400 LDN00 0264 4145 ST145 0265 2044 LDD44 0266 3445 SBD45 0267 600	0235	2033	LDD33
0240 2034 LDD34 0241 4100 ST100 0242 1004 1004 0243 2035 LDD35 0244 4100 ST100 0245 1005 1005 0246 2036 LDD36 0247 4100 ST100 0246 2037 LDD37 0250 1006 1006 0251 2037 LDD37 0252 4100 ST100 0253 1007 1007 0254 2200 LDF00 0255 7700 7700 0256 4100 ST100 0257 0100 0100 0260 2200 LDF00 0261 1010 1010 0262 4045 STD45 0263 0400 LDN00 0264 4145 ST145 0265 2044 LDD44 0266 3445 SBD45 0267 6003 2JF03 0270 54	0230	4100	ST100
0241 2054 LDD 94 0241 4100 STI00 0243 2035 LDD 35 0244 4100 STI00 0245 1005 1005 0246 2036 LDD 36 0247 4100 STI00 0246 2036 LDD 37 0250 1006 1006 0251 2037 LDD 37 0252 4100 STI00 0253 1007 1007 0254 2200 LDF00 0255 7700 7700 0256 4100 STI00 0257 0100 0100 0262 4045 STD45 0263 0400 LDF00 0264 4145 ST145 0265 2044 LDD44 0266 3445 SBD45 0267 6003 ZJF03 0270 5445 A0D45 0271 6506 N	0251	2034	
0242 1004 1004 0243 2035 LDD35 0244 4100 ST100 0245 1005 1005 0246 2036 LDD36 0247 4100 ST100 0250 1006 1006 0251 2037 LDD37 0252 4100 ST100 0253 1007 1007 0254 2200 LDF00 0255 7700 7700 0256 4100 ST100 0257 0100 0100 0260 2200 LDF00 0257 0100 0100 0262 4045 STD45 (ADDR) 0263 0400 LDN00 0264 4145 ST145 0265 2044 LDD44 0266 3445 SBD45 (ADDR) 0270 5445 AD45 (ADDR) 0271 6506 NZB06 0272 7101 JFI01 0273 0172 0172 (DUMP)	0240	4100	STIOO
0243 2035 LD035 0244 4100 STI00 0245 1005 1005 0246 2036 LDD36 0247 4100 STI00 0250 1006 1006 0251 2037 LDD37 0252 4100 STI00 0253 1007 1007 0254 2200 LDF00 0255 7700 7700 0256 4100 STI00 0257 0100 0100 0260 2200 LDF00 0261 1010 1010 0262 4045 STD45 (ADDR) 0263 0400 LDN00 0264 4145 STI45 0265 2044 LDD44 0266 3445 SBD45 0267 6003 ZJF03 0270 5445 AOD45 (ADDR) 0271 6506 NZB06 0272 7101 JFI01 0273 0172 0172 (DUMP) 0	0242	1004	1004
0244 4100 STI00 0245 1005 1005 0246 2036 LDD36 0247 4100 STI00 0250 1006 1006 0251 2037 LDD37 0252 4100 STI00 0253 1007 1007 0254 2200 LDF00 0255 7700 7700 0256 4100 STI00 0257 0100 0100 0260 2200 LDF00 0261 1010 1010 0262 4045 STD45 (ADDR) 0263 0400 LDN00 0264 4145 ST145 0265 2044 LDD44 0266 3445 SBD45 0267 6003 ZJF03 0270 5445 ADD45 (ADDR) 0271 6506 NZB06 0272 7101 JFI01 0273 0172 0172 (DUMP) 0274 7700 NORMAL STOP <td>0243</td> <td>2035</td> <td>LDD35</td>	0243	2035	LDD35
0245 1005 1005 0246 2036 LDD36 0247 4100 STI00 0250 1006 1006 0251 2037 LDD37 0252 4100 STI00 0253 1007 1007 0254 2200 LDF00 0255 7700 7700 0256 4100 STI00 0257 0100 0100 0260 2200 LDF00 0261 1010 1010 0262 4045 STD45 (ADDR) 0263 0400 LDN00 0264 4145 STI45 0265 2044 LDD44 0266 3445 SBD45 0267 6003 ZJF03 0270 5445 ADD45 (ADDR) 0271 6506 NZB06 0272 7101 JFI01 0273 0172 0172 (DUMP) 0274 7700	0244	4100	STICO
0246 2036 LDD36 0247 4100 STI00 0250 1006 1006 0251 2037 LDD37 0252 4100 STI00 0253 1007 1007 0254 2200 LDF00 0255 7700 7700 0256 4100 STI00 0257 0100 0100 0260 2200 LDF00 0261 1010 1010 0262 4045 STD45 (ADDR) 0263 0400 LDN00 0264 4145 ST145 0265 2044 LDD44 0266 3445 SBD45 0267 6003 ZJF03 0270 5445 AOD45 (ADDR) 0271 6506 NZB06 0272 7101 JFI01 0273 0172 0172 (DUMP) 0274 7700 NORMAL STOP	0245	1005	1005
0247 4100 STI00 0250 1006 1006 0251 2037 LDD37 0252 4100 STI00 0253 1007 1007 0254 2200 LDF00 0255 7700 7700 0256 4100 STI00 0257 0100 0100 0260 2200 LDF00 0261 1010 1010 0262 4045 STD45 (ADDR) 0263 0400 LDN00 0264 4145 STI45 0265 2044 LDD44 0266 3445 SBD45 0267 6003 ZJF03 0270 5445 AOD45 (ADDR) 0271 6506 NZB06 0272 7101 JFI01 0273 0172 0172 (DUMP) 0274 7700 NORMAL STOP	0246	2036	LDD36
0250 1006 1006 0251 2037 LDD37 0252 4100 ST100 0253 1007 1007 0254 2200 LDF00 0255 7700 7700 0256 4100 ST100 0257 0100 0100 0260 2200 LDF00 0261 1010 1010 0262 4045 STD45 (ADDR) 0263 0400 LDN00 0264 4145 ST145 0265 2044 LDD44 0266 3445 SBD45 0267 6003 ZJF03 0270 5445 AOD45 (ADDR) 0271 6506 NZB06 0272 7101 JFI01 0273 0172 0172 (DUMP) 0274 7700 NORMAL STOP	0247	4100	STICO
0251 2037 LDD37 0252 4100 STI00 0253 1007 1007 0254 2200 LDF00 0255 7700 7700 0256 4100 STI00 0257 0100 0100 0260 2200 LDF00 0261 1010 1010 0262 4045 STD45 (ADDR) 0263 0400 LDN00 0264 4145 ST145 0265 2044 LDD44 0266 3445 SBD45 0267 6003 ZJF03 0270 5445 AOD45 (ADDR) 0271 6506 NZB06 0272 7101 JFI01 0273 0172 0172 (DUMP) 0274 7700 NORMAL STOP	0250	1006	1006
0252 4100 ST100 0253 1007 1007 0254 2200 LDF00 0255 7700 7700 0256 4100 ST100 0257 0100 0100 0260 2200 LDF00 0261 1010 1010 0262 4045 STD45 (ADDR) 0263 0400 LDN00 0264 4145 ST145 0265 2044 LDD44 0266 3445 SBD45 0267 6003 ZJF03 0270 5445 A0D45 (ADDR) 0271 6506 NZB06 0272 7101 JFI01 0273 0172 0172 (DUMP) 0274 7700 NORMAL STOP	0251	2037	LDD37
0253 1007 1007 0254 2200 LDF00 0255 7700 7700 0256 4100 STI00 0257 0100 0100 0260 2200 LDF00 0261 1010 1010 0262 4045 STD45 (ADDR) 0263 0400 LDN00 0264 4145 ST145 0265 2044 LDD44 0266 3445 SBD45 0267 6003 ZJF03 0270 5445 A0D45 (ADDR) 0271 6506 NZB06 0272 7101 JF101 0273 0172 0172 (DUMP) 0274 7700 NORMAL STOP	0252	4100	ST100
0254 2200 LDF00 0255 7700 7700 0256 4100 STI00 0257 0100 0100 0260 2200 LDF00 0261 1010 1010 0263 0400 LDN00 0264 4145 STI45 0265 2044 LDD44 0266 3445 SBD45 0267 6003 ZJF03 0270 5445 A0D45 (ADDR) 0271 6506 NZB06 0272 7101 JF101 0273 0172 0172 (DUMP) 0274 7700 NORMAL STOP	0255	2200	IDEOO
0255 4100 STI00 0257 0100 0100 0260 2200 LDF00 0261 1010 1010 0262 4045 STD45 (ADDR) 0263 0400 LDN00 0264 4145 STI45 0265 2044 LDD44 0266 3445 SBD45 0267 6003 ZJF03 0270 5445 AOD45 (ADDR) 0271 6506 NZB06 0272 7101 JF101 0273 0172 0172 (DUMP) 0274 7700 NORMAL STOP	0255	7700	7700
0257 0100 0100 0260 2200 LDF00 0261 1010 1010 0262 4045 STD45 (ADDR) 0263 0400 LDN00 0264 4145 STI45 0265 2044 LDD44 0266 3445 SBD45 0267 6003 ZJF03 0270 5445 AOD45 (ADDR) 0271 6506 NZB06 0272 7101 JF101 0273 0172 0172 (DUMP) 0274 7700 NORMAL STOP	0255	4100	STICO
0260 2200 LDF00 0261 1010 1010 0262 4045 STD45 (ADDR) 0263 0400 LDN00 0264 4145 ST145 0265 2044 LDD44 0266 3445 SBD45 0267 6003 ZJF03 0270 5445 AOD45 (ADDR) 0271 6506 NZB06 0272 7101 JF101 0273 0172 0172 (DUMP) 0274 7700 NORMAL STOP	0257	0100	0100
0261 1010 1010 0262 4045 STD45 (ADDR) 0263 0400 LDN00 0264 4145 ST145 0265 2044 LDD44 0266 3445 SBD45 0267 6003 ZJF03 0270 5445 AOD45 (ADDR) 0271 6506 NZB06 0272 7101 JF101 0273 0172 0172 (DUMP) 0274 7700 NORMAL STOP	0260	2200	LDFOO
0262 4045 STD45 (ADDR) 0263 0400 LDN00 0264 4145 STI45 0265 2044 LDD44 0266 3445 SBD45 0267 6003 ZJF03 0270 5445 AOD45 (ADDR) 0271 6506 NZB06 0272 7101 JFI01 0273 0172 0172 (DUMP) 0274 7700 NORMAL STOP	0261	1010	1010
0263 0400 LDN00 0264 4145 STI45 0265 2044 LDD44 0266 3445 SBD45 0267 6003 ZJF03 0270 5445 AOD45 (ADDR) 0271 6506 NZB06 0272 7101 JFI01 0273 0172 0172 (DUMP) 0274 7700 NORMAL STOP	0262	4045	STD45 (ADDR)
0264 4145 STI45 0265 2044 LDD44 0266 3445 SBD45 0267 6003 ZJF03 0270 5445 AOD45 (ADDR) 0271 6506 NZB06 0272 7101 JFI01 0273 0172 0172 (DUMP) 0274 7700 NORMAL STOP	0263	0400	LDNOO
0265 2044 LDD44 0266 3445 SBD45 0267 6003 ZJF03 0270 5445 AOD45 (ADDR) 0271 6506 NZB06 0272 7101 JF101 0273 0172 0172 (DUMP) 0274 7700 NORMAL STOP	0264	4145	STI45
0266 3445 SBD45 0267 6003 ZJF03 0270 5445 AOD45 (ADDR) 0271 6506 NZB06 0272 7101 JF101 0273 0172 0172 (DUMP) 0274 7700 NORMAL STOP	0265	2044	LDD44
0267 6005 23F05 0270 5445 AOD45 (ADDR) 0271 6506 NZB06 0272 7101 JF101 0273 0172 0172 (DUMP) 0274 7700 NORMAL STOP	0266	3445	SBD45
0270 5445 ROD45 (RDD7) 0271 6506 NZB06 0272 7101 JFI01 0273 0172 0172 (DUMP) 0274 7700 NORMAL STOP	0267	6003 たたた	LUFUS
0271 0500 N2B00 0272 7101 JF101 0273 0172 0172 (DUMP) 0274 7700 NORMAL STOP	0270	5440	N7ROG
0273 0172 0172 (DUMP) 0274 7700 NORMAL STOP	0272	7101	JETOJ
0274 7700 NORMAL STOP	0273	0172	0172 (DIMP)
	0274	7700	NORMAL STOP

in the

Start Rewind	0275	0400	LDNOO
	0276	4043	STD43
	0277	7500	EXFOO
	0300	1141	REQ STAT
	0302	0202	LPNO2
	0303	6504	NZBO4
	0304	7500	EXFOO
	0305	1161	REWIND
	0306	7500	EXFOO
	0307	1141	REQ STAT
	0311	0202	LPNO2
	0312	6504	NZBO4
Read	0313	7700	HLTOO
Start	0314	7500	EXFOO
	0315	1141	REQ STAT
	0316	7600	INAOC
	0320	6504	NZBO4
	0321	7500	EXFOO
	0322	2111	EXF11 READ
	0323	7203	outo3
	0324	7600	TERM READ
	0325	6102	NZFO2
	0320	7500	EXFOO
	0330	1141	REQ STAT
	0331	7600	INAOO
	0332	0240	LPN40
	0333	6002	ZJF02
	0334	0004	ERRO4 (END OF
	0336	2043	SBN01
	0337	6004	ZJF04
	0340	6525	NZB25
Search	0341	0401	LDNO1
Start	0342	4043	STD43 (SEARCH)
	0343	2100	LDIOO
	0345	3430	1000 SBD30
	0346	6532	NZB32
	0347	2100	LDIOO
	0350	1001	1001
	0351	3431	SBD31
	0352	6536	NZB36
	0 25 2	2100	LDTOO

0354	1002	1002
0355	3432	SBD32
0356	6542	NZB42
0357	2100	LDIOO
0360	1003	1003
0361	3433	SED33
0362	6546	NZB46
0363	2100	LDIOO
0364	1004	1004
0365	3434	SBD34
0366	6552	NZB52
0367	2100	LDIOO
0370	1005	1005
0371	3435	SBD35
0372	6556	NZB56
0373	2100	LDIOO
0374	1006	1006
0375	3436	SBD36
0376	6114	NZF14
0377	2100	LDIOO
0400	1007	1007
0401	3437	SBD37
0402	6110	NZF10
0403	2100	LDIOO
0404	1010	1010
0405	6105	NZF05
0406	0400	LDNOO
0407	4043	STD45
0410	7101	JF 101
0411		0077
0412		OFIOT
0410	U 214	

TEST TAPE 22 BLOCKS DATA

M = 47145 ₁₀ = 0013 4051 ₈ N2 N1	LIMIT CELL 44 = ADDR CELL 45 CNTR 2 CELL 21 N1 CELL 22 N2 CELL 23 CNTR 1 CELL 20	7600
0526	7700	HLTOO
0527	0400	LDNOO
0530	4021	STD21
0531	2200	LDFOO
0532	1000	1000

A	P	P	E	N	D	Ι	Х	I	Ι	
-	~		1.000	(B)	1000	-	through the	COLUMN TWO IS NOT	CO. 00000	

0533	ルロルト	CODIE
	4045	D1049
0534	0413	LDN13
0535	4023	STUDZ
	01020	
0520	0400	LDNOO
0537	4020	STD20
0540	2200	LDFOO
	4053	22200
0541	4051	4051
0542	4022	STD22
0543	2021	LDD21
0544	0726	SBNOG
		111120
0545	0417	LUBL/
0546	2023	LDD23
0547	4745	STT45
0550	5445	100/15
		ROD-TO
0551	2022	LDD22
0552	4145	STI45
0553	5445	AOD45
0554	5422	40022
0555	5/20	10000
0000	2420	AUDZU
0556	2200	LDF.00
0557	4777	4777
0560	3445	SBD45
0561	6207	P.IFO7
0501	0201	
0562	2044	
0563	3445	SBD45
0564	6104	NZF04
0565	5421	AOD21
0505	7101	TETAI
0500	(TOT	OLIOI
0567	0172	0172
0570	2020	LDD20
0571	0777	SBN77
0572	6434	7.TPZ/
0514		40D)4
0573	0525	NZB25

II-15

APPENDIX III

FORTRAN PROGRAMS	PAGE
ANALYSIS PROGRAM	1
SATELLITE DISPLAY PROGRAM	7

DIMENSION NDATA(864), DATE(00), H(1728), HONE(900), ITITLE(12), 1HTW0(900), HTHRE(900), T(900), BIN1(100), BIN2(100), BIN3(100), X(100) D0 5 J = 1, 14 READ 5, DATE(J) FORMAT(016) CONV(MAX + = 0000000077777777720) CON(MASK = 00000000777777778) ENA(NDATA), INA(1). STA(INIT), INA(864). STA(ITERM), ENI(0). CALL READ(2, INIT, ITERM, 1) DO 70 I=3,3 6 SLS1(7) ADATE = DATE(I) BDATE = DATE(I+1) LDA(ADATE),SUB(NDATA +1),AJP1(6), LDA(BDATE),SUB(NDATA +2),AJP1(6). 7 NBLOC CALL READ(5, INIT, ITERM, 1) NZRC = 0 30 DO 81 J=1,864 IF(NDATA(J)) 82,82,81 NZRO = NZRO+1CONTINUE 81 ND = NDATA(3)LDA(ND), AJPO(10). K = CDO 40 J=1,864 K = K + 1INDATA = NDATA(J) LDA(INDATA),LDQ(MASK),ARS(24),STL(INLIST). H(K) = INLISTK = K + 1LDA(INDATA),LDQ(MASK),STL(INLIST). SLS1(40). H(K)=INLIST 40 AVE=0. H(J) = H(J)/3. H(J) = 1024./H(J) * 2348400.050 AVE = H(J) + AVEPRINT 26, AVE C ZAPP FILTER NERR =NERK = AVE = 0. HBAR = 50950.0 DO 51 J=1,1728 DEV = ABSF(H(J)-HBAR) TEVDEV-200.) 51,52,52 Ω $\begin{array}{l} \text{IF(DEV-200.)} & 51, \\ \text{JCOUNT} &= J \\ \text{NERR} &= \text{NERR} + 1 \\ \text{IF(J-3)} & 53, 53, 54 \\ \text{H(J)} &= \text{H(J+3)} \\ \text{GO TO 51} \\ \text{H(J)} &= \text{H(J-3)} \end{array}$ 52 53 J) = H(J-3)54 H(51 AVE = AVE + H(J)AVE = AVE/1728. 26, AVE 97,NERR,NZRO,JCOUNT PRINT PRINT NBLOC WRITE GO TO TAPE 2, H REWIND 2 10 SECTION COMPUTES H VS TIME T AVE N IS TOTAL NUMBER OF POINTS PER DAY TIME = - 6.5/704. THIS 18 ΡT DO 60 L=1,NBLOC READ TAPE 2,H DO 62 J=1,32 H1BAR = 0. H2BAR 0. Ξ. H3BAR H3BAN D0 61 K = 3*K = 0. K=1,18 ⊮K + 2 + (J -1) * 54III-1 H1BAR =H(M) + HIBAR+ H2BAR + H3BAR H2BAR =H(M+1)H3BAR 61 H3BAR \simeq H(M+2)(L-1)*32 = N + HONE(N) HTWC(N) = H1BAR/18. HTWE(N) = H2BAR/18. HTHRE(N) = H3BAR/18. TIME = TIME + 6.5/704. 62 T(N) = TIME

REWIND 2 PRINT 27,N PRINT 27,M NPTS = NMEAN VALUE OF DIFFERENCES С JERR = 0 IERR = 0 DEL1 = 0 DEL2 = 0 DEL3 = 0 APPENDIX III DO 64 J =READ TAPE 1.NBLGC 2,H 1,576 DO 64 L Ŧ M = 3*L-2DEL = H(M + 1) - H(M) IF(ABSF(DEL) - 40.) 65,66,66 65 DEL1 = DEL1 + DEL GO TO 67 GO TO 67 NERR = NERR + 1 DEL = H(M + 1) -H(M + 2) IF(ABSF(DEL) - 40.) 68,69,69 DEL2 = DEL2 + DEL GO TO 71 66 67 68 69 IERR = IERR +DEL = H(M) - H(M + 2)IF(ABSF(DEL) - 40.) 72,73,73 71 DEL3 = DEL3 + DEL GO TO 64 JERR = JERR + 1 CONTINUE 72 73 64 94 CONTINCE REWIND 2 PRINT 97, NERR, IERR, JERR 97 FORMAT(3I2C) ABLCC = NBLOC DEL1 = DEL1/(576.*ABLOC) DEL2 = DEL2/(576.*ABLOC) DEL3 = DEL3/(576.*ABLOC) PRINT 49, DEL1, DEL2, DEL3 DENSITY FUNCTION STDEV1=0 C. STDEV1=0. STDEV2=0. STDEV3=0. NERR = 0 IERR = 0 JERR = 0 XL = -25. DO = 45 K = 1,100BIN1(K)=0. BIN2(K)=0. BIN3(K)=0. 45 XL= XL+0.5 DO 74 J=1,NBLOC READ TAPE 2,H DO 74 L = 1,576 = 3*L-2 M STDEV1= (H(M+1)-H(M)-DEL1)**2 +STDEV1 STDEV2= (H(M+1)-H(M+2)-DEL2)**2 + STD + STDEV2 STDEV2=: (H(M+1)-H(M+2)-DEL2)**2 + STD STDEV3= (H(M)-H(M+2)-DEL3)**2 + STDEV3 DEL = H(M+1) - H(M) IF(ABSF(DEL-DEL1)-25.)75,75,76 NERR = NERR + 1 DEL = H(M+1) -H(M+2) IF(ABSF(DEL-DEL2)-25.)77,77,78 IERR = IERR + 1 DEL = H(M) - H(M+2) IF(ABSF(DEL-DEL3)-25.)25,29,80 JERR = JERR + 1 DO 31 K = 1.3 76 **7**Š 78 77 JERR = JERR + 1 DO 31 K=1,3 IF(K-2)32,33,34 DEL=H(M+1)-H(M)-DEL1 80 ŽŽ 32 GO TO 5 33 DEL=H(M+1)-H(M+2)-DEL235 GO TO GO TO 35 DEL=H(M)-H(M+2)-DEL3 XL= -25. DO 36 N=1,100 IF(DEL-XL) 37,37,38 IF(DEL-(XL+0.5))39,39,37 IF(K-2) 42,43,44 BIN1(N)=BIN1(N)+1. GO TO 31 BIN2(N) = BIN2(N)+1. 34 35 III-2 38 39 42 GO TO 31 BIN2(N) GO TO 31 43 = BIN2(N)+1.

20 31 74 CUNTINUE CONTINUE STDEV1 =SQRTF(STDEV1/(576.*ABLOC)) STDEV2 =SQRTF(STDEV2/(576.*ABLOC)) STDEV3 =SQRTF(STDEV3/(576.*ABLOC)) PRINT 49,STDEV3,STDEV2,STDEV3 PRINT 97,NERR,IERR,JERR APPENDIX III REWIND 2 NORMALIZED ALIZED DENSITY FUNCTION AMAX=BIN1(1) C BMAX=BIN2() BMAX=BIN2(1) CMAX=BIN3(1) DO 200 J=1,100 IF(AMAX-BIN1(J))201,202,202 201 202 203 204 205 205 AMAX=BIN1(J) 11 CONTINUN PRINT 49, AMAX, BMAX, CMAX DO 206 J=1, 100 BIN1(J)=BIN1(J)/AMAX BIN1(J)=BIN1(J)/AMAX BIN2(J)=BIN2(J)/EMAX BIN3(J)=BIN3(J)/EMAX DO 46 K=1,12 ITITLE(K)=8H ITITLE(1)=EHANDERSCN ITITLE(2)=8H BOX 203 ITITLE(2)=8H BOX 203 ITITLE(7)=8H DENSITY ITITLE(8)=8H FUNCTIO ITITLE(8)=8H FUNCTIO ITITLE(9)=8HAMMA Y ITITLE(10)=8HAMMA Y ITITLE(11)=8HIN FREQ LABA=4H P1 206 46 LASA=4H P1 LABB=4H P2 LABC=4H P3 CALL DRAW(100,X,BIN1,C,C,LABA,ITITLE,O,O,O,4,O,2,8,8,O,LAST) CALL DRAW(100,X,BIN2,O,C,LABB,ITITLE,O,O,O,4,O,2,8,8,O,LAST) CALL DRAW(100,X,BIN3,O,C,LABC,ITITLE,O,O,O,4,O,2,8,8,O,LAST) 506 N=NPTS HONEAV=0. HTWCAV=0. HTHREAV=0. DD 48 L=1.N HONEAV=HONEAV+HCNE(L) HTWOAV=HTWCAV+HTWO(L) 48 HTHREAV=HTHREAV+HTHRE(L) SV04 = NHONEAV = HONEAV/SVO4 HIWCAV = HIWCAV/SVO4 HTWCAV = HIWUAV/SV04 HTHREAV = HTHREAV/SV04 PRINT 49,HONEAV,HTWOAV,HTHREAV FORMAT(3E20.7) PRINT 27,NBLOC FORMAT(I7) 49 27 27 FORMAT(17) HONEAV= (HONEAV +HTWOAV +HTHREAV)/3. PRINT 26,HONEAV 26 FORMAT(E20.7) WRITE TAPE 2, HONE WRITE TAPE 2, HTWO WRITE TAPE 2, HTHRE REWIND 2 REWIND DO 90 L 2 DO 90 L = 1, NHONE(L) = HONE(L) - HONEAV HTWC(L) = HTWO(L) - HONEAV HTWC(L) = HTWO(L) - HONÉAV HTHRE(L) = HTHRE(L) - HONÉAV DO] L=],12 ITITLE(L) = 8H ITITLE(1)=8HANDERSON ITITLE(2)=8H BOX 263 ITITLE(2)=8H BOX 263 ITITLE(8)=8HMAGNETIC ITITLE(8)=8HMAGNETIC ITITLE(9)=8H FIELD V ITITLE(10)=8HS TIME ITITLE(11)=8HT IN HRS ITITLE(12)=8H H GAMMA LABA=4H H] 90 1 III-3 LABA=4H H1 LABB=4H H2 LABC=4H H_{2}

	202	IF(J=20) 302,303,303	
	502	GO TO 304	
	303	δ M=20 1 DO 301 K=1.M ΔΡΡ	ENDIX TTT
	50,	L = K - 1	
		ASUM = EXPF(-AI*PL)+ASUM	
		BSUM = EXPF(-AT*BL) * HONE(J-L) + BSUM	
	301	I DSUM = EXPE(-AT*BL)*HTHRE(J-L)+DSUM	
		HONE(J) = BSUM/ASUM	
	300	HTHRE(J) = DSUM/ASUM	
		ITITLE(2)=8H FILTER CALL DRAW(N.T.HENE.J.O.LABA.ITITLE.	1.0.10.0.5.1.2.2.8.10.0.LAST)
		CALL DRAW(N, T, HIWD, 2, 0, LABB, ITITLE,	1.0,10.0,5,1,2,2,8,10,0,LAST
С	DIFF	FFERENCES OF FILTERED VALVES	, 1. U, 1U., 5, 1, 2, 2, 8, 1U, U, LASI)
		$DO_{306} J = 1.N$	
		HONE(J) = H(J) - HTWO(J)	
		STURE = $HTWO(J)$ HTWO(J) = H(J) - HTHRE(J)	
	306	HTHRE(J) = STCRE - HTHRE(J)	
		ITITLE(7)=8HFILTERED ITITLE(8)=8HDIFFEREN	
		ITITLE(9)=8HCE IN MA	
		LABA=4HDEL1	
		CALL DRAW(N, T, HONE, 1, 0, LABA, ITIILE,	1.0,5.00,5,1,2,2,8,10,0,LASI)
		CALL DRAW(N, I, HIWU, 2, 0, LABB, IIIILE, CALL DRAW(N, T, HTHRE, 3, 0, LABC, IT ITLE	1.0,5.00,5,1,2,2,8,10,0,LASI) ,1.0,5.0,5,1,2,2,8,10,0,LASI)
С	THIS	IS SECTION COMPUTES SIMPLE DIFF	
		READ TAPE 2, HUNE READ TAPE 2, HTWO .	
		READ TAPE 2, HTHRE	
		D015L=1,900	
		H(L) = HONE(L) HONE(L) = $H(L) = HTWO(L)$	
		STORE=HTWO(L)	
	15	HIWU(L)=H(L)-HIHKE(L) 5 HTHRE(L)=STORE-HTHRE(L)	
	14	DD 16 L=1,12	
	10	ITITLE(1)=8HANDERSON	
•		ITITLE(2)=8H BOX 263	
		ITITLE(8)=8HFFERENCE	
		ITIILE(9)=8H IN MAG ITIILE(10)=8HEIELD	
		ITITLE(11)=8HT IN HRS	
		LABA=4HDEL1	
		CALL DRAW(N, T, HONE,], O, LABA, ITITLE,	1.0,5.00,5,1,2,2,8,10,0,LAST)
		CALL DRAW(N, T, HTWD, 2, 0, LABP, 1111LE, CALL DRAW(N, T, HTHRE, 3, 0, 1ABC, IT ITLE	1.0,5.00,5,1,2,2,8,10,0,LAST)
С	AUTI	TOCORRELATION FUNCTION 75LAGS	,,,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,
		NLAGS=75 MPTS= N-NLAGS	
		PTS= MPTS	
		DD 9 J=1,100	
		BINI(J) = 0. BINI(J) = 0.	
		BIN3(J)=0.	
	9	X = XL + 1.	
	-	READ TAPE 2, HONE	
		READ TAPE 2, HTHRE	-4
		REWIND 2 DO 11 J=1.N	
		HONE(J) = HONE(J) - HONEAV	
	11	1 HTHRE(J)=HTHRE(J)-HTHREAV	
		DO 12 J=1,NLAGS	
		L=K-1	

BIN3(J) = BIN3(J) + HTWO(K) * HTWO(L+J)BIN3(J) = BIN3(J) + HTHRE(K) * HTHRE(L+J)14 BIN1(J)=BIN1(J)/PTS BIN2(J)=BIN2(J)/PTS BIN3(J)=BIN3(J)/PTS AUTOCORRELATION FU DO 105 J=1,100 12 С SAVE FUNCTION H(J)=EIN1(J) H(J+100)=BIN2(J) H(J+200)=BIN3(J) D0_100_J=1,12 APPENDIX III 105 ITITLE(J)=8H ITITLE(J)=8HANDERSON ITITLE(2)=8H BOX 263 ITITLE(7)=8HAUTCORR ITITLE(8)=8HELATION 100 ITITLE(9)=8HFUNCTION ITITLE(10)=8H Y IN PR ITITLE(11)=8HODUCTS X ITITLE(12)=8H IN LAGS LABA=4H H1 LABB=4H H2 LABC=4H H3 CALL DRAW(NLAGS,X,BIN1, 1,0,LABA,ITITLE,C,0,0,0,0,0,8,8,0,LAST) CALL DRAW(NLAGS,X,BIN2,2,0,LABB,ITITLE,C,0,0,0,0,0,8,8,0,LAST) CALL DRAW(NLAGS,X,BIN3,3,0,LABC,ITITLE,0,0,0,0,0,0,8,8,0,LAST) S CORRELATION FUNCTION 75 LAGS С CROSS DO 101 J=1,100 BIN1(J)=0. BIN2(J)=0. BIN3(J)=0. DO 102 J=1,NLAGS DO 103 K=1,MPTS 101 L= K-1 BIN1(J)=BIN1(J)+ HTWO(K)*HONE(L+J) BIN2(J)=BIN2(J)+HTWO(K)*HTHRE(L+J) BIN3(J)=BIN3(J)+ HONE(K)*HTHRE(L+J) 103 BIN3(J)=BIN3(J)+ HONE BIN1(J)=BIN1(J)/PTS BIN2(J)= BIN2(J)/PTS BIN3(J)= BIN3(J)/PTS DO 104 J=1,12 ITITLE(J)=3H ITITLE(1)=8HANDERSON ITITLE(2)=8H BCX 263 ITITLE(7)=8HCROSCORR ITITLE(8)=8HELATION ITITLE(9)=8HFUNCTION ITITLE(9)=8HFUNCTION ITITLE(10)=8H Y IN PR ITITLE(11)=8HODUCTS X ITITLE(12)=8H IN LAGS LABA = 4H H21 102 104 = 4H H21 = 4H H23 = 4H H13 DRAW(NLAGS,X,BIN],1,0,LABA,ITITLE,0,0,0,0,0,0,0,8,8,0,LAST) ORAW(NLAGS,Y,BIN],2,0,LABB,ITITLE,0,0,0,0,0,0,8,8,0,LAST) LABA LABB LABC CALL DRAW(NLAGS, X, BIN1, 1, 0, LABA, ITITLE, 0, 0, 0, 0, 0, 0, 8, 8, 0, LAST) CALL DRAW(NLAGS, X, BIN2, 2, 0, LABB, ITITLE, 0, 0, 0, 0, 0, 0, 8, 8, 0, LAST) CALL DRAW(NLAGS, X, BIN3, 3, 0, LABC, ITITLE, 0, 0, 0, 0, 0, 0, 8, 8, 0, LAST) RENCY COMPUTATION 75 LAGS DO 106 J = 1, NLAGS BIN1(J)=(BIN1(J)**2)/(H(J+100)*H(J)) IF(BIN1(J)) 107, 108, 108 BIN1(J)=-BIN1(J) BIN1(J)= SORTE(BIN1(J)) CALL D COHERENCY DO 106 С BIN1(J) =-BIN1(J) BIN1(J) = SURTF(BIN1(J)) BIN2(J) = (BIN2(J) **2)/(H(J+100)*H(J+200)) IF(BIN2(J)) =09,110,110 BIN2(J) =-BIN2(J) BIN2(J) = SURTF(BIN2(J)) BIN3(J) = (BIN3(J) **2)/(H(J)*H(J+200)) IF(BIN3(J) = SURTF(BIN3(J)) IF(BIN3(J) =-BIN3(J) BIN3(J) =-BIN3(J) BIN3(J) =-BIN3(J) BIN3(J) = SURTF(BIN3(J)) ITITLE(7) =8HCOHERENC ITITLE(8) =8HE ITITLE(10) =8H Y IN CO ITITLE(11) =8HH X IN L ITITLE(12) =8HAGS CALL DRAW(NLAGS,X,BIN1,),0,LABA, ITITLE,0 107 108 109 110 111 106

 DRAW(NLAGS,X,BIN1,1,0,LABA,ITITLE,0,2,0,0,0,0,0,8,8,0,LAST)

 DRAW(NLAGS,X,BIN2,2,0,LABB,ITITLE,0,2,0,0,0,0,0,8,8,0,LAST)

 DRAW(NLAGS,X,BIN2,2,0,LABC,ITITLE,0,2,0,0,0,0,0,8,8,0,LAST)

 CALL CALL CALL CONTINUE PEWIND 3 70 REWIND STOP III-5 END MACHINE READ(larg, 2 arg, 3 arg, 4 arg)

* TYP	EWRITER MESSAGE	CODE TABLE	HEI	TENDIA ILI
	CON(T6 =450404 * T8 =121203 * I10=153012 CON(T12=150404 * T11=141120 * T40=450404 * T42=041406	12203022048, 12000000008, 14012504208, 12203022048, 000000000008, 01301520048, 22141630016,	T7 =112 T9 =450 T11=121 T13=200 T15=450 T41=340 T43=202	200613010504208, 040412203022048, 20312000000008) 062204032604268, 040431121401208, 061401040603018, 224200000000008)
* TAP	E UNIT ASSIGNME	NT TABLE		
*	ASSIGNMENTS FO	R CHANNEL 3/4	LIBRARY	И ТАРЕ
	CON(K0 =0 * K3 =332030 * K6 =552020	, K1 =33201 08, K4 =33204 08, K7 =55203	08, K2 08, K5 08, K8	=3320208, =5520108, =5520408)
* ASS	ORTED CONSTANTS			
	CON(R4 =737373	373737373738,	R16=007	7000000000B)
* TAP	E READING ROUTI	INE		
1X 1ARG 2ARG 3ARG 4ARG	SLJ(N) ZR0(0) ZR0(0) ZR0(0) LDA7(1ARG) SIU1(19X) ENA(T40) SLJ(P) INA(11B) LIL1(K0)- ADD7(4ARG) SCL(777B) SAL(5X)	SLJ(L+5) ZRO(0) ZRO(0) ZRO(0) INA(-11B) AJP3(L+3) SLJ4(G) ZRO(0) STA(K0) LDA1(KC) SAU(4X) SAL(4X) SAL(4X)	- - - - - - - - - - - - - - - - - - -	EXIT/ENTRY TAPE UNIT NUMBER ARG. INITIAL ADDRESS TERMINAL ADDRESS MODE, 1 = BINARY, 2 = BCD CHECK FOR TU ASSIGNMENT GO PRINT ERROR SET TU CONTROL CODES INITIALIZE
2 X	INA(3) INA(2) INA(1) LRS(18) LLS(3) SAL(3X) LLS(39) STA(KO) SSU(KO) LDA7(2ARG) LDA(6X) STA(6X) LDA7(3ARG)	SAU(8X) SAU(9X) SAU(11X) SAU(7X) ENA(0) SAL(2X) SAU(12X) LDQ(R16) LDA(5X) SAU(5X) SAU(5X) SAU(5X) SAU(5X) SAU(5X) SAU(5X)		
3 X 4 X 5 X 6 X	SAU(0X) ENI2(4) EXF(N) EXF(N) EXF(N) SUB(R4)	LIL1(N) EXF7(N) EXF7(N) LDA7(2ARG) LLS(48)	•	SELECT UNIT ACTIVATE CHANNEL
7 X 8 X 9 X	INI1(1) EXF7(N) EXF7(N) EXF7(N) OJP1(19X) SLJ(19X)	SUB(R1) SLJ(15X) SLJ(L+4) SLJ(10X) AJP(3X) ZRC(0)	•	SENSE ENDFILE SENSE PARITY ERROR SENSE LENGTH ERROR SENSE FOR BAD RECORD EXIT
iox 11x 12x	IJP2(L+2) IJP2(L+1) AJP(3X) EXF(N) LILT(N)	SLJ(14X) SLJ(13X) QJP(3X) EXF7(N) SLJ(4X)	•	SENSE FIVE PARITY ERRORS SENSE FIVE LENGTH ERRORS SENSE FOR BAD RECORD BACKSPACE RETURN TO REREAD
13X 14X 15X 17X	ENA(†6) ENA(†9) ENA(†12) SLJ4(_G)	SLJ(17X) SLJ(17X) SLJ(18X) ZRD(0)	III-6	SET TO INDICATE TROUBLE
18X	AJP(19X) SLJ(11X) SLJ4(-G) AJP(3X)	AJP3(3X) ZRO(0) ZRO(0) AJP3(3X)	•	TROUBLE EXIT SENSE ACTION TO TAKE
19X	SLJ(11X) ENI1(N) SLJ(1X)	ZRO(O) ENI2(N) ZRO(O)		RE-STORE INDEXES

APPENDIX III PROGRAM PROMAG 5 CON(MASK = 00000000777777778) ENA(NDATA), INA(1). STA(INIT), INA(864). STA(ITERM), ENI(0). CALL READ(3, INIT, ITERM, 1) DO 70 I = 1, 11, 2 ADATE = DATE(I). 6 BDATE = DATE(I+1)LDA(ADATE), SUB(NDATA +1), AJP1(6), LDA(BDATE), SUB(NDATA +2), AJP1(6). NBLOC = 0CALL READ(3, INIT, ITERM, 1) ND = NDATA(3) 30 LDA(ND),AJPO(10). K=0 DO 40 J=1,864 K = K + 1INDATA = NDATA(J) LDA(INDATA),LDQ(MASK),ARS(24),STL(INLIST). H(K) = INLISTK = K + 1LDA(INDATA),LDQ(MASK),STL(INLIST). SLS1(40). 40 H(K)=INLIST AVE=0. DD 50 DO 50 J =1,1728 H(J)=(1024./H(J))*2348400.0 50 AVE=H(J)+AVEAVE=AVE/1728. PRINT 26, AVE C ZAPP FILTER NERR =0 AVE = 0. HBAR = 50950.0DO 51 J=1,1728 DEV = ABSF(H(J)-HBAR) $\begin{array}{c} IF(DEV-200.) & 51,52,52 \\ 52 & NERR = NERR + 1 \\ IF(J-3) & 53,53,54 \\ 53 & H(J) = H(J+3) \\ C0 & I0 & 51 \\ \end{array}$ H(J) = H(J-3) H(J) = H(J-3) H'' = AVE + H54 51 = AVE + H(J) = AVE/1728. AVE AVE 26, AVE 27, NERR = NBLOC + TAPE 2, H PRINT PRINT NBLOC 1 TO 30 GO REWIND 2 NPTS = (10 NPTS = (1728 *NBLOC)/2700 PRINT 27,NPTS READ TAPE 2, H K = 1 K = 1TIME = -6.5/900. M = 1SECTION COMPUTES H VS TIME D0 60 L=1,900 HONE(L)=(H(K)+H(K+3)+H(K+6))/3. HTWC(L)=(H(K+1)+H(K+4)+H(K+7))/3. C THIS LCOUNT=L HTHRE(L)=(H(K+2)+H(K+5)+H(K+8))/3. TIME = TIMET(L) = TIMETIME + 6.5/900. K = K + 3 * NPTSMAX = K+8IF(MAX' - 1728) 60,60,80 08 K = 1IF(M-NBLOC) 85,95,95 III-7 REAU M=M+1 CONTINUE 2RINT 97, LCOUNT DEINT 97, M SS.1416/ 85 60 95 PRINT 97.M AT = 4.#5.1416/100. WRITE TAPE 2, HONE WRITE TAPE 2, HIWO


```
HTWOAV=0.
              HTHREAV=0.
              DO 48 L=1,900
HONEAV=HONEAV+HONE(L)
                                                                                                                              APPENDIX III
              HTWOAV=HTWOAV+HTWO(L)
              HTHREAV=HTHREAV+HTHRE(L)
HONEAV=HONEAV/900.
    48
              HTWDAV=HTWDAV/900
              HTHREAV=HTHREAV/900.
             PRINT 49,HONEAV,HTWOAV,HTHREAV
FORMAT(3E20.7)
PRINT 27,NBLOC
FORMAT(I7)
HONEAV= (HONEAV +HTWOAV +HTHREAV)/3.
PRINT 26,HONEAV
FORMAT(E20.7)
DO 90.1-1.000
    49
     27
    26
             DO 90 L=1,900
HONE(L) = HONE(L) - HONEAV
HTWC(L) = HTWO(L) - HONEAV
HTHRE(L) = HTHRE(L) - HCNEAV
             HTHRE(L) = HTHRE(L) -
DO 1 L=1,12
ITITLE(L) = 8H
ITITLE(L) = 8H
ITITLE(2)=8H BOX 263
ITITLE(2)=8H BOX 263
ITITLE(2)=8H EARTHS
ITITLE(8)=8HMAGNETIC
ITITLE(9)=8H FIELD V
ITITLE(10)=8HS TIME
ITITLE(11)=8HT IN HRS
ITITLE(12)=8H H GAMMA
LABA=4H H1
LABB=4H H2
    90
        1
              LABB=4H
                                       H2
                 ABC = 4H
                                       H3
             LABL=4H H3
CALL DRAW(900,T,HONE,1,0,LABA,ITITLE,1.0,10.0,5,1,2,2,8,10,0,LAST)
CALL DRAW(900,T,HTWD,2,0,LABB,ITITLE,1.0,10.0,5,1,2,2,8,10,0,LAST)
CALL DRAW(900,T,HTHRE,3,0,LABC,ITITLE,1.0,10.,5,1,2,2,8,10,0,LAST)
CALL SATGRAF(0,900,T,HONE,0,0,0,0)
CALL SATGRAF(0,900,T,HONE,0,0,0,0)
CALL SATGRAF(0,900,T,HTWD,C,0,0,0)
CALL SATGRAF(0,900,T,HTHRE,0,0,0,0)
SECTION COMPUTES SIMPLE DIFF
THIS
                                           2, HONE
2, HTWO
2, HTHR
                             TAPE
              READ
              READ
              READ TAPE
REWIND 2
                                                     HTHRE
              DO 15 L=1,900
H(L)=HONE(L)
            H(L)=HONE(L)
HONE(L)=H(L)-HTWO(L)
STORE=HTWO(L)
HTWO(L)=H(L)-HTHRE(L)
HTHRE(L)=STORE-HTHRE(L)
DO 16 L=1,12
ITITLE(L)=8H
ITITLE(L)=8H
ITITLE(2)=8H BOX 263
ITITLE(2)=8H BOX 263
ITITLE(7)=8HFIRST DI
ITITLE(8)=8HFFERENCE
ITITLE(9)=8H IN MAG
ITITLE(10)=8HFIELD
ITITLE(10)=8HFIELD
ITITLE(11)=8HT IN HRS
ITITLE(12)=8H H GAMMA
LABA=4HDEL1
LABB=4HDEL2
     15
     16
              LABB=4HDEL2
              LABC=4HDEL
                             DRAW(900, T, HONE, 1, 0, LABA, ITITLE, 1.0, 2.00, 5, 1, 2, 2, 8, 10, 0, LAST)
DRAW(900, T, HTWD, 2, C, LABB, ITITLE, 1.0, 2.00, 5, 1, 2, 2, 8, 10, 0, LAST)
DRAW(900, T, HTHRE, 3, 0, LABC, ITITLE, 1.0, 2.0, 5, 1, 2, 2, 8, 10, 0, LAST)
SATGRAF(0, 900, T, HONE, 0, 0, 0, 0)
SATGRAF(0, 900, T, HTWD, 0, 0, 0, 0)
SATGRAF(0, 900, T, HTHRE, 0, 0, 0, 0)
              CALL
              CALL
              CALL
              CALL
              CALL
              CALL SAL
CONTINUE
    70
              STOP
               END
              MACHINE READ(1ARG, 2ARG, 3ARG, 4ARG)
                                                                    ENTRY TO TYPEWRITER SENSE ROUTINE
PROGRAM CONTROL ROUTINE JUMP ENT
                                 ADDRESS
ADDRESS
                                                         0F
 NOTE
                         =
                     G
                                                          ŎF
                                                                                                                                                                    ENTRY
                     P
                           Ξ
                                           IS
                                                   FDR
                                                                PROGRAM CALL
 THIS
                ROUTINE
                                                                                                                             III-8
              LOC(G=31,
                                                 P = 10)
TYPEWRITER MESSAGE CODE TABLE
```

C

¥

*

	CON(T12=45040412 * T14=14112000 * T40=45040401 * T42=04140622	203022048, 000000008, 301520048, 141630018,	T 1 3=2000 T 15=4500 T 4 1=3400 T 4 3=202	62204032604268, 40431121401208, 61401040603018, 2420000000008)
# TA # AS	PE UNIT ASSIGNMENT ASSIGNMENTS FOR CON(KO =0 * K3 = 332030B; * K6 =552020B; SORTED CONSTANTS CON(R4 =7373737373	TABLE CHANNEL 3/4 K1 =332010 K4 =332040 K7 =552030	LIBRARY DB, K2 DB, K5 DB, K8 R16=007	TAPE = 332020B; = 552010B; = 552040B; = 552040B;
* TA	PE READING ROUTINE			
* TA 1X GG23ARGG 2ARGG3ARG 4ARG 2X 3XX 56X 7XX 9X	PE READING ROUTINE SLJ(N) ZRO(O) ZRO(O) ZRO(O) ZRO(O) DA7(1ARG) SIU1(19X) ENA(T4O) SLJ(P) INA(11B) LIL1(KO) ADD7(4ARG) SCL(777B) SAL(5X) INA(1) INA(2) INA(1) INA(2) INA(1) INA(2) INA(1) LLS(3) SAL(5X) LLS(3) SAL(3X) LLS(3) SAL(3X) LLS(3) SAL(3X) LDA7(2ARG) LDA7(3ARG) SAU(6X) ENI2(4) EXF(N) EXF(N) EXF(N) EXF(N) EXF7(N) EXF7(N) EXF7(N) EXF7(N) EXF7(N) EXF7(N) EXF7(N) EXF7(N)	SLJ(L+5) ZRO(0) ZRO(0) INA(-11B) AJP3(L+3) SLJ4(G) ZRO(0) STA(K0) LDA1(K0) SAU(4X) SAU(4X) SAU(4X) SAU(4X) SAU(4X) SAU(4X) SAU(4X) SAU(4X) SAU(4X) SAU(4X) SAU(4X) SAU(2X) SAU(11X) SAU(2X) SAU(11X) SAU(11X) SAU(12X) LDA(2X) SAU(12X) LDA(5X) SAU(12X) LDA(5X) SAU(5X) SAU(5X) SAU(5X) SAU(5X) SAU(5X) SAU(5X) SAU(19X) LIL1(N) EXF7(N) EXF7(N) LDA7(2ARG) LDA7(2ARG) LDA1(Z) SLJ(15X) SLJ(15X) SLJ(10X)		EXIT/ENTRY TAPE UNIT NUMBER ARG. INITIAL ADDRESS TERMINAL ADDRESS MODE, 1 = BINARY, 2 = BCD CHECK FOR TU ASSIGNMENT GO PRINT ERROR SET TU CONTROL CODES INITIALIZE SENSE TU CONTROL CODES INITIALIZE
10X 11X 12X 13X	SLJ(19X) IJP2(L+2) IJP2(L+1) AJP(3X) EXF(N) LIL1(N) ENA(T6)	ZRO(0) SLJ(14X) SLJ(13X) QJP(3X) EXF7(N) SLJ(4X) SLJ(17X)	• • • • •	EXIT SENSE FIVE PARITY ERRORS SENSE FIVE LENGTH ERRORS SENSE FOR BAD RECORD BACKSPACE RETURN TO REREAD SET TO INDICATE TROUBLE
15X 17X	ENA(T12) SLJ4(G)	SLJ(18X) ZRO(0)	•	TROUBLE EXIT
18X	AJP(19X) SLJ(11X) SLJ4(G)	ZRD(0) ZRD(0)	•	TROUBLE EXIT
19X	AJP(3X) SLJ(11X) ENI1(N)	AJP3(3X) ZRO(0) ENI2(N)	•	SENSE ACTION TO TAKE RE-STORE INDEXES
	SLJ(1X) END	ZRD(0)	•	III-9
	•5143083E+05 •5093095E+05			
	29 .5097462E+05			

APPENDIX IV

CIRCUIT DIAGRAMS	PAGE
POLARIZING AND DAMPING NETWORK	2
MAGNETOMETER PREAMP	Ź
MAGNETOMETER AMPLIFIER	a start
RADAR GATE	L
CLOCK GATE AND GATE CONTROL	5
STORAGE RESET AND GATE DRIVER	6
TIMER	7
COUNTER START AND RESET	ŝ
SIGNAL GATE AND GATE CONTROL	9
CLOCK FREQUENCY MULTIPLIER	20
COUNTER FLIP-FLOP AND GATE	9
MULTIPLEX PULSE GENERATOR	1.2
MULTIPLEX BLOCK DIAGRAM	المستحدث المراجع المستحدث الم المستحدث المستحدث الم
ANALOG LADDER	and the second sec
OUTPUT AMPLIFIERS	15
PLUS AND MINUS 12 VOLT POWER SUPPLY	16
PLUS AND MINUS & VOLT POWER SUPPLY	9.7
FLUS 28 VOLT OSCILLATOR AND TIMER POWER SUPPLY	1.0
INTERFACE DRIVER AND AMPLIFIER	19
INTERFACE AND/OR GATES	20
INTERFACE FLIP-FLOP AND INVERTER	21

APPENDIX IV

IV-3

î

APPENDIX IV

IV-l4

.

7-71

al.

IV-8

D

-0

1V-16

LT-VI

7

APPENDIX IV

91-VI

đ

.

.

