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ABSTRACT 

Analysis of risk in critical infrastructure is one of the major problems facing 

Homeland Security today. Defining risk and applying it to systems, as opposed to 

individual assets, is a relatively new idea in Homeland Security policy. Thus, there is a 

need for a decision support tool to inform decision makers in Homeland Security of 

resource allocation strategies to harden assets that reduce overall network risk. Model 

Based Risk Assessment (MBRA) is a quantitative method designed to (1) identify the 

most critical assets of the network in such a way as to reduce expected loss over the 

entire network, (2) quantify allocation strategies that strategic planners and risk managers 

can apply across multi-sector systems, and (3) compute vulnerability and total risk 

reduction of the network.  

We formalized the definition of network risk in terms of the connectivity of the 

network as an extension to the accepted risk equation R=f(T,V,C). We use node degree as 

a heuristic for criticality of an asset to the overall function of the network. We then 

modeled the relationship between budget and vulnerability reduction and show how an 

exponential reduction model compares to a linear or random model. Using the stated 

definition of network risk, all models rank order assets exactly the same but they reduce 

risk differently. Lastly, we introduce a two-party model that combines both the 

defender’s and attacker’s points of view using a game theory approach. We show the 

results of this model and compare them to a similar model we refer to as the “arms race 

model” where we allow both attacker and defender to know each other’s budget. Results 

show that the techniques developed here are useful in conducting a systematic and 

repeatable analysis of an infrastructure network of assets for risk and then informing 

resource allocations that serve to reduce risk on the entire network, not just the selected 

assets. 
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I. INTRODUCTION 

A. PROBLEM STATEMENT 

Critical infrastructures are often vast networks of connected assets that serve to 

provide continuous services to the nation. Their “criticality” is based on the often severe 

economic impact that the nation might face if those infrastructures (or parts thereof) were 

disabled or lost. The problem is that these networks of assets are often so large that we 

cannot afford to protect every mile of pipeline, every mile of power cable, every energy 

production facility, etc. We need to be able to identify which assets might be more 

critical than other assets based on some systematic, quantitative, repeatable approach that 

yields results that decision makers can act upon. Many of the approaches in use today are 

asset level techniques that evaluate the criticality of assets largely independent of the 

infrastructure system they are within. We assume that the connected nature of many 

infrastructures is important and that this should be used in identifying critical assets and 

informing resource allocation strategies.  

This dissertation is about developing a new network-based approach and an 

associated tool for identifying critical assets within critical infrastructures and informing 

decision makers of defensible resource allocation options that might best harden and 

reduce risk from terrorist attacks over the entire infrastructure network. The approach 

relies on the assumption that adjacency in a network graph is important in identifying 

criticality. The more highly connected an asset is, the more critical it is likely to be. 

In order to achieve the goal of this research, a number of issues must be resolved. 

Among these are: 

1. We must decide how to define and model risk in a network of nodes and 
links. Homeland Security decision makers have been instructed to base 
their funding strategies on risk reduction. Since it is the whole 
infrastructure network that we are trying to protect, having a model of 
network risk is essential. 
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2. We must model the relationship between budget and vulnerability-
reduction in a network. Risk reduction is a means of reducing vulnerability 
while taking consequence into consideration. If a Homeland Security 
decision maker is going to efficiently reduce risk, then he must “buy 
down” vulnerability in a cost effective manner. Relating budget to 
vulnerability reduction is a key element of this procedure. 

3. Since it is probably true that one allocation strategy will not adequately 
answer all questions a Homeland Security decision maker might have in 
order to develop a funding strategy, we need to introduce multiple 
allocation strategies with a corresponding objective comparison of their 
utility and effectiveness.  

4. Lastly, it would be useful if we could extend this work to introduce a two-
party model whereby we can identify an effective funding strategy that 
attempts to reduce risk and then determine what the subsequent best 
strategy would be for an adversary to allocate his resources to increase 
risk.    

B.  LEXICON 

There are a number of key terms and definitions that we must clarify as they are 

used throughout this dissertation. Some of these are concepts and others are specific 

variables we will use in the mathematical models described here.  

Critical infrastructures are “systems and assets, whether physical or virtual, so 

vital to the United States that the incapacity or destruction of such systems and assets 

would have a debilitating impact on security, national economic security, national public 

health or safety, or any combination of those matters.” – The USA Patriot Act. (2001) 

Another definition of critical infrastructures is stated in the PDD1 63, (1998) as 

“those physical and cyber-based systems essential to the minimum operations of the 

economy and government. They include, but are not limited to, telecommunications, 

energy, banking and finance, transportation, water systems and emergency services, both 

governmental and private.” 

 

                                                 
1 Presidential Decision Directive. 
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The list of “sectors” varies depending on which government document is 

referenced but the key sectors that will be discussed in this dissertation are: energy 

(power), water, telecommunications, and transportation. Other sectors include agriculture 

(food), public health, emergency services, defense industrial base, banking and finance, 

chemicals and hazardous materials, and postal and shipping. 

A network is a collection of assets that can be modeled as a set of nodes (also 

called vertices in graph theory) that are connected by links (also called edges in graph 

theory) and represented mathematically as G(V,E). (Horowitz & Sahni, 1978) We 

represent a network G(V,E) with two types of information:  

1. Network structure is determined by how the nodes are connected to each 
other by links. (See Figure 1). The number of links connected to node i 
(which is the same as the number of nodes directly adjacent to node i) 
defines the node’s degree gi. The set of degrees g over an entire network 
defines its degree sequence. The degree sequence distribution is a 
histogram of the degree sequence summing over the entire network and is 
used to identify concentrations of connectivity. Barabasi (2002) defines 
these high degree nodes as the hubs of a network. In the approach 
presented here, we assume that the higher the degree, the more critical the 
node is to the operation of the infrastructure network.  

2. Nodes and links represent assets in an infrastructure network. In the 
example in Figure 1, if this were a water sector analysis, the nodes might 
represent reservoirs and pumps while the links might represent water pipes 
or aqueducts.  

 

 

Figure 1 An example network 
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Threat, t, is the probability that an attack will be attempted. In the Homeland 

Security context, for a purposeful adversary, this estimate would be based on intelligence 

values. For natural events, it would be based on event probabilities from weather 

prediction, geological surveys, etc. For this dissertation, we assume threat to be 100% (or 

1.0) thus making all events equally likely to occur, but not equally likely to succeed or to 

cause damage. 

Vulnerability, v, is the probability that an asset fails given a particular type of 

attack. We define v(C) as the vulnerability function in terms of the defender’s investment 

allocation, C; v(A) as the vulnerability function in terms of the adversary’s investment 

allocation, A; and v(A,C) as the combined vulnerability in terms of both the adversary’s 

and the defender’s allocations. 

Consequence, or damage, d, is the cost of damage associated with a successful 

attack, expressed in terms of casualties, loss of productivity, loss of capital equipment, 

etc. In this dissertation we will use asset replacement cost value in dollars. However, any 

of these or any combination of these are suitable for use as a consequence value. The 

only requirement is that the damage value definition for a specific analysis be consistent 

throughout. For example, if lives lost is monetized and added to damage value for a 

bridge, it must be added for all assets in the network. We assume that damaging any node 

also affects the links connected to it which is another reason why degree g is used to 

weight the value of each node. 

Risk “In the context of homeland security, the NIPP framework assesses risk as a 

function of consequence, vulnerability, and threat: R = f(C,V,T).” (NIPP, 2006). As noted 

previously, in this dissertation we use the following notation:  

• Consequence C is represented by the variable d (for “damage”) 

• Vulnerability V is represented by lower case v 

• Threat T is represented by lower case t 

We apply the risk definition as it is stated in the National Infrastructure Protection 

Plan (2006) by including degree sequence g in the risk formula. The risk equation 

becomes a function of degree sequence, consequence, vulnerability, and threat,  
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R = f(g,d,v,t). 

The total risk of n nodes and m links is: 

∑
+

=

=
mn

i
iiii dgvtR

1
 

where gi = 1.0 if the asset is a link (because links do not have a degree) and is equal to the 

degree if the asset is a node. 

Attributes of nodes and links in a network include: 

Consequence cost, di, is the expected damage or loss to an asset (node or link) if 

successfully attacked. It is typically estimated in dollars.  

Cost to eliminate vulnerability, ECi, is the cost to eliminate a vulnerability to its 

elimination fraction EFi. It is typically estimated in dollars. This is also referred to as the 

Elimination Cost.  

Elimination fraction, EFi, is the vulnerability assumed by the defender for an 

investment of ECi. If the vulnerability v of an asset is estimated at 100%, for example, 

and its associated elimination fraction EF is 10%, then the cost to reduce the 100% initial 

v all the way down to its minimum 10% EF is the elimination cost (EC). (See Figure 2) 

Cost to increase vulnerability, ACi, is the opposite of ECi from the attacker’s 

perspective to (attacker fraction) AFi. It is estimated in dollars.  

Attacker fraction, AFi, is the vulnerability assumed by the attacker for an 

investment of ACi. It can be thought of as the opposite of EFi. The cost for the adversary 

to raise risk to AFi is ACi. (See Figure 2) 

Total defensive resource, B, is the limited budget of the defender to protect and 

harden assets in the network. It is estimated in dollars. 

Total adversary resource, B', is the limited budget of the adversary to attack assets 

in the network. It is estimated in dollars. 
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Figure 2 The key variables that relate vulnerability to budget 

Allocation to harden (or partially harden) asset i, Ci, is the defender allocated cost 

to protect or harden asset i in a network where 0 ≤ Ci ≤ ECi. It is expressed in dollars and 

is computed by the model. 

Allocation to attack asset i, Ai, is the allocated adversary cost to attack asset i in 

the network where 0 ≤ Ai ≤ ACi. It is expressed in dollars and is computed by the model. 

Asset risk, ri, is the risk of an asset and it is determined in terms of degree, 

vulnerability, and consequence, and is expressed by the formula iiiii dvgtr =  where we 

assume ti = 1.0. This allows us to consider all events as equally likely to occur. If we had 

intelligence data or other information that could influence threat values, then ti would not 

be equal to 1.0. In this dissertation, we will commonly omit t from the risk equation for 

this reason. Since links do not have a degree, we set g = 1 for links  
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only. Therefore, asset risk for a link would be expressed as ri = ti vi di  with ti = 1.0. This 

is identical to the DHS2 definition except that we include degree. Asset risk is expressed 

in dollars and is computed by the model. 

Total network risk, R, is determined as the sum of asset risk over the entire 

network. It is expressed in dollars and is computed by the model. Since we are using 

replacement cost as the damage or consequence value in this dissertation, network risk is 

the total expected replacement cost of components due to an attack or attacks. We cannot 

draw conclusions as to the specific functioning of the network since the model does not 

capture the flow of materials. Using this definition, the technique will focus on the 

components of a network that are most critical to its performance and consequently must 

be replaced or repaired if rendered inoperable. Currently accepted asset-level definitions 

for risk compute aggregated risk over a set of assets as the sum of the individual risk 

values. We extend this here by similarly summing the asset risk values but weighted by 

the degree as a heuristic for network criticality.  

Network normalized risk, Rnorm, is the total network risk (sum of all individual 

asset risks) divided by the sum of all potential consequences and is expressed as,  

 

∑∑

∑∑

==

==

+

+
= m

i
i

n

i
ii

m

i
ii

n

i
iii

norm

ddg

dvdvg
R

11

11 , where ti = 1.0. 

 

Network normalized risk is computed by the model. 

Criticality. Barabasi (2003) defines criticality as the nodes with highest degree. 

However, Barabasi did not consider the value of the nodes and links. Lewis (2007) 

defines criticality as the high-degree and high-value nodes and links because he does 

include node and link values. Brown (2006) defines criticality as the value of protecting 

or hardening a given asset or a group of assets. 

                                                 
2 Department of Homeland Security. 
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We define criticality as a measure of an asset that describes the relative negative 

impact on the overall network if that asset were disabled or removed from the network. 

The more important an asset is to the efficient functioning of the network, the higher its 

criticality. We assume that this is strongly influenced by degree sequence. We therefore 

use degree sequence g as a heuristic for criticality. The higher a node’s degree, the more 

likely it is to be critical. We express this mathematically in this dissertation.   

C. CONTRIBUTION 

The National Infrastructure Protection Plan states as its goal to “Build a safer, 

more secure, and more resilient America by enhancing protection of the Nation’s critical 

infrastructures and key resources to prevent, deter, neutralize, or mitigate the effects of 

deliberate efforts by terrorists to destroy, incapacitate, or exploit them; and to strengthen 

national preparedness, timely response, and rapid recovery in the event of an attack, 

natural disaster, or other emergency.” (NIPP, 2006) 

However, we simply do not have the financial resources to protect everything we 

might identify as critical in an infrastructure or key resource. Therefore, developing a 

systematic method of (1) identifying which assets in an infrastructure might be more 

critical than others and then (2) informing a resource allocation strategy for the protection 

of our infrastructure systems is paramount to successfully meeting the goal of the NIPP.  

Methods already exist that address this problem. The methods that have been 

approved by DHS for use by state, local, and federal organizations are what we refer to as 

asset level tools. They rely on lists of assets that can be ranked by criticality, where 

criticality is based on their respective value, visibility, expected threat, etc. What they do 

not do is account for the network characteristics of assets in an infrastructure. This 

dissertation will address this shortcoming and enable the CIP analyst to: 

• Model risk in an arbitrary network and provide a solid definition of 
network risk that directly applies to critical infrastructure systems not just 
to isolated assets. 

• Find an optimal allocation of resources for both defender and attacker, 
assuming the defender wants to minimize network risk and the attacker to 
maximize it. 
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• Employ a quantitative method in the field of critical infrastructure 
protection for modeling risk assessment of an entire system represented as 
a network. 

• Provide the risk-assessment analyst and policy maker with supportable 
systematic answers as to how much funds are needed to protect the most 
critical components of the infrastructure against plausible threats. 

• Help policy makers identify critical assets, assess their vulnerabilities, and 
make rational and optimal decisions as to how to allocate a limited budget 
to protect the critical infrastructure, based on mathematical techniques and 
expert opinion in a careful and educated manner. 

D. SIGNIFICANCE 

This research will contribute to the approaches senior officials in the Department 

of Defense, Department of Homeland Security, and their allied international counterparts 

may use to discover weaknesses in infrastructure networks, identify vulnerabilities and 

risk, and decide how best to allocate limited resources to minimize overall risk. Officials 

may use these tools to: 

• Quantify “vulnerability” and “risk” so the same definitions apply to all 
sectors (NIPP, 2006). 

• Analyze single and combination events (i.e., multiple-threat attacks). 

• Identify what is truly critical in a critical infrastructure. 

• Quantify the allocation of resources to reduce vulnerability and risk based 
on a systematic methodology.  

• Provide a rational approach to protecting, increasing the security of, and 
reducing the risk to critical infrastructure nationwide. 

• Provide the policy-maker with a supportable systematic strategy as to how 
much resources are needed to protect the most critical components of the 
infrastructure. 

• Define a quantitative, repeatable method that is in agreement with current 
DHS guidelines. 

E. DISSERTATION OVERVIEW 

This dissertation is organized as follows. 
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Chapter II: Literature Review surveys the literature of critical infrastructure 

protection (CIP), comparing different tools used in Homeland Security, discussing 

various definitions of risk, comparing recent concepts of resource allocation used to 

distribute resources, and presenting the existing game-theoretical defender-attacker 

models used in the CIP. 

Chapter III: MBRA Tool describes the decision tool and its menus.  

Chapter IV: One-Sided Risk Model defines network risk and introduces two 

investment cost models linear and nonlinear that are used in MBRA tool. We illustrate 

the approaches taken to achieve vulnerability-reduction, identify critical assets, and 

minimize network risk from defender’s perspective. 

Chapter V: Two-Person Game introduces investment cost model to model 

network by using a joint (combined) function, and introduces allocation strategies used in 

MBRA tool from defender and attacker perspectives. 

Chapter VI: Results, conclusions and future work presents results from comparing 

two different tools CARVER and MBRA. It summarizes the contribution made by this 

dissertation and considers possible expansions. 
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II. LITERATURE REVIEW 

United States Secretary of Homeland Security Michael Chertoff discussed risk 

management in the Wall Street Journal on 14 February 2006 entitled “There is no perfect 

security,” which encourages the use of risk management principles to homeland security. 

This process of assessing risk and setting priorities should be familiar to 
those in the private sector. Companies use risk management to make tough 
decisions and weigh the costs and benefits of a particular set of 
investments in money and effort against an array of potential outcomes. 
For our department, risk management starts with weighing threats, 
vulnerabilities and consequences of a potential terrorist attack or 
catastrophic event, then conducting a rigorous, information-driven 
analysis both to set priorities for resources and to give focus and strategic 
direction to our policies and programs. 

In short, we drive homeland-security investments by looking to facts and 
analysis, not politics. We acknowledge, however, that while most people 
support risk management in theory, enthusiasm tends to diminish once it is 
applied in practice. This is because risk management, by its very nature, 
involves a trade-off. In a free and open society, we simply cannot protect 
every person against every risk at every moment in every place. There is 
no perfect security. If we tried to attain total security the cost would be 
exorbitant – in financial terms and in lost freedom and prosperity. 
Balancing risk necessarily means applying resources against the highest 
risks – and not against all risk. As in any trade-off, some will gain 
resources and others will not.” (WSJ, 2006) 

If a risk assessment methodology is to be driven by facts and analysis rather than 

politics, then it needs to be defensible. This implies that the results are repeatable and as 

objective as possible. Trade-offs are made between assets – but these assets may or may 

not be linked via a network infrastructure. Therefore, considering the network is key. 

The literature review in this chapter will include three main areas:  

1. An overview of tools supporting risk analysis in Homeland Security. We 
will focus mainly on practitioner level tools in use by the Department of 
Homeland Security and their related organizations. Other tools exist or are 
in development which are not discussed here. Since the technique  
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developed in this dissertation was based on a methodology approved by 
DHS, we compare our results only to other approved DHS methodologies 
and tools. 

2. Definitions of risk and how they are related to networks in critical 
infrastructure protection (CIP), and 

3. Resource allocation techniques that use game-theory approaches for max-
min problem of two players (terrorist and defender). 

A. TOOLS AND TECHNIQUES FOR RISK ANALYSIS IN HOMELAND 
SECURITY 

This section will give a brief description of the tools that are used by practitioners 

to support risk analysis in the U.S. Department of Homeland Security and related 

agencies and organizations. Each tool has its respective strengths and weaknesses. We 

will describe each method or tool and end with a summary. 

1. RAMCAP – (Risk Analysis Methodology for Critical Asset 
Protection) 

RAMCAP is a tool designed to analyze and manage the risk of assets associated 

with terrorist attacks in critical infrastructure. RAMCAP is comprised of seven steps in 

analyzing risk: (1) Asset characterization and screening. (2) Threat characterization – 

based on current intelligence. (3) Consequence analysis – measured in financial costs, 

fatalities and injuries and provided by DHS based on a spectrum of threats. (4) 

Vulnerability analysis – the determination of the likelihood for a successful attack using a 

specific threat on a particular asset. (5) Threat assessment – provided by DHS based on 

intelligence assessments of adversary capabilities and intent. (6) Risk assessment – a 

systematic and comprehensive evaluation of the terrorist attack scenario for a given asset. 

(7) Risk management – the process of understanding risk and deciding upon and 

implementing action to achieve an acceptable level of risk at an acceptable cost.  

RAMCAP is a general asset level tool. It is not specific to any one sector. It takes 

lists of assets, prioritizes them based on heuristics of value, threat, and consequence, and 

then presents its output as asset level risk. It is up to the analyst to decide how to “buy  
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down” risk based on the results of the analysis. RAMCAP is not capable of determining 

how limited resources can be distributed among all assets to reduce risk nor is it 

modeling risk of a group of assets forming a network. (RAMCAP)  

2. CARVER – (Critical Accessibility Recoverability Vulnerability 
Espyability Redundancy) 

CARVER is an asset level tool designed by the National Infrastructure Institute to 

identify the most critical infrastructure assets and systems in the United States. It 

prioritizes assets across sectors and ranks them according to their criticality by 

aggregating the highest scores obtained in each of six categories: criticality, accessibility, 

recoverability, vulnerability, espyability (notoriety), and redundancy. CARVER uses 

tables supplied by the developer for weighting the different elements. The tables and the 

algorithms are proprietary and are the basis of the ranking. CARVER relies on panels of 

subject matter experts who provide estimates on the six attributes for each asset using a 

ten-point scale to rank vulnerabilities. Two teams of experts will commonly arrive at 

different evaluations of the same asset because their respective inputs to the model will 

not be identical. Because CARVER relies on subjective inputs, it lacks rigorous standards 

for measuring and reporting risk.  

CARVER is a general purpose tool that is designed to cover all sectors and to 

some extent the interrelationships between sectors. CARVER does not consider the fault 

probability or funds necessary to protect assets nor does it directly consider the 

networked aspects of a sector. It considers cross-sector attributes by asking the analyst to 

directly state which sectors the asset might affect. (CARVER)  

3. MSRAM – (Maritime Security Risk Assessment Methodology) 

MSRAM is an asset level tool designed to analyze terrorism risk and is used by 

the U.S. Coast Guard. The assessment of risk is based on scenarios that combine types of 

targets and terrorist attack modes. MSRAM uses the risk formula defined by the DHS 

that depends on three elements; threat, vulnerability, and consequence.  

Risk = Threat * Vulnerability * Consequence 
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The threat attack probability depends on the terrorists’ intent and capability to 

deliver an attack on specific target and it is provided by the DHS. Vulnerability 

assessment based on factors such as attack difficulty, the ability of USCG to interdict an 

attack, and the ability of the target to withstand the attack. The consequence is defined as 

the negative impact of a successful attack and it is measured in terms of injuries/deaths, 

economic impact, environment impact, national security impacts, and symbolic impacts. 

(Downs, 2007) 

MSRAM is an asset risk-management tool that assesses risk based on scenarios. 

The tool uses a scale system to compute risk similar to other qualitative tools. It identifies 

and prioritizes assets according to their risks. MSRAM does not consider the amount of 

resource allocations needed to protect the assets from terrorist attacks. 

4. TRAM – (Transit Risk Assessment Tool) 

TRAM is an asset level tool developed by the U.S. Department of Homeland 

Security (DHS), Office of State and Local Government Coordination and Preparedness 

(SLGCP), Office for Domestic Preparedness (ODP) specifically for the transportation 

sector. TRAM is the underlying framework for MSRAM. Consequently, they share many 

of the same strengths and weaknesses. The main objectives of the tool are “to compare 

relative risks of acts of terrorism against critical assets owned and/or operated by transit 

agencies and to identify and prioritize enhancements in security, emergency response and 

recovery that the agencies can implement to reduce those risks”. TRAM is composed of 

seven attributes to assess risk: (1) Criticality assessment, (2) threat assessment, (3) 

vulnerability assessment, (4) response and recovery capabilities assessment, (5) impact 

assessment, (6) risk assessment, and (7) needs assessment. The overall risk is determined 

as the product of the threat, vulnerability, and consequence ratings. The method uses a 

rating scale from zero to ten. The tool will identify critical assets based on rating scores 

obtained by best expert judgments to assess overall risk.  
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TRAM is threat specific. It links assets to their respective threats via scenarios. It 

then identifies countermeasures that would mitigate some part of the risk for that asset. It 

is particularly good at being specific about countermeasures appropriate for a given threat 

for an asset but since it is not a network model, it is not able to accurately model the 

network aspects of an infrastructure network. (TRAM)   

5. Model –Based Risk Assessment (MBRA) 

We will provide only a very brief summary of MBRA here as it is fully described 

in the next chapter. MBRA (Lewis, 2006) was developed as a technique based on 

network science that would be a practitioner level tool that facilitates the modeling of 

infrastructure networks for the purpose of assessing risk and informing resource 

allocation strategies that reduce risk over the system. It is a systems level approach, not 

an asset level approach. It was intended to be relatively easy to use and should produce 

results that were repeatable (meaning that two analysts performing the same analysis 

would get approximately the same result), “aggregable” (meaning that two “adjoining” 

analyses could be joined into one analysis that yields correct results), and quantitative 

(meaning that it was intended to avoid “ratings” that could be viewed as the opinion of a 

subject matter expert). The technique uses network models to identify critical assets in a 

network and then uses fault tree analysis to refine resource allocation strategies.  

6. Summary 

In Table 1, we compare some key attributes of the tools surveyed here. Generality 

refers to the tool’s ability to assess infrastructure in any of the sectors, not just one or two 

specific ones. Network model refers to the tool’s ability to consider the network attributes 

of a sector. Risk calculation refers to whether or not the tool calculates risk using the 

approved DHS risk equation. Resource allocation refers to whether or not the tool is able 

to directly inform the allocation of resources (mainly funding) to the assets in question to 

buy down risk, or alternatively, if it indirectly informs resource allocation by ordering 

criticality. Repeatable refers to whether or not two analysts using the same descriptive 

data will come up with the same result. 
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Table 1 Comparison of DHS tools 

 RAMCAP CARVER MSRAM TRAM MBRA 
Generality All sectors All sectors Ports Transportation All sectors 
Network model Asset level Asset level Asset level Asset level Network 
Risk calculation No No Yes Yes Yes 
Resource 
allocation 

No No No, asset level No, asset level Yes, network level 

Repeatable No No No No Yes 
 

The primary criticism of existing practitioner tools for critical infrastructure 

assessment is that they rely heavily of subjective inputs thus limiting the repeatability of 

the results and they also neglect the network characteristics of many infrastructure 

sectors. What is desirable is a tool that (1) uses network science theory to help identify 

which assets in a network are the most critical and then (2) directly informs the resource 

allocation process to efficiently “buy down” network risk in the sector.  

B. DEFINITIONS OF RISK IN CIP 

It might be assumed that the concept of risk is fairly well understood and that 

definitions for risk have been developed, agreed upon, and are in use in critical 

infrastructure assessment today. After all, the Secretary of Homeland Security says we 

are going to use a risk based approach for investment in critical infrastructures. 

Unfortunately, only recently has a definition of risk begun to emerge. Many definitions of 

risk have been proffered as practitioners have defined terms to meet their particular 

needs. This section presents commonly used definitions and their relationship to the 

definition recently adopted by the Department of Homeland Security which is also the 

definition used in this dissertation. Most risk definitions, (NIPP, 2006), (Roper, 1999), 

(RAM, 2000), (FEMA, 2007), (Willis, 2005), (Mackin, 2005), (Wilcox, 2005), (Moteff, 

2005), are expressed as a function of three variables threat, vulnerability, and 

consequence with minor changes in notations in assessing risk of a single asset. 
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R = f(C,V,T) 

where, 

  C = Consequence 

  V = Vulnerability 

  T = Threat 

In the United States, the White House encourages using risk management 

strategies to protect infrastructure against terrorist attacks as defined in HSPD3-7 (2003). 

(19) In accordance with guidance provided by the Secretary, Sector-
Specific Agencies shall:  

(a) collaborate with all relevant Federal departments and agencies, 
State and local governments, and the private sector, including with 
key persons and entities in their infrastructure sector;  

(b) conduct or facilitate vulnerability assessments of the sector; 
and encourage risk management strategies to protect against and 
mitigate the effects of attacks against critical infrastructure and key 
resources. 

The U.S. Department of Homeland Security states the definition of risk in (NIPP, 

2006) as 

In the context of homeland security, the NIPP framework assesses risk as 
a function of consequence, vulnerability, and threat. 

The U.S. Government Accountability Office states the risk formula as 

In our framework, risk assessment is a function of threat, vulnerability, 
and consequence. The product of these elements is used to develop 
scenarios and help inform actions that are best suited to prevent an attack 
or mitigate vulnerabilities to a terrorist attack, in conjunction with the risk-
based evaluation of alternatives undertaken while considering cost and 
other factors. (GAO-06-91, 2005)  

 

                                                 
3 Homeland Security Presidential Directive. 
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Risk can be determined quantitatively by multiplying the estimated adverse 

impact of a successful threat/attack scenario by the probabilities associated with threat 

and vulnerability. We define impact as consequence, measured in loss of lives, financial 

loss, or some other quantity, and then define risk as expected loss due to a successful 

attack on an asset. 

 
Expected loss = (Consequence) x (Probability of an attack) x 

(Conditional probability that attack is successful) 

 

We define probability of attack as threat, and probability that an attack succeeds 

as vulnerability. Thus, the total expected replacement cost of components due to an attack 

or attacks is obtained by multiplying threat, vulnerability, and consequence: 

 

Risk = Total expected replacement cost = Threat x Vulnerability x Consequence 
 

This is the definition adopted by DHS. The objective of critical infrastructure risk 

assessment is to decrease risk by reducing threat, vulnerability, and/or consequence. For 

example, risk can be reduced by diminishing the threat to the asset (e.g., by eliminating 

or intercepting the adversary before he strikes); reducing vulnerabilities, (e.g., hardening 

or shielding the asset to withstand the attack; and softening the impact or consequence of 

an attack (e.g., by building backup systems or isolating facilities from dense populations).  

According to Roper (1999), risk is the potential for damage or loss of an asset, 

and risk assessment is the evaluation of threats to and vulnerabilities of an asset for the 

purpose of rendering an opinion as to its probable loss or damage and the potential 

impact of such. The aim of risk assessment is to guide preventive action (Roper, 1999). 

He proposed a formula for risk as a function of three variables: impact, threats, and 

vulnerabilities.  

Roper’s qualitative risk management process consists of a five-part assessment: 

first of the asset, then threats, vulnerability, risk, and countermeasures. Roper’s process 

does not consider resource allocation or the attacker’s point of view, yet the definition of 

risk used is remarkably similar to that eventually adopted by DHS. 
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Sandia National Laboratories defines risk in their risk-assessment methodology 

(RAM, 2000) for physical security by the formula: 

 

Risk = PA*(1 – PE)*C  

where 

PA is the likelihood of adversary attack, 

PE is security system effectiveness, 

1-PE is adversary success, and 

C  is consequence of loss to the attack. 
 

If we consider PA to be threat, (1-PE) to be vulnerability, and C to be consequence, 

the definition is the same. Lewis (2006) takes a similar approach when he introduces the 

concept of availability which is defined as the complement of vulnerability (1-v). Sandia 

refers to this as “security system effectiveness”. 

The Federal Emergency Management Agency (FEMA, 2007) defines risk “as the 

potential for a loss or damage to an asset to occur. It takes into account the value of an 

asset, the threats or hazards that potentially impact the asset, and the vulnerability of the 

asset to the threat or hazard.” (FEMA 426, Reference Manual to Mitigate Potential 

Terrorist Attacks Against Buildings, pages 1-35 to 1-44). The risk assessment is 

determined and applied to individual assets using the DHS risk formula. This is again 

very similar to the accepted DHS definition, not surprising given that FEMA is a part of 

DHS. Yet other similar definitions exist. 

Another definition of terrorism risk is provided by RAND, the center for terrorism 

risk management policy (Willis, 2005, 2007) as a function of threat, vulnerability, and 

consequences.  

RAMCAP is designed to analyze risks associated with adversary attacks. 

RAMCAP defines risk by the same DHS formula. (Mackin, 2005) 
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According to Wilcox (2001), risk is the potential of loss from exposure to a 

hazard and is represented as the product of occurrence likelihood and accident impact. 

Wilcox’s definition ignores vulnerability, but includes consequence in the form of 

impact. 

A very different definition of risk, found in the Moteff Report for Congress 

(Moteff, 2005), ranks risk along a qualitative scale, e.g., high, medium, and low 

depending on different qualitative measures of threat and vulnerability. The problem with 

conclusions drawn by means of these definitions is that they are not repeatable – experts 

will likely disagree as their standards for high, medium, and low diverge. This definition 

therefore is of little value to the analyst. 

None of these definitions in and of itself can identify the most critical components 

of an infrastructure system. Rather, the risk definition models risk of individual assets so 

that we can compare them on an equal basis. If the DHS definition of risk captured 

everything that was important to know to identify critical assets in an infrastructure, then 

any of the rank ordering techniques would be suitable. However, we claim that the 

definition of risk is important, but inadequate for assessing criticality. Connectedness 

matters, therefore we need to consider the network characteristics of an infrastructure in 

order to decide what is critical. Without this, we leave the problem of identifying critical 

assets to the analyst’s judgment, which is often indefensible, and rarely repeatable.  

Lewis (2006) borrowed the concept of modeling critical infrastructure systems as 

vast networks from Barabasi (2002, 2003) and other pioneers of network science. The 

main idea was that critical infrastructure systems, seemingly random networks of assets, 

are actually structured. In the terminology of network science, critical infrastructure 

systems were more likely to be scale-free or small world networks than random networks. 

This is key, because it allows the defender to identify the most critical nodes and links of 

a system which should be protected, even at the expense of other nodes and links. The 

strategy is to use this hidden structure to help identify criticality. 
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In fact, Albert and Barabasi showed that the most-highly connected nodes of a 

network could be the “Achille’s heel” or vulnerable point of a system modeled as a 

network (Albert, 2000). If we construct a degree-sequence distribution as a histogram 

showing the percentage of nodes of degree d versus d, we can see the types of structure 

Barabasi describes. Barabasi renewed scientific interest in networks with heavily skewed 

degree distributions, in which there are many nodes of low degree, but only a few of high 

degree (the “hubs”). Barabasi (2002, 2003) defines a scale-free network as a network that 

obeys the power law, which describes the degree-sequence distribution of a scale-free 

network. For the purposes of this dissertation, we are more concerned with networks of 

scale-free properties than we are networks that strictly conform to the power law. Simply 

stated, scale-free networks have large hubs which we assume to have significant 

importance to the overall function of the network. 

Lewis combined network theory with probabilistic risk analysis to model 

infrastructure as a network, and risk as an melding of the DHS risk definition and  

Barabasi’s concept of vulnerability influenced by degree sequence (Barabasi, 2003). The 

model proposed by Lewis reverts to the Barabasi model when all nodes and links are of 

equal value. However, when the value of nodes and links vary, the model yields a 

measure of risk that applies to any arbitrary network with heterogeneous values. It does 

not assume that nodes with high degree are the most critical. Nodes of lesser degree can 

be more critical if their value is very high. But criticality is highly influenced by degree. 

The extension of Barabasi’s model to arbitrary networks with arbitrary node/link 

consequences and vulnerability-reduction costs was a very important step towards a 

unifying theory of critical infrastructure protection based on risk reduction. However, 

Lewis did not formalize his model or solve it for linear and non-linear cost functions. 

The next step in the evolution of critical infrastructure risk assessment required a 

definition of risk that extended to networks, not just the individual assets within the 

network. Lewis’s definition of criticality needed a corresponding definition of network 

risk. The barbell model proposed by Lewis (2006, 2007) defined network risk as the sum 

of barbell risks, where a barbell is a sub-network, as shown in Figure 3. A barbell  
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consists of two nodes (A and B) and a link (L) that joins them. Lewis obtained network 

risk by summing the risk of each barbell over the entire network. Hence, network risk is 

defined in Lewis (2006) as the sum over n nodes and m links: 
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Figure 3 A barbell sub-network 

In this section, we have reviewed several different ways to define risk, but most of 

these definitions agree that risk is the product of threat, vulnerability, and damage. This is 

the definition that DHS has adopted. We use quantitative techniques to compute the value 

of risk, so that we can develop allocation strategies for resources to reduce risk in a 

quantitative manner.  

C. RESOURCE ALLOCATIONS AND TWO-PERSON GAMES  

Key elements of this dissertation research include the ability to relate resource 

allocation to vulnerability and also to include a two-person game where we can look at 

what an intelligent adversary might do as a result of a specific allocation. This section 

will present an overview of the literature related to these issues.  

1. Resource Allocation Strategies and Methods 

Lewis (2006) generalized the Albert-Barabasi (2000) result by introducing 

consequences; each node and link is assigned a damage value in addition to degree. 

However, Lewis assumed a linear relationship between allocation and reduction of 

A B 
L 
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vulnerability, which is simple but unrealistic. In addition, Lewis offers a heuristic 

solution to his model and does not provide a closed-form solution to the minimum risk 

allocation problem we solve in this research.  

This research extends Lewis’s linear cost model and gives closed-form solutions 

to the problem of allocating a fixed budget to nodes and links such that risk is minimized. 

Lewis defined network risk as the sum of all barbell risks in the network:  

∑
+

=
mn

i
iii dvgR  

where  

gi  = degree of node if asset i is a node, and is 1 if asset i is a link. 

vi  = probability of failure, if attacked. 

di  = damage/consequence if asset i fails. 

In addition, this research extends Lewis’s previous results to a non-linear 

vulnerability-reduction cost function that models the diminishing returns of asset 

protection where the effectiveness of an allocation drops off exponentially as more 

resources are allocated to a node or link. This is a more realistic model. It assumes that 

the policymaker will invest first in the most cost effective countermeasures (in terms of 

their risk reduction per dollar ratio) working towards the least cost effective 

countermeasures. 

Xie, Tan, and Goh (2000) present a technique for setting priorities and optimal 

resource allocation using fault-tree analysis (FTA) techniques. They add the number of 

AND gates leading up to a top event from its basic event. The more AND gates an event 

has along the path to the top, the less important the basic event. (Xie, 2000). This method 

of qualitative ranking aims to identify the most significant groups of basic events, rather 

than provide an exact rank for all basic events. It lacks the capability to model risk and 

allocate resources. 
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2. Two-Person Games 

Danskin (1967) provides a comprehensive theory of max-min games with many 

military applications. Several of his applications and solution techniques have modern-

day analogs to problems in Homeland Security and Defense. 

Owen (1969) considers the case of a two-sided war game in which the attacker is 

constrained by the number of missiles to maximize the damage of cities, and the defender  

is constrained by budget limitations to defend the cities with two types of defense: active 

defense using anti-missile systems and passive defense using shelters. Owen applied his 

model to minimize fatalities in a nuclear attack. His approach can be modified and 

applied to assets in a network using the two-sided approach in which the attacker is 

constrained with a limited budget to maximize the risk of the network, and the defender is 

constrained by budget constraint to minimize the network risk.  

Croucher (1975) considers a two-sided resource allocation game in which both 

players, attacker and defender, have fixed resources which may be distributed over 

different targets. Croucher applied the fundamentals of game theory to an example 

concerning antiballistic missile defense.  He examined the problem where a number of 

targets attacked and defended with the use of missiles. The attacker’s total resource 

consists of a number of ballistic missiles (BM’s) to attack k targets, and the defender’s 

resource consists of a number of antiballistic missiles (ABM’s) to defend the k targets. 

He defines a combined probability function in terms of the attacker resource, x, and the 

defender resource, y, as 

[ ][ ]ybxa eeyxp −−−= 1),( . 

The total expected payoff to the attacker is expressed as the product of the 

combined probability function and target value 
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where, 

ai, bi  are vulnerability factors 

vi  is the values associated with target i 

Croucher provided optimal allocation solutions to the problem using Kakutani 

fixed point theorem (Kakutani, 1941). Where X(y) is the set of points which maximizes 

F(x, y) for fixed y, and Y(x) is the set of points which minimizes F(x, y) for a fixed x. 

Croucher’s approach is an important improvement. It involves intensive 

computations, but it introduces a simple combined probability function, and provides 

continuous optimal allocations for the attacker and defender. This approach was applied 

to the allocation of ballistic missiles in the seventies. The approach is still valid now and 

can be applied to a new type of threat and assets, that is, the threat of terrorist attacks and 

networked critical infrastructure assets. We rely heavily on Croucher's results in Chapter 

V. 

In related work, Major (2002) models terrorism risk as a two-person, zero-sum 

game with payoff (expected loss) to the attacker. The attacker has the option to choose 

the target and assign a resource to it. The defender has to assign resources to all targets 

simultaneously. The defender wants to minimize, and the attacker to maximize, expected 

loss.  

Major shows how to find an optimal allocation of resources for both attacker and 

defender using game theory. Major defines expected loss or risk (EL) as a function of 

both attacker and defender resources, and the value of the asset.  

EL = ∑i Vi p(Vi, Ai, Di), and  ( )
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where, 

p(Vi, Ai, Di)  is the probability of a successful attack of target i and it consists  of 
two terms: the probability of a planned attack escaping detection 
and the probability of successful attack given it is undetected.   

Vi  the target value  

Ai the resource assigned to target i by the attacker 

Di  the defender allocation to defend the asset 
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In Major’s model, the assets are ranked according to their values that indicate 

their criticality. The high value targets will get higher allocations than the low value 

targets. Moreover, the assets are treated independently with no network model included. 

Powers (2005) extended Major’s (2002) probability model by allowing 

simultaneous attacks on multiple assets. Powers introduced a sophisticated attacker-

defender model where the defender wants to minimize the attacker’s payoff and the 

attacker maximizes the defender’s payoff. He applied a Lagrange multiplier technique to 

solve the problem. We employ a similar technique to find optimal resource allocation to a 

network of connected assets, nodes and links.  

Powell (2005, 2006) presented a basic game-theory framework for allocating 

defensive resources against long-term threats. Resources are allocated to harden sites, 

reduce vulnerabilities, and make the sites less attractive and difficult to attack. Optimally, 

the defender will allocate resources to minimize the attacker’s payoff, and conversely, the 

attacker will allocate resources to maximize the defender’s payoff. Powell’s model 

follows the risk-management approach definition as the product of three elements: threat, 

vulnerability, and consequence as stated in GAO 2005, 25. Powell’s model employs 

sophisticated math and intensive computations to determine the attacker and defender 

allocations. We employ a similar risk-management approach to model a network of 

connected assets rather than individual assets. 

Bier (2002) proposed a method for optimal resource allocation for the defense of 

simple series and parallel systems using game theory to characterize optimal defensive 

strategies against intentional attack. Bier assumes that the attacker wishes to maximize 

the probability of success for an attack on the system. Bier defines the probability of 

success of an attack against a component, as a function of the defensive resources 

expended to strengthen that component, Pi(Ci) = ai e-bC
i, where Ci is the defender 

allocation to defend component i, and ai and b are constants. The defender wishes to 

minimize the objective function with or without budgetary constraints. In other words, 

the defender tries to reduce the probability of successful attack on a component (that is, 

reduce vulnerability).  
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Bier (2005) extended her previous work by assuming the attacker will maximize 

the expected damage of an attack on the system, while the defender will try to reduce 

expected damage, subject to a budget constraint (in other words, risk reduction). Bier 

added component values into the objective function. Her model is applied to a system 

with components connected in either series or parallel and showed how to allocate 

resources in hardening components using reliability analysis, game theory, and 

optimization; when combined they can be applied to networks. The model does not 

determine the allocation of attacker resources to components when the attacker wishes to 

increase the expected damage of the system. 

Brown (2006) introduced attacker–defender (AD) and defender–attacker–

defender (DAD) models of network interdiction and applied them to critical 

infrastructure protection. The AD interdiction model is a bi-level Stackelberg game 

(Stackelberg, 1952), and DAD is a tri-level game. The models assume transparent 

information between the attacker and defender. The objective of the defender in these 

games is to minimize network operating cost, and the objective of the attacker is to 

maximize this minimum cost.  

The approach used in the class of models studied by Brown et al. assumes each 

network asset is either attacked or not using binary variables to model attacks. These 

models determine the optimal attack of an infrastructure system given that the defender 

will operate his system optimally after the attack has occurred. The resulting models are 

integer linear programs that can be solved with commercially available software.  

In this dissertation, we propose an alternate approach whereby network assets 

succumb to attacks with a certain probability (rather than a binary number), and 

vulnerability can be “bought down” by making an investment in each node or link of the 

network. In the new model, partial protection of assets is not only allowed, but assumed, 

because the defender does not know where an attacker may attack and he has limited 

funds. In addition, the new model proposes two new vulnerability reduction equations: 

linear and exponential. Instead of a binary relationship between attacker and defender, the  
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new model investigates allocation strategies for linear and exponential reduction 

equations. The vulnerability reduction models are explained in detail in Chapters III and 

IV. 

One can think of the attacker-defender models of Brown et al. as deterministic 

network models and the new models here as stochastic. Therefore, risk is defined as 

expected loss. The objective is to reduce risk, not maximize commodity flow. It could be 

that in many cases, reducing risk means maximizing flow, but in the new model this is 

not assumed. In particular, if we consider social networks or other networks where there 

is no obvious commodity flowing through the network, we need this alternate approach 

that is not flow-based. Since minimization of risk is the objective (rather than 

maximization of flow), a new definition of network risk must be considered. In this work, 

network risk is a function of the structure of the network as well as the consequences and 

costs incurred in protecting its nodes and links. This leads to a formulation of risk that 

considers network degree sequence, node/link consequence, and vulnerability-reduction 

models (linear and exponential). The model will be described in detail in Chapter IV. 

The new definition of network risk used in this dissertation has its pedigree in 

probabilistic risk-assessment (PRA) rather than the optimization literature. Since the 

problem domains are similar, we offer an example optimization approach for comparison 

purposes. This work combines PRA definitions with network theory to define risk in 

terms of network structure and component risk. This is in contrast to the network-

intervention literature that addresses the flow of a commodity in a network and uses  

deterministic allocation strategies. Both approaches consider the network characteristics 

of the infrastructure but clearly, there are cases where one strategy is more suitable than 

the other. 

These models provide the basis for a defender-attacker model that, when 

combined with network analysis, comprehensively models system-wide risk. We propose 

a new risk model that incorporates both defender and attacker as proposed by Major 

(2002), Powell (2005, 2006), and Powers (2005), but in addition, combines network 

effects as proposed by Al Mannai and Lewis (2007). We refer to our model as a “two-

player” model so as not to confuse it with the defender-attacker model previously 
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described in the optimization literature. The objective of our model is to “buy down” risk 

by reducing vulnerability partially or fully, depending on the vulnerability reduction 

equation. This requires a new definition of network risk, and an equation that relates 

vulnerability to investment. 
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III. MODEL-BASED RISK ASSESSMENT (MBRA) TOOL 

This chapter will give an overview of the design structure of the Model-Based 

Risk Assessment (MBRA) tool that we will use throughout this research. The MBRA 

process was described previously. The purpose of this section is to familiarize the reader 

with the tool as it relates to the process. 

A. MBRA TOOL DESCRIPTION 

Lewis (2004) originally created the Model-Based Risk Assessment (MBRA) tool. 

We modified the tool by adding different algorithms such as the linear and non-linear 

cost reduction models, resource allocation strategies, and risk assessment that can be 

applied to analyze various critical infrastructures when modeled as a network composed 

of nodes and links for single player and two-party models. 

The main feature of the MBRA tool is the network model. Not only is the network 

model important to the algorithms used, but we have found that the network model also 

adds some level of simplicity for the analyst because the network abstraction is easily 

comprehensible. The infrastructure looks like what it is. In fact, many analysts use 

Google™ Maps or other imagery underneath their network models to further clarify the 

abstraction.  

MBRA uses a graphical user interface (GUI) to choose from different menus in 

order to create a network as nodes and links, enter the values associated with each asset 

(node and link), run different models, and view the results on the screen monitor. The 

MBRA tool presents other features such as computing the allocations of each asset for a 

single player and two-party models based on a limited budget. It computes the risk of 

each asset and the total risk of the network. In addition, it prioritizes the assets according 

to their criticality. 
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B. INTERFACE DESCRIPTION 

Figure 4 shows the main window of the MBRA tool with an example of water and 

power displayed. The MBRA tool consists of:  

• Upper panel is composed of: 

• Menus: File, Examples, Consequence, Layout, and Allocation 
Strategies  

• Network editing buttons: Add Node, Erase Node, Add Link, Erase 
Link, Edit Defender, and Edit Attacker. 

• Display area is composed of: 

• The network created for analysis as nodes that may represent a 
city, power station, reservoir, refinery, internet switch, etc., and 
links that may represent roads between two cities, power cables, oil 
pipelines, fiber-optic cables connecting internet switches, etc.  

• The chart located at the lower left corner of the display represent 
the degree sequence distribution (histogram) used for identifying 
the hidden structure of the network. It also computes the best fit to 
a power law although this is not used directly in this research.  

• Bottom panel is composed of: 

• Input fields: Attacker Budget, and Defender Budget. 

• Control buttons: Allocation on, Max Flow On, Depercolate, 
Propagate ON, Kirchhoff, Reset, and Next Page. 
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Figure 4 The main MBRA window 

The allocation strategies menu in Figure 5 includes all the combinations 

developed for this dissertation. The three allocation strategies are random, linear, and 

exponential. We also include an “arms race” model that will be described in detail in the 

next chapter. Any of these can be matched with any other in a two-party model. To 

perform a single party analysis, we set the attacker budget to $0. Giving the attacker no 

resources effectively eliminates it from the analysis. 
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Figure 5 Allocation strategies menu 

The analyst has to specify what the consequence value is on which the allocation 

will be based (see Figure 6). There are many to choose from. The tool allows for number 

of casualties, repair time, psychological cost, capital loss, economic loss, or any other 

kind of loss. The technique is not specific to any type of consequence value but it is 

critical that the analyst be consistent in choosing and providing values for consequence 

across the entire network. If economic loss is chosen as the consequence value, then an 

economic loss value must be included with every asset that is to be considered in the 

analysis. If this is not provided consistently, then the assets will not be assessed on an 

even basis and the result may be skewed. 

 

 

Figure 6 Consequence menu 

Many of the networks analyzed are very large. As such, the tool provides a way to 

reorganize the nodes in a way that helps the analyst see what the results are. The main 

layouts we typically use are “Around Hubs” where node with high degree are bought to 
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the center, and “Around $Allocation” where nodes with the highest computed allocation 

are brought to the center. Layout does not affect the computation in any way (see Figure 

7).  

 

 

Figure 7 Layout menu 

The last two dialogues in Figure 8 and Figure 9 look very similar and they are, 

except that one is for the defender’s consequence and cost data while the other is for the 

attacker. In each, we specify which consequence category we wish to provide data. Then 

we add its associated elimination cost and elimination fraction (see LEXICON for 

definitions of these). Note that multiple consequences can accept input simultaneously 

but the tool calculates on only one at a time. If the analyst wishes to aggregate multiple 

consequence variables, then they can be combined and placed under “Other loss”. Then 

“Other loss” can be selected form the main “Consequence” menu as the basis for this 

analysis.  
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Figure 8 Input Defender consequence and cost data 

 

Figure 9 Input attacker consequence and cost data 

Lastly, we include a summary dialogue that lists all assets (nodes and links) with 

all associated data (see Figure 10). This includes all input data and computed data. After 

an analysis is run, this panel can be opened to view all the results in ranked/unranked 

ordered in tabular form. 
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Figure 10 Results in tabular form  
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IV. ONE-SIDED NETWORK RISK MODELS  

This chapter presents and solves the problem of minimizing total expected 

replacement cost, or network risk, by allocating a limited budget to lowering the 

vulnerability of individual components in a network. Following Lewis (2006), we apply a 

“barbell” model to define network risk in an infrastructure system where component 

adjacencies are considered. We consider two separate functions that relate the amount of 

a budget a defender allocates to protecting a component to that component’s resulting 

vulnerability: a linear function and an exponential function. In both models, we assume 

that component vulnerability decreases as a function of the defender's protection 

allocation to that component.  

We establish the structure of an optimal protection allocation in both the linear 

and exponential vulnerability cases using simple interchange arguments, and, further, we 

show in both cases that a greedy investment policy provides the optimal reduction in total 

expected replacement cost.  

Our approach is illustrated and applied to a generic network model of a water-

and-power system using fictitious data. 

A. OPTIMAL DEFENSIVE BUDGET ALLOCATION 

Suppose a defender has a total budget, B , to allocate among components in a 

system in order to protect them, and further suppose that if the defender chooses to 

allocate an amount, Ci, of the budget to protecting component i that the resulting 

vulnerability of component i is given by the function ( )ii Cv . The question becomes, what 

portion of B  shall be allocated to each asset such that R  is minimized? More formally,  

 ( )
1

n m

i i i i
i

Minimize R g d v C
+

=

= ∑  (1) 

subject to the constraints: 
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1

n m

i
i

C B
+

=

≤∑ . (2) 

 0iC i≥ ∀ . (3) 

Al Mannai and Lewis (2007) defined vulnerability functions in terms of the 

availability of an asset i; we simply change notation and use vulnerability, the 

complement of availability, of an asset for our models. 

1. Linear Vulnerability Reduction Model 

In the linear vulnerability reduction model, we assume a linear relationship 

between the investment cost of hardening and the vulnerability of the asset. That is, the 

more we allocate to protect an asset, the less vulnerable it is, as shown in Figure 12. Al 

Mannai and Lewis (2007) postulate a linear relationship between the “hardening cost” 

and the availability of the asset. In this document, we simply change notation and use 

vulnerability, which is the complement of availability. We express the vulnerability 

function in the linear model as 

 

( ) 1

0 ( ) 1.0

0

i
i i

i

i i

i i

Cv C
EC

v C

C EC

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

≤ ≤

≤ ≤

. (4) 

Note that this function is completely defined by a single parameter, ECi, which we 

refer to as the elimination cost of component i; it represents the cost to reduce the 

vulnerability of component i to zero.  (When there is no defensive allocation to protect 

asset i, i.e., Ci = 0, its vulnerability is 100%.) 
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2. Exponential Vulnerability Reduction Model 

In the exponential vulnerability reduction model, we represent the vulnerability as 

a decreasing exponential function of the resource allocation to harden asset i, Ci. This 

function is defined in terms of two parameters, the “elimination” cost, ECi>0, required to 

reduce component i vulnerability to an elimination fraction, 0<EFi<1.   

As the allocation Ci increases, vulnerability decreases according to the formula 

 ( ) , 0 ( ) 1.0i iC
i i i iv C e v Cα−= < ≤  (5) 

where 

 ln ( ) , 0 1.0i
i i

i

EF EF
EC

α −
= < ≤ . (6) 

These are the two primary models that we will use throughout the rest of this 

dissertation that relate investment to vulnerability reduction. We then set the stage to 

proceed to the next section in determining how to allocate the limited budget to protect 

assets in the network.  

B. OPTIMAL ALLOCATION STRATEGIES AND ALGORITHMS 

In this section, we establish optimal allocations for both the linear and exponential 

vulnerability functions. We show that in each case a greedy algorithm solves the 

corresponding optimal allocation problem. 

1. Linear Vulnerability Function 

In the linear case the contribution of component i to network risk is:  

 
( )=

= −

i i i i i

i i
i i i

i

R g d v C
g dg d C
EC

. (7) 

Theorem 1: If Ci > 0 for any i, then Cj = ECj for all  j with 
i

ii

j

jj

EC
dg

EC
dg

> .  
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Proof: Assume Ci > 0, but Cj < ECj for some j with   
i

ii

j

jj

EC
dg

EC
dg

> . 

Let min ( , ) 0i j jC EC Cδ = − ≥ .  Now shift δ from Ci to Cj, and the resulting change in 

overall network risk, Δ, involves only components i and j: 

( ) ( )( ) ( )

( ) ( )( ) ( )

j j j j j j j ji i i i i i i i

i j i j

j j j j j j j j j ji i i i i i i i i i

i i j j i j

j ji i

i j

j ji i

i j

g d v C g d v Cg d v C g d v C
EC EC EC EC

g d v C g d g d v Cg d v C g d g d v C
EC EC EC EC EC EC

g dg d
EC EC

g dg d
EC EC

δδ

δδ

δδ

δ

⎛ ⎞+−
Δ = + − +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= + + − − +⎜ ⎟⎜ ⎟
⎝ ⎠

= −

⎛ ⎞
= −⎜ ⎟⎜ ⎟
⎝ ⎠

 

But 0j ji i

i j

g dg d
EC EC

⎛ ⎞
− <⎜ ⎟⎜ ⎟

⎝ ⎠
, by assumption, and so the original allocation could not have been 

optimal. 

A simple greedy algorithm for the linear case invests as much as possible in the 

component with the highest ratio, and then invests as much of the remaining budget as 

possible into the component with the second largest ratio, etc., until no more budget (or 

no other component) remains.  

2. Exponential Vulnerability Function 

In the nonlinear case, the contribution of component i to network risk is:  

 α−= i iC
i i iR g d e  (8) 

Theorem 2: There is a value Φ  such that, for all i with 0iC > , 

Φ=
∂
∂ )( iiii

i

Cvdg
C

  , (so     Φ=− − ii C
iii edg αα  ) 

and if 0=Φ>− iiii Cthendgα  
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Proof: Assume Ci, Cj > 0, but jjii C
jjj

C
iii edgedg αα αα −− −>−  

So  0<− −− jjii C
jjj

C
iii edgedg αα αα  

The parts of the network risk function involving just assets i and j is:  

 j ji i CC
i i j jg d e g d e αα −− +  (9) 

Now consider shifting an infinitesimal amount δ  from the allocation to asset i to 

the allocation to asset j 
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i i j j

CC
i i i j j j

CC
i i i j j j

R g d e g d e

g d e e g d e e

g d e e g d e e

g d e g d e
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∂ ∂
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∂
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∂

= −

≤ −

<

 

where we use the non-negativity of d in the second to last step.  Therefore, the initial 

allocation could not have been optimal.   

Finally, if i i ig dα− > Φ , then , 0i iC
i i i ig d e Cαα −− > Φ ∀ ≥ , so in such a case it will 

never be optimal to allocate any budget to asset i. 

C. ONE-SIDED MODEL COMPARISON 

This section presents the results of implementing the one-sided network risk 

model when applied to a generic network model of a water-and-power system. We use 

fictitious data and hide the names of the assets in the network for security reasons. The 

input values are not actual values but serve to illustrate the investment cost models.   

As an illustration, suppose we compare the two strategies, linear and exponential, 

of the one-sided network risk model to our fictional water-and-power system comprising  
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of fifty-nine components - twenty-eight nodes and thirty-one links. Assuming a defender 

budget of B, and values associated with each asset iEC , EFi, and id , summarized in 

Appendix, Table 3, we obtain the results shown in Figures 12-17. 

We employ the model-based risk analysis (MBRA) software provided by Lewis 

(2006) and modified by Al Mannai and use the input values of Table 3 to obtain risk 

reduction. Figure 11 shows partial results of the calculation. The graphical display is 

annotated with the number and name of each node and link, as well as the degree of each 

node. The bar chart shown in the lower-left corner is the degree-sequence distribution of 

nodes and gives an indication of the network’s structure although this is not used in this 

research. Each node and link has an associated elimination cost, iEC , elimination 

fraction, EFi, and damage value, id , but these values are not shown in Figure 11.  

The graphical annotations are 

0 : N-0  node number: node identifier (a unique name) 

#5:  5  link number: link identifier (a unique name) 

2g  degree of a node 
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Figure 11 Network-analysis software 

Figure 12 shows the comparison of risk-reduction rates of the two cost models, 

linear and exponential (nonlinear). The increase in investments of resources to harden the 

assets in the network reduces network risk. The difference in risk reduction between the 

linear and nonlinear cost models is due to the nature and behavior of the functions used in 

each model. In the linear cost strategy, the linear decline of risk versus budget shows the 

linear relationship of allocation cost, iC , to vulnerability, iv . In the nonlinear cost model, 

the exponential function decreases faster than linearly and never reaches 0% 

vulnerability. In other words, an infinite amount of budget needs to be allocated to 

achieve minimum vulnerability.  

In addition, for a total budget, B =$3700.00, the overall risk of the network is 

reduced to zero when using linear strategy, i.e., every asset is fully protected in the 
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network. But when using the nonlinear strategy, overall risk is reduced to only Rnorm = 

8.9%. It would take an infinite budget to reduce risk to zero under the nonlinear strategy 

due to the exponential function's behavior. Which cost strategy to implement is a 

question for policymakers to make their decision. 
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Figure 12 Risk of investment models value budget 

While it may seem odd that for the two models, a budget that drives risk to zero in 

one does not do so in the other. We view this as an inherent artifact of the abstraction the 

models provide. Even though the linear cost model shows risk approaching zero, we 

know this is not actually the case. Risk remains even after full investment. It is just that 

from the analyst’s point of view, it is beyond reach so it is ignored. The nonlinear model, 

however, models this better because it shows that risk cannot be driven to zero even with 

infinite budget. 

The results also show that applying either the linear or exponential (nonlinear) 

cost strategy leads to ranking of assets in a network according to the product of damage 

cost, id , and node degree, ig , (where ig =1 for links), divided by vulnerability-
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elimination cost, iEC . This is shown in Figures 13-16, where both models identify 

exactly the same nodes and links in rank order from the highest to the lowest but with 

different allocation costs, iC , and resulting vulnerabilities, vi(Ci). For instance, node 6 is 

the most critical asset and node 11 is the least critical asset in this example.  

For example, in Figure 13, we apply the linear cost model to the network example 

with a budget of B=$1000.00, we find that only nine nodes (6, 18, 8, 13, 14, 2, 19, 10, 

and 12) are the most critical assets and are receiving allocations where the remaining 

assets are not getting any funds as shown in Figure 13. These assets are fully funded 

except node 12, which is partially funded with an allocation C12 = $140.00 (or an 

allocation ratio of C12/ EC12 = 0.933 as shown in Figure 13). This is due to the budget 

being not enough to fully fund this node which leaves the remaining assets unfunded, and 

consequently, only partial vulnerability reduction on this node, v12(C12) = 0.0667 as 

shown in Figure 14. 

A budget allocation of $1000.00 to these assets reduces network risk by 27%, i.e., 

with a budget of $1000.00 network risk is reduced from 100% to 73% (a reduction of 

27%). Increasing the defensive budget from $1000.00 to $3700.00 steadily reduces 

network risk until it reaches zero (as in Figure 12).   

When applying the nonlinear cost strategy with B=$1000.00, funding is spread 

over many more nodes and links in the network, as shown in Figure 12. The network risk 

after allocation of $1000.00 is reduced to 48%. That is, with a budget of $1000.00, we 

can achieve a risk reduction of 52% to the network. The partial funding of all nodes and 

links in the network is due to the behavior of the exponential function and the greedy 

algorithm optimization technique which partially distributes total budget over all assets in 

the network. This is illustrated in Figure 13 where more assets are partially funded in the 

nonlinear model than in the linear model. 

 



 48

Allocation ratios of assets for linear and nonlinear models when B=$1000
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Figure 13 Allocation ratios of assets for linear and nonlinear models when B=$1000 

Figure 14 shows asset vulnerability when a total budget of B=$1000 is applied to 

protect the assets in the network example. The vulnerability is zero for the most critical 

assets when they are fully funded as shown in Figure 14 by the linear cost model, and is 

100% for the non-critical unfunded assets. In the case of the nonlinear cost model, the 

vulnerability is achieving the minimum value but never reaches zero for the most critical 

assets and is one for the unfunded assets. This graph is the inverse of Figure 13. 

 



 49

 Vulnerability of assets (for B=$1000)
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Figure 14 Vulnerability of assets when B=$1000  

Suppose the decision maker wants to know how much it will cost to buy down 

vulnerability and achieve network risk reduction of 50%.   

Let us take a close look at Figure 12 where the 50% risk reduction crosses the 

linear line at a budget B=$1840.00 and crosses the nonlinear curve at a budget of 

B=$920.00. It would cost the decision maker $1840.00 when using the linear cost model 

and $920.00 if uses the nonlinear cost model. The next question is how to distribute these 

budgets to assets and what is the buy down in vulnerabilities. 

Figure 15 shows the results when applying a budget of B=$1840.00 to the linear 

cost model, we find that there are 21 most critical assets that are fully protected and 

leaving 38 assets unfunded. Note that node 1, N1, is partially funded with what is left 

from the total budget, i.e., C1=$10.00 where EC1=$150.00. The vulnerability is illustrated 

in Figure 16 where the fully protected assets achieve zero vulnerability and the unfunded 

assets are 100% vulnerable. In addition, the total budget B=$1840.00 is distributed to 

only 21 assets of a network with 59 assets. 
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Linear & Nonlinear cost models allocations versus assets ranking (for 
norm R=0.50)
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Figure 15 Linear and nonlinear cost models allocations versus assets ranking (for norm 
R=0.50) 

When applying the nonlinear cost model, results reveal that all assets are partially 

protected. The most critical assets achieve minimum vulnerability but never reach zero. 

The less-critical assets remain at high vulnerability but they are still less than the ones in 

the linear model. Note that in the nonlinear model the total budget is distributed all over 

the assets in the network, i.e., about 57 assets are getting funds as shown in Figure 15.  
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Vulnerability of assets for linear and nonlinear cost models(for 
norm R=0.50)
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Figure 16 Vulnerability of assets for linear & nonlinear cost models (for norm R=0.50) 

Two cost models were introduced in this chapter and the results showed that 

whether a linear or exponential (nonlinear) cost model is used, a budget will be 

distributed optimally in rank order according to the product of damage cost, id , node 

degree, ig , (where ig =1 for links), divided by vulnerability-elimination cost, iEC . In 

addition, both models identify exactly the same assets in ranking order in the network. 

Furthermore, optimal allocation applies more funding to critical nodes and links than to 

noncritical. This strategy makes it possible to maximize availability of a critical 

infrastructure without having to protect everything. However, the linear cost model will 

distribute the budget to a few assets in full, leaving some assets unfunded. The nonlinear 

cost model will distribute the budget partially over all the assets in the entire network, 

leaving some risk in the overall network. Lastly, the nonlinear cost model achieves lower 

risk than the linear model as shown from the results. 
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V. TWO-PERSON GAME FOR NETWORK RISK 

This chapter extends the one-sided risk model in the previous chapter by 

formulating and solving a two-person zero-sum game for network risk. One player, the 

defender, seeks to minimize network risk by allocating resources to reduce the 

vulnerability of individual components in the network, and the other player, the attacker, 

seeks to maximize network risk by allocating attack resources to increase the 

vulnerability of individual components in the network. 

Thus, an arms race ensues because the defender allocates resources to assets 

based on perceived attacker allocation and then the attacker adds or reallocates assets to 

counter the defender's precautionary measures. The term "arms-race" thus captures this 

"action-reaction" phenomena because it describes an iterative process whereby actors' 

initiatives are directly linked to the previous or anticipated actions off their competitors. 

(Hammond, 1993) It is similar to a Stackelberg (1952) competition game where the 

leader moves first and then the follower moves sequentially. We provide an iterative 

algorithm for finding the min-max solution to this conundrum.  

Recall that our definition of network risk is the total expected replacement cost 

due to damage to the components in the network, and, applying the “barbell” model of 

Lewis (2006), it is defined in terms of (node) degree, gi, component damage, di, and 

component vulnerability, vi:  

1

n m

i i i
i

R g d v
+

=

= ∑  

In our two-person model we assume that the vulnerability of each component i is 

determined by a function vi(Ai, Ci) of an allocation, Ai, of limited attacker resources 

towards damaging component i, and an allocation, Ci, of limited defender resources 

towards protecting component i.  This yields the following formula for network risk as a 

function of Ai and Ci: 

 ( ) ( ), ,
+

≡ ∑
n m

i i i i i i i
i

R A C g d v A C  (10) 
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We seek an equilibrium allocation ( )* *,i iA C  for R: specifically, for fixed attack 

allocation *
iA , no other defense allocation Ci can reduce the value of ( )*,i iR A C , and for 

fixed *
iC  no other Ai can increase ( )*,i iR A C .  Therefore, the equilibrium solution 

minimizes R from the defender's point of view and maximizes R from the attacker's view.  

The attacker represents a terrorist group that wants to attack the defender’s infrastructure 

and cause severe damage to the country. The defender represents the homeland security 

officials who want to protect and harden critical infrastructures from attack in order to 

minimize the expected replacement costs in the aftermath of an attack. 

A. TWO-PERSON VULNERABILITY FUNCTIONS 

In this section, we will represent vulnerability as the product of two exponential 

functions of attacker and defender resource allocations. We will modify the vulnerability 

function introduced in the previous chapter to include a term for the attacker’s allocation 

(Al Mannai and Lewis, 2008). 

1. Nonlinear Cost Models (Exponential) 

We introduced the vulnerability as an exponential function for the defender in the 

previous chapter as 

 ( )( ) 0 1α−= < ≤i iCC
i i i iv C e v C  (11) 

where we use the superscript C to distinguish from the attacker, and  

 ( ) ( )ln
0 1α

−
= < ≤i

i i
i

EF
EF

EC
 (12) 

An asset's vulnerability is an exponentially decreasing function of the amount of 

funding used to harden an asset: greater spending yields lower vulnerability. Note that 

vulnerability is 100% when there is no allocation, Ci = 0. On the other hand, it takes an 

infinite allocation to entirely eliminate vulnerability. Parameter αi is chosen so that  
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vulnerability decreases to EFi when Ci = ECi. Therefore, αi is determined by elimination 

cost ECi, and the elimination fraction, EFi. Parameters ECi and EFi are used to calibrate 

these functions as in Chapter IV. 

The same argument is made for the attacker, except vulnerability increases with 

the amount of funding applied by the attacker: (Al Mannai and Lewis, 2008) 

 ( ) ( )1 0 1γ−= − ≤ <i iAA
i i i iv A e v A  (13) 

where 

 ( ) ( )ln 1
0 1γ

− −
= ≤ <i

i i
i

AF
AF

AC
 (14) 

We assume that the probability of a successful attack depends on two independent 

events occurring: the attacker succeeds in executing his attack, and the defender fails to 

avoid the attack.  Therefore, the joint probability of a successful attack is the product of 

the probabilities of the two required events: 

 ( ) ( ) ( ), =i i i i i i iv A C v A v C  (15) 

Note that, if there is no defense mounted (i.e., Ci = 0), and no attack (Ai = 0), the 

vulnerability of component i is zero. If there is an attack, and the defender has expended 

no resource Ci = 0, vulnerability is simply vi(Ai). 

Substituting equation (15) for vi (Ai, Ci) gives: 
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n m
A C
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R A C g d v A v C

g d e e
 (16) 

Network risk is identical to PRA risk when gi = 1, which corresponds with a non-

network definition. There each asset, node and link, is treated as an independent target. 

On the other hand, when gi ≥ 1, highly connected nodes become more critical than those 

less connected. In this case, network risk resembles (but is defined differently from) the 

definition used by Albert and Barabasi.  
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B. A SIMULTANEOUS GAME FOR NETWORK RISK 

Our two-person zero-sum game describes a situation in which the defender has a 

budget B from which to make defensive allocations Ci, and the attacker has budget B’ 

from which to make attack allocations Ai, and the defender and the attacker are aware of 

each other's budgets, but make their respective allocations in secret. The resulting two-

person, zero-sum game can be stated as: 

 ( ) ( )( )
1

min max , 1 γ α
+

− −

=

≡ −∑ i i i i

i i

n m
A C

i i i iC A i

R A C g d e e  (17) 

subject to 
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C B

A B

C A

 (18) 

1. Network Allocation Strategy  

The optimal offensive and defensive allocations can be determined to any desired 

accuracy using fictitious play (Washburn, 2001), which provides a convergent algorithm 

for solving two-person zero sum games. However, the form of this game is identical to 

that presented in Croucher (1975), and we can take advantage of that work to develop an 

algorithm to solve for the optimal allocations in a finite number of steps. 

Modifying the results from Croucher to conform to our notation, the solution 

requires the determination of Lagrange multipliers µ and λ from the following equations: 

 
i i i i

i i i i i
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i i i i i
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γ λ γ λ
γ

+ +

< ≤ + > +

⎛ ⎞
+⎜ ⎟
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and, 

 
i i

i i

n m
i i

ig d

i i

g d1 ln B
λ μ
γ α

λ μα
γ α

+

> +

⎛ ⎞
⎜ ⎟⎛ ⎞
⎜ ⎟ =⎜ ⎟
⎜ ⎟⎝ ⎠ +⎜ ⎟
⎝ ⎠

∑  (20) 

In the special case where i iα γ=  for each component i, Croucher points out that 

there is a very straightforward procedure for determining both µ and λ.  Here are the steps 

for running his algorithm, adapted to our notation: 

1. Sort the components so that the values i i ig dα  appear in ascending order. 

2. For each i<n+m, in turn, assume 1 1 1i i i i i ig d g dα λ μ α+ + +≤ + < , and solve 
equation (20) for the value λ μ+ .  If 1 1 1i i i i i ig d g dα λ μ α+ + +≤ + < , then 
continue to step (3), otherwise continue searching for the interval 
containing λ μ+ . 

3. Solve equation (19) for λ , then determine μ  

4. Use the values of  μ  and λ   to find the optimal attacker and defender 
allocations, Ai and Ci, respectively. 

From Croucher, if 00 >> ii CandA , then the optimal attacker and defender 

allocations expressed as: 

 i
i

i i

1A ln 1 μ γ
γ λ α

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (21) 
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 (22) 

And if 00 => ii CandA , then 

 i i i
i

i

g d1A ln γ
γ λ

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 (23) 
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2. Non-Network Allocation Strategy  

This strategy ignores network adjacencies and sets gi =1 in equation (18). In this 

case, the defender's objective is to minimize network risk while the attacker wants to 

maximize it. Repeating Croucher (1975) approach for this strategy by setting gi=1 yields 

new expressions for the defender and attacker allocations, Ci and Ai, respectively. 

If 00 >> ii CandA , then the optimal attacker and defender allocations expressed as: 

 i
i

i i

1A ln 1 μ γ
γ λ α

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (24) 
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⎜ ⎟⎝ ⎠ +⎜ ⎟
⎝ ⎠

 (25) 

And if 00 => ii CandA , then 

 i i
i

i

d1A ln γ
γ λ

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 (26) 

C. TWO-PERSON RISK MODEL RESULTS 

This section presents the results of implementing the two-person network risk 

model when applied to the same network example used in the previous chapter. We use 

fictitious data to illustrate the model. 

We will present the results for two allocation strategies network and non-network. 

Let us apply the two-person game risk model to the network example introduced in the 

previous chapter. Assume a defender's input values of B, EC, and EF, and an attacker's 

input values of B', AC, and AF. The input values are tabulated in Appendix, Table 3, and 

the results presented in Figures 17-24. In each case, we use a heuristic algorithm that is a 

myopic (i.e., memory less) application of the basic fictitious play algorithm; we pick an 

allocation for the attacker, then solve for the optimal resulting allocation for the defender, 
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and iterate until the change in each player's allocation is insignificant. Although we have 

no proof that this procedure converges, we suspect that it does; in each case we achieved 

equilibrium solutions for our models using this algorithm. 

The results of applying the joint-vulnerability strategies to our generic water-and-

power network show that the non-network achieves lower normalized risk than the 

network for small budgets, and achieves higher risk with large budgets. Recall that the 

non-network strategy ignores network structure and sets node degree to one, gi=1.0 as 

shown in Figure 17. At low budgets, the attacker is more successful using the network 

model. The attacker experiences diminishing returns because of fewer funds allocated to 

high-ranking targets. 
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Figure 17 Normalized risk of the joint-objective strategies 

Figure 18 reveals the network-to-network variation of defensive budget when the 

offensive budget is equal to B'=$2000, and when the attacker's budget is varied, the 

defender's budget is set to B=$2000. Increasing the defender's budget, the normalized risk 

exponentially decreases. Conversely, an increase in the attacker's budget results in an 

exponential increase in normalized risk. This satisfies the main objective of this model as 

the defender wants to minimize risk, and the attacker wants to maximize it. Note that 
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when both players have similar budgets of B=B'=$2000 the normalized risk is 

Rnorm=0.1833 to the attacker. If the defender increases his resources, that is more funds 

allocated to harden the assets, then normalized risk will decrease and vise versa.  

Similar explanation is applied to the results in Figure 19 for the non-network 

strategy, but when the budgets B=B'=$2000 the normalized risk is Rnorm=0.2034 to the 

attacker. This shows that the attacker will achieve high-normalized risk if he plays non-

network strategy that ignores node degree.  

Figure 20 shows the results of network risk when fixing the defender's budget to 

different values and varying the attacker's budget. At low defender's budget (for example, 

B=$2000), the attacker achieves high network risk because the assets are less protected. 

Moreover, as the defender invests more in hardening the assets the attacker is less 

successful in causing damages to the assets in the infrastructure. 
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Figure 18 Variation of players’ budgets in network-to-network model 
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Variation of players' budgets in non- network - to - non-network 
model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

Ratio of budgets B/B' (B'=2000), B'/B (B=2000)

no
rm

 R
is

k

Varying Player A budget, B' Varying Player B budget, B
 

Figure 19 Variation of players’ budgets in non-network-to-non network model 
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Figure 20 Variation of attacker's budget for various fixed defender's budgets 
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Figure 21 shows the defender-and-attacker allocation ratios to ranked network 

assets. The result shows that the defender-allocation ratios form an exponential decay 

curve, and the attacker-allocation ratios are almost constant value over all the assets.  

Moreover, it indicates that the defender allocates his resources towards protecting 

his most critical assets while the attacker focuses on attacking less-critical assets. The 

result show that the normalized risk is 0.2274, the total network risk is 2558.3, and the 

initial network risk is 11250 when B=B'=2000.  
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Figure 21 Network arms-race ratio of allocations to assets 

Let us look closely at how defender and attacker budgets are distributed optimally 

among assets in the network. Figure 22 shows the optimal distributions of defensive and 

offensive resources to assets in the network. The defender invests towards protecting the 

most critical assets, and the attacker focuses on investing more toward attacking the less-

critical assets. 
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Network-to-Network Arms race model allocations: B=B'=2000
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Figure 22 Network arms-race allocations to assets 

In the non-network strategy, where the degree sequence is ignored and set to one, 

gi=1. Figure 23 indicates that asset rank is ignored, as is obvious from the way allocation 

ratios are shown. The attacker's allocation ratios are almost equal to all assets, and the 

defender's are distributed differently among the assets, because the degree sequence is 

ignored in this strategy and assets are not ranked.     
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Non Network-to-Non Network  Arms race model allocation ratios: 
B=2000, B'=2000
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Figure 23 Non-network arms race ratio of allocations to assets 

Figure 24 shows the exact allocations to each asset by the defender and the 

attacker. Note defensive allocations are lower than offensive allocations. The result 

shows that normalized risk is 0.20344, the total network risk is 2288.75, and the initial 

network risk is 11250.  
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non network-to-non network Arms race model allocations: B=2000, 
B'=2000
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Figure 24 Non-network arms race allocations to assets 

Comparing the network arms race strategy with non-network indicates that 

minimum risk is achieved by the non-network strategy. This is understandable because of 

the degree-sequence ignorance of the non-network strategy. Moreover, the attacker is less 

successful using the network strategy at high budgets, and more successful at low 

budgets.  
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VI. COMPARATIVE RESULTS, CONCLUSIONS, AND FUTURE 
WORK 

This chapter comprises three sections -- the results of comparing two decision 

tools, CARVER and MBRA, used by DHS, concluding thoughts on this dissertation 

research, its contribution to the critical infrastructure protection literature, and its 

extension to the MBRA technique, and plans and ideas for future work in this area.  

A. COMPARISON OF TOOLS 

In this section, we compare two tools, CARVER developed by the National 

Infrastructure Institute and MBRA originally developed by Lewis (2006) and modified 

by Al Mannai in this research. We use the fictitious San Luis Rey (SLR) water supply 

network for the comparison as shown in Figure 25. The San Luis Rey water supply 

network comprises 35 assets, 17 nodes and 18 links. The input values associated with 

each asset are tabulated in Table 3 for MBRA and in Table 4 for CARVER. Each tool 

requires a different set of input values, but we made these values similar without loss of 

the assets' identity.  

CARVER is a tool designed to prioritize assets and rank them according to their 

scores obtained from the six categories. On the other hand, MBRA is a tool deigned to 

prioritize assets according to their criticality, quantify the allocation of resources to 

reduce vulnerabilities and risk for one-player and two-players. The common attribute that 

both techniques have is the ranking of assets by criticality. We will use this as the basis 

for our comparison.  

Suppose we are given a budget of B=$1000 and we want to protect the San Luis 

Rey water supply network from terrorist attacks. What are the most critical assets in the 

network and how can we distribute the limited resources to reduce vulnerability and risk?  

Figure 25 shows the structure connectivity of the San Luis Rey network in 

MBRA. The input values associated with each node and link are entered using the set 

node/link consequences and costs menus as shown in Chapter II, Figure 8. 



 68

 

Figure 25 San Luis Rey network using MBRA 

Figure 26 shows the display of CARVER with its six attributes: criticality, 

accessibility, recoverability, vulnerability, espyability, and redundancy. Each attribute 

has menu items for the operator to choose for each asset. The operator has to select the 

value or round it off to match the value from the drop down menu. For example, the 

economic loss for N03 (water treatment) is estimated to be $400M; in this case we have to 

round off the value to the nearest value displayed from the drop down menu. That is, we 

have to choose either $250M or $500M, so we select $500M since this asset is costly.   
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Figure 32. San Luis Rey network using MBRA 

 

Figure 33 shows the display of CARVER tool with its six attributes: criticality, 
accessibility, recoverability, vulnerability, espyability, and redundancy. Each attribute 
has menu items for the operator to choose for each asset. The operator has to select the 
value or round it off to match the value from the drop down menu. For example, the 
economic loss for N03 (water treatment) is estimated to be $400M; in this case we have to 
round off the value to the nearest value displayed from the drop down menu. That is, we 
have to choose either $250M or $500M, so we select $500M since this asset is costly.   

 

Figure 26 CARVER display 
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For this comparison we will apply the one-sided risk model in MBRA as 

described in this dissertation with a budget B=$1000 for both linear and nonlinear cost 

models. The results show that both the linear and nonlinear models achieve exactly the 

same ranking order of assets according to formula g*d/EC. This is consistent with the 

results reported previously. The network risk is reduced to 0.431 (43%) in the linear cost 

model, and to 0.224 (22.4%) for the nonlinear cost model. The resource allocation is 

distributed in full to assets leaving some assets unfunded in the linear model, and 

partially distribution over all assets in the network in the nonlinear model as shown in 

Figure 27. 
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Figure 27 One-sided risk model allocation distribution 

Figure 28 shows the assets ranking according to their criticality when applying 

MBRA. The results show exactly the same assets in ranking order for the linear and 

nonlinear cost models. The three most critical assets are N7, N11, and N3, that represent 

main treatment, power dam, and water treatment, respectively. However, notice the 

relative differences between the highest ranked assets in both graphs. For CARVER the 
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values are tightly clustered suggesting that they are sensitive to small changes. If an 

analyst rated a certain asset slightly differently, the overall ordering would likely change. 

This is not the case in MBRA where groups of assets cluster but their relative differences 

are significant.  
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Figure 28 MBRA assets ranking 

MBRA gives the operator the flexibility to change the values associated with each 

asset, run the tool for different budgets, and view the results on the display screen. In 

addition, the operator has the option to select any of the other strategies from the one-

sided or two-party risk models to determine the best network risk reduction.      

The results from applying CARVER show slightly different ranking order of 

assets from MBRA as shown in Figure 29. The three most critical assets are N2, N7, and 

N11 that represent SLR homes, main treatment, and power dam, respectively. In reality, 

losing homes or any end consumer does not affect the operation of the network as much 

as losing the main treatment or power dam would. CARVER has the capability to rank 

the first hundred top assets according to their scores obtained from the six categories  
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shown in Table 5. It is not capable of allocating resources to assets nor can it assess 

network risk. It is up to the decision maker to decide how much to invest in protecting 

these critical assets.   
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Figure 29 CARVER assets ranking 

B. CONCLUSIONS 

This research addressed several problems in the field of critical infrastructure 

protection and assessment. We formalized the definition of network risk in terms of 

degree sequence, vulnerability, and consequences, ∑
+

=

=
mn

i
iii dvgR

1

, that can be applied to 

any infrastructure. We consider this definition the basis for network risk assessment 

throughout this research. We have modeled the relationship between budget and network 

vulnerability. A one-sided risk model that represents a defensive point of view with two 

cost strategies - linear and nonlinear – was introduced. The results show that no matter 

the cost model used, the budget will be distributed optimally by rank according to the  

 



 73

product of damage cost, id , times degree, ig , (where ig =1 for links), divided by the 

defender's vulnerability-elimination cost, iEC . Closed-form solutions are achieved for 

both strategies using greedy algorithm to determine the optimal allocations.  

The results show that vulnerability decreases linearly or exponentially with an 

increase in the defender's budget. However, the linear cost strategy will distribute the 

budget to a few assets in full while leaving some assets unfunded. The nonlinear cost 

strategy will distribute the budget partially over all, or most of, the assets in a network, 

leaving some risk in the overall network.  

Finally, this research extends the one-sided model and introduces a two-person 

game risk model that combines two players' defensive and offensive points of view. A 

defender wants to minimize network risk, and an attacker wants to maximize risk.  

A joint-vulnerability function is introduced that combines the attacker and 

defender vulnerability. Two strategies are introduced network and non-network. The 

results confirm the defender and attacker's min-max objectives. In other words, as the 

defender's budget increases, network risk decreases exponentially to the minimum; and as 

the attacker's budget increases, network risk increases. The non-network arms-race 

strategy achieves minimum network risk for small budgets because it ignores degree 

sequence. The attacker is more successful when using the network strategy at low 

budgets because fewer funds allocated to high-ranking targets. 

C. FUTURE WORK 

Having laid the foundation for the MBRA tool, we note many opportunities to 

extend this research. An essential part of this research was the use of degree sequence as 

a heuristic for criticality. We assumed, based on the findings of the network science 

literature, that nodes with higher degree tend to be more important to the network than 

less connected nodes. However, degree sequence isn’t the only heuristic that could be 

used. For other types of networks - social networks, for example - in which product or 

material does not flow through the network, it may be more suitable to quantify 
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“influence” or some other more suitable attribute of a social network. How the MBRA 

technique extends to these types of networks has not been well explored to date. 

Another direction is to measure the effectiveness of combining the different 

strategies with each other to find which mixed strategy works best for the defender to 

minimize network risk. We focused mainly on homogeneous combinations here but it 

would be of interest to investigate heterogeneous combinations as well. 

While the nonlinear model is certainly a closer fit to the realities of “buying 

down” risk, it is still an abstraction. One area where the TRAM technique excels is in 

directly relating specific countermeasures to specific threats as they apply to specific 

assets. In this way, a decision maker could not only decide to fund a certain asset at a 

specific amount but he would know exactly what it paid for and how much risk reduction 

was gained. The weakness of this technique is that it is a brute force method that relies on 

much more data than MBRA or even CARVER require and consequently, results need 

refreshing more often. It could be that MBRA is a strong complement to these types of 

techniques but again, this should be explored further. 

We have thought about a more accurate model of the network than just the 

connectivity attributes. It would be useful to model the physical nature of certain sectors 

in an effort to be more accurate (in addition to degree sequence) in determining what 

impact the loss of an asset might have. Furthermore, this would allow us even greater 

insight into the nature of cascading networks. This would be an extremely important 

enhancement to the current state of the art, but as each sector functions very differently, 

this is no small undertaking. 

Other issues of concern include the usability of the tool and training materials to 

assist in learning how to model networks and perform analyses using MBRA. We also 

envision a national database of asset data that would lessen the fluctuation in data and 

results year to year. DHS requires that these analyses be done with some frequency yet 

many of the personnel change from one analysis to the next. Cataloging and allowing 

comparison from region to region would be very useful in minimizing the effects of 

“gaming” the resource allocation system. 
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APPENDIX 

Table 2 Input values for the one-sided & two-party risk models* 

 
B =  2000   k = 59     
B' = 2000         

          
   Defender Attacker  
Asset d g EF EC alpha AF AC gamma g*d/EC 
N11 400 1 0.1 150 0.01535 0.9 150 0.01535 2.67  
N9 400 1 0.1 150 0.01535 0.9 150 0.01535 2.67  

N27 600 1 0.1 200 0.01151 0.9 200 0.01151 3.00  
L0 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L1 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L10 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L11 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L12 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L13 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L14 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L15 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L16 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L17 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L18 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L19 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L2 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L20 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L21 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L22 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L23 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L24 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L25 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L26 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L27 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L28 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L29 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L3 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L30 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L4 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L5 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L6 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L7 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L8 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
L9 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  

N15 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  
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B =  2000   k = 59     
B' = 2000         

          
   Defender Attacker  
Asset d g EF EC alpha AF AC gamma g*d/EC 
N21 200 1 0.1 60 0.03838 0.9 60 0.03838 3.33  
N4 100 1 0.1 30 0.07675 0.9 30 0.07675 3.33  

N17 400 2 0.1 150 0.01535 0.9 150 0.01535 5.33  
N1 400 2 0.1 150 0.01535 0.9 150 0.01535 5.33  
N3 350 2 0.1 120 0.01919 0.9 120 0.01919 5.83  
N0 600 2 0.1 200 0.01151 0.9 200 0.01151 6.00  

N16 300 2 0.1 100 0.02303 0.9 100 0.02303 6.00  
N20 300 2 0.1 100 0.02303 0.9 100 0.02303 6.00  
N22 200 2 0.1 60 0.03838 0.9 60 0.03838 6.67  
N23 200 2 0.1 60 0.03838 0.9 60 0.03838 6.67  
N24 100 2 0.1 30 0.07675 0.9 30 0.07675 6.67  
N25 100 2 0.1 30 0.07675 0.9 30 0.07675 6.67  
N5 200 2 0.1 60 0.03838 0.9 60 0.03838 6.67  
N7 200 2 0.1 60 0.03838 0.9 60 0.03838 6.67  

N10 400 3 0.1 150 0.01535 0.9 150 0.01535 8.00  
N12 400 3 0.1 150 0.01535 0.9 150 0.01535 8.00  
N19 300 3 0.1 100 0.02303 0.9 100 0.02303 9.00  
N2 300 3 0.1 100 0.02303 0.9 100 0.02303 9.00  

N26 600 3 0.1 200 0.01151 0.9 200 0.01151 9.00  
N13 200 3 0.1 60 0.03838 0.9 60 0.03838 10.00  
N14 100 3 0.1 30 0.07675 0.9 30 0.07675 10.00  
N8 200 3 0.1 60 0.03838 0.9 60 0.03838 10.00  

N18 300 4 0.1 100 0.02303 0.9 100 0.02303 12.00  
N6 200 4 0.1 60 0.03838 0.9 60 0.03838 13.33  

 
 

• These are not actual values, but serve to illustrate the model 
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Table 3 Input values of San Luis Rey water supply network in MBRA 

Asset Name d g EF EC 
N0 Mt. Lake 300 1 0.1 150 
N1 Storage Temple #1 1 1 0.1 0.5 
N2 SLR Homes 100 2 0.1 50 
N3 SLR Water Treatment 400 3 0.1 200 
N4 Backup Treatment 400 3 0.1 200 
N5 Storage Temple #3 1 2 0.1 0.5 
N6 Storage #3 1 1 0.1 0.5 
N7 Main Treatment 400 5 0.1 200 
N8 Storage Temple #2 1 2 0.1 0.5 
N9 Reservoir #4 300 2 0.1 150 
N10 Foothill Tunnel 1 2 0.1 0.5 
N11 SLR Power Dam 500 4 0.1 200 
N12 Reservoir #1 300 2 0.1 150 
N13 Lake #1 300 1 0.1 150 
N14 Mt. Tunnel 1 3 0.1 0.5 
N15 Mt. Lake #2 300 1 0.1 150 
N16 Reservoir #6 300 1 0.1 150 
L0 1,2 0.5   0.1 0.25 
L1 2,3 0.5   0.1 0.25 
L2 3,4 0.5   0.1 0.25 
L3 3,7 0.5   0.1 0.25 
L4 4,5 0.5   0.1 0.25 
L5 4,7 0.5   0.1 0.25 
L6 5,8 0.5   0.1 0.25 
L7 6,7 0.5   0.1 0.25 
L8 7,8 0.5   0.1 0.25 
L9 7,11 0.5   0.1 0.25 

L10 9,10 0.5   0.1 0.25 
L11 14,9 0.5   0.1 0.25 
L12 10,11 0.5   0.1 0.25 
L13 11,12 0.5   0.1 0.25 
L14 16,11 0.5   0.1 0.25 
L15 13,12 0.5   0.1 0.25 
L16 15,14 0.5   0.1 0.25 
L17 0,14 0.5   0.1 0.25 
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Table 4 Input values San Luis Rey water supply network in CARVER 

 

Asset 
  

Connectivity
  

Type 
  

Sector
  

People 
Affected

Estimated 
Deaths 

Repair 
Time 

Economic 
Loss 

Existing  
Security 

Icon Status 
  

N00 1 Mt. Lake Water NA  NA  6 months 250M Fencing Locally significant
N01 1 storage temple #1 Water  NA NA  6 months under 10MOpen to publicLocally significant
N02 2 SLR homes Water  NA  NA 6 months 100M Open to publicLocally significant
N03 3 Water treatment Water  NA   NA  1 year 500M Fencing Locally significant
N04 3 backup treatment Water  NA   NA 1 year 500M Fencing Locally significant
N05 2 storage temple #3 Water  NA   NA 6 months under 10MFencing Locally significant
N06 1 storage #3 Water  NA  NA 6 months under 10MFencing Locally significant
N07 5 main treatment Water  NA  NA 1 year 500M Fencing Locally significant
N08 2 storage temple #2 Water  NA  NA 6 months under 10MFencing Locally significant
N09 2 reservoir #4 Water  NA  NA 6 months 250M Fencing Locally significant
N10 2 foothill tunnel Water  NA  NA 6 months under 10MFencing Locally significant
N11 4 power dam Water  NA  NA 1 year 500M Fencing Locally significant
N12 2 reservoir #1 Water  NA  NA 6 months 250M Fencing Locally significant
N13 1 lake #1 Water  NA  NA 6 months 250M Fencing Locally significant
N14 3 Mt. tunnel Water  NA  NA 6 months under 10MFencing Locally significant
N15 1 Mt. lake #2 Water  NA  NA 6 months 250M Fencing Locally significant
N16 1 reservoir #6 Water  NA  NA 6 months 250M Fencing Locally significant
L00 N01,N02 Link Water  NA  NA < 1 monthunder 10MOpen to publicLocally significant
L01 N02,N03 link Water  NA  NA < 1 monthunder 10MOpen to publicLocally significant
L02 N03,N04 link Water  NA  NA < 1 monthunder 10MOpen to publicLocally significant
L03 N03,N07 link Water  NA  NA < 1 monthunder 10MOpen to publicLocally significant
L04 N04,N05 link Water  NA  NA < 1 monthunder 10MOpen to publicLocally significant
L05 N04,N07 link Water  NA  NA < 1 monthunder 10MOpen to publicLocally significant
L06 N05,N08 link Water  NA  NA < 1 monthunder 10MOpen to publicLocally significant
L07 N06,N07 link Water  NA  NA < 1 monthunder 10MOpen to publicLocally significant
L08 N07,N08 link Water  NA  NA < 1 monthunder 10MOpen to publicLocally significant
L09 N07,N11 link Water  NA  NA < 1 monthunder 10MOpen to publicLocally significant
L10 N09,N10 link Water  NA  NA < 1 monthunder 10MOpen to publicLocally significant
L11 N14,N09 link Water  NA  NA < 1 monthunder 10MOpen to publicLocally significant
L12 N10,N11 link Water  NA  NA < 1 monthunder 10MOpen to publicLocally significant
L13 N11,N12 link Water  NA  NA < 1 monthunder 10MOpen to publicLocally significant
L14 N16,N11 link Water  NA  NA < 1 monthunder 10MOpen to publicLocally significant
L15 N13,N12 link Water  NA  NA < 1 monthunder 10MOpen to publicLocally significant
L16 N15,N14 link Water  NA  NA < 1 monthunder 10MOpen to publicLocally significant
L17 N00,N14 link Water  NA  NA < 1 monthunder 10MOpen to publicLocally significant
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Table 5 CARVER's top 100 ranked assets 
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