
�&�D�O�K�R�X�Q�����7�K�H���1�3�6���,�Q�V�W�L�W�X�W�L�R�Q�D�O���$�U�F�K�L�Y�H

�'�6�S�D�F�H���5�H�S�R�V�L�W�R�U�\

�1�3�6���6�F�K�R�O�D�U�V�K�L�S �7�K�H�V�H�V

��������������

�'�H�V�L�J�Q���R�I���P�X�O�W�L�S�O�H���Y�D�O�X�H�G���S�U�R�J�U�D�P�P�D�E�O�H���O�R�J�L�F���D�U�U�D�\�V

�.�R�����<�R�Q�J���+�D

�K�W�W�S�V�������K�G�O���K�D�Q�G�O�H���Q�H�W������������������������

�&�R�S�\�U�L�J�K�W���L�V���U�H�V�H�U�Y�H�G���E�\���W�K�H���F�R�S�\�U�L�J�K�W���R�Z�Q�H�U

�'�R�Z�Q�O�R�D�G�H�G���I�U�R�P���1�3�6���$�U�F�K�L�Y�H�����&�D�O�K�R�X�Q

5

OOL
I

4.LF

NAVALPOSTGRADUATESCHOOL
Monterey, California

X
K/7 lb 2 55

DESIGN OF MULTIPLE-VALUED
PROGRAMMABLELOGIC ARRAYS

by

Yong Ha Ko

December 1988

Thesis Advisor: Jon T. Butler

Approved for public release; distribution is unlimited

UNCLASSIFIED
SECURITY CLASSIFICATION Of THIS PAGE

REPORTDOCUMENTATIONPAGE
Form Approved
OMBNo 0704-0188

1a REPORTSECURITY CLASSIFICATION

UNCLASSIFIED
lb RESTRICTIVE MARK,NGS

2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION/ DOWNGRADINGSCHEDULE

3 DISTRIBUTION/ AVAILABILITY OF REPORT

Approved for public release;
distribution is unlimited

4 PERFORMINGORGANIZATION REPORTNUMBER(S) 5 MONITORINGORGANIZATION REPORTNUMBER(S)

6a NAMEOF PERFORMINGORGANIZATION

Naval Postgraduate School
6b OFFICE SYMBOL

(If applicable)

62

7a NAMEOF MONITORINGORGANIZATION

Naval Postgraduate School

6c. ADDRESS(City, State, and ZIP Code)

Monterey, California 93943-5000
7b ADDRESS(City, State, and ZIP Code)

Monterey, California 93943-5000

8a NAMEOF FUNDING SPONSORING
ORGANIZATION

Jb OFFICE SYMBOL
(If applicable)

9 PROCUREMENTINSTRUMENTIDENTIFICATION NUMBER

8c ADDRESS(City, State, and ZIP Code) 10 SOURCEOF FUNDING NUMBERS
PROGRAM
ELEMENTNO

PROJECT
NO

TASK
NO

WORKUNIT
ACCESSION NO

11 title (include secunty ciass,ficat,on) DESIGN QF MULTIPLE-VALUED PROGRAMMABLELOGIC ARRAYS

12 PERSONALAUTHOR(S)
Ko , Yong K

13a TYPE OF REPORT
Master's Thesis

13b TIME COVERED
FROM TO

14 DATE OF REPORT (Year Month Day)
1988 December

15 PAGE COUN1

70
16 supplementary NOTATioNThe views expressed in this thesis are those of the author
and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

17 COSATI CODES
FIELD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Multiple-Valued Logic Function, Programmable
Logic Array, Circuit Generation, Simulation

19 ABSTRACT(Continue on reverse if necessary and identify by block number)

The goal of this thesis is the development of a programmable logic
array(PLA) that accepts multiple-valued inputs and produces multiple-
valued outputs. The PLA is implemented in CMOS and multiple levels are
encoded as current. It is programmed by choosing transistor geometries
which control the current level at which the PLA reacts to inputs. An
example of a 4-valued PLA is shown. As part of this research, a C
program was written that produces a PLA layout.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT
SI UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

21 ABSTRACTSECURITY CLASSIFICATION
UNCLASSIFIED

22a NAMEOF RESPONSIBLE INDIVIDUAL
Jon T. Butler

22b TELEPHONE(Include Area Code)
408-646-3299

22c OFFICE SY

62Bu
DDForm 1473, JUN 86 Previous editions are obsolete

S/N 0102-LF-014-6603

SECURITY ClASS!F,CATi Q:>

UNCLASSIFIED
AGE

Approved for public release; distribution is unlimited

Design of Multiple- Valued Programmable Logic Arrays

by

Yong Ha Ko
Major, Republic of Korea Air Force

B.S., Air Force Academy, CheongJu, 1979

Submitted in partial fulfillment of the

requirements for the degree of

MASTEROF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVALPOSTGRADUATESCHOOL
December 1988

ABSTRACT

The goal of this thesis is the development of a programmable logic array

(PLA) that accepts multiple-valued inputs and produces multiple valued outputs. The

PLA is implemented in CMOSand multiple levels are encoded as current. It is

programmed by choosing transistor geometries which control the current level at

which the PLA reacts to inputs. An example of a 4-valued PLA is shown. As part

of this research, a C program was written that produces a PLA layout.

ill

TABLE OF CONTENTS

I. INTRODUCTION 1

II. THEORETICALBACKGROUND 3

A. CURRENTTHRESHOLDDETECTION 3

B. MULTIPLE- VALUEDLOGIC FUNCTIONS 7

C. ELEMENTSOF MULTIPLE- VALUEDLOGIC FUNCTIONS 8

m. DESIGN OF MULTIPLE- VALUEDPLA CELLS 10

A. INPUT REPLICATOR 10

B. STEP FUNCTIONGENERATOR 11

C. COLUMNOUTPUTGENERATOR 15

D. FUNCTIONOUTPUT 16

IV. SIMULATION OF CELLS 17

A. INPUT REPLICATOR 17

B. LOGIC LEVEL VS GEOMETRYOF MOSFET 19

C. STEP-UP ORSTEP-DOWNFUNCTIONGENERATOR 20

D. COLUMNOUTPUTGENERATOR 21

V. GENERATIONOF MULTIPLE- VALUEDPLA 23

A. CONCEPTUALMODELOF A MULTIPLE- VALUEDPLA 23

B. PROGRAMDEVELOPMENTFORPLA CELL GENERATION . . 24

C. SIMULATION OF THE MULTIPLE-VALUED PLA 26

VI. CONCLUSIONS 28

APPENDIX A: PSPICE INPUT DATA FILE FOR INPUT
REPLICATOR 29

APPENDIX B: PSPICE INPUT DATA FOR STEP-UP FUNCTION
GENERATOR 30

APPENDIX C: PSPICE INPUT DATA FOR STEP-DOWNFUNCTION
GENERATOR 31

APPENDIX D: PSPICE INPUT DATA FORCOLUMNOUTPUT
GENERATOR 32

iv

IIMUtfTEREY, CAL1

APPENDIX E: PROGRAMFOR 4- VALUEDMV-PLA CIRCUIT
GENERATION 35

APPENDIX F: CIRCUIT LAYOUTGENERATEDBY PROGRAM(mvpla)
FOR 1-INPUT 1-OUTPUT MVL FUNCTION 54

APPENDLXG: PSPICE INPUT DATA EXTRACTEDFROMCIRCUIT
LAYOUT 55

APPENDIX H: CIRCUIT LAYOUTFOR4-INPUT 2-OUTPUT MVL
FUNCTION 57

APPENDLXI: CIRCUIT LAYOUTFORRANDOMLYCHOSENMVL
FUNCTION 58

LIST OF REFERENCES 59

INITIAL DISTRIBUTION LIST 60

LIST OF FIGURES

2.1 CMOSinvertor with the current input 5

2.2 Ideal I-V characteristic of CMOSinvertor 7

2.3 Example function 8

3.1 Input replicator 11

3.2 Step function generator 12

3.3 Ideal DC transfer characteristic of step function 14

3.4 Column output generator 15

3.5 Wired-sum implementation 16

4.1 DC transfer characteristic of input replicator 18

4.2 DC transfer characteristic of step-up function generator 20

4.3 DC transfer characteristic of step-down function generator 21

4.4 DC transfer characteristic of column output generator 22

5.1 Top level design of PLA 23

5.2 A column cell description 24

5.3 Input data file format for mvpla 25

5.4 DC transfer characteristic of example circuit 27

vl

ACKNOWLEDGEMENTS

I wish to thank Professor Jon T. Butler and Chyan Yang for their support and

guidance in this endeavor.

Mostly, I would like to acknowledge my wife Jeong Phil, son Jun Seong and

Hye Seong without whose patience this project could not have been completed.

vil

vlil

I. INTRODUCTION

The increasing demand for speed and performance in modem information

processing systems clearly points to the need for super chips with significant

computation power. Low-cost, high-density, fast VLSI devices are essential to make

super-computing practical in terms of volume, speed and cost. Multiple-valued LSI

and VLSI have a potential advantage that they provide a means of increasing data

processing capability per unit area. Multiple-valued logic (MVL) circuits allow

interconnections to carry more information, thus reducing chip area. Multiple-valued

logic also stands as a solution to the pin-out problem, where a limit on the number

of pins in IC packages has limited information flow between packages.

For example, a 32x32-bit SD (signed-digit) multiplier chip with multiple-valued

bidirectional current-mode logic circuits has been developed by Japanese researchers

[Ref. 1]. Compared to the fastest binary multiplier, the multiple-valued multiplier is

superior in terms of power dissipation, effective multiplier size, number of

transistors and number of interconnections. The multiply time is almost the same

(Refer to comparison table, p. 54 in [Ref. 2]).

Currently, no multiple-valued PLA has been implemented in current mode

CMOStechnology while an MVL CCD-PLA [Ref. 3] has been implemented and

PLAs with decoders [Ref. 4] have been proposed. This study is the first approach to

a multiple-valued PLA that is implemented by current-mode CMOStechnology.

The main goal of this research is to design a multiple-valued PLA cell with

current-mode CMOStechnology. The multiple- valued logic function is parsed into

the primary elements which correspond to the basic cells. Using those cells, a PLA

circuit layout generation program (mvpla) has been written in C language that

produces layouts suitable for implementation in IC fabrication facilities. Sample

MVL functions are generated and simulated. Because of multilevel inputs and

outputs, it is more convenient to verify the circuit with analog signals than with

discrete signals. Simulation of the final design is done by the analog level simulator,

which is practical with a single PLA since there are not enough transistors for

computation time to be a limiting factor. However, transistor count limitations

preclude the simulation of moderately large PLA's.

This research has been done in conjunction with the design of a CAD tool for

multiple -valued programmable logic arrays which will produce the actual layout of

the PLA after a given function specified by the user [Ref. 5].

II. THEORETICALBACKGROUND

A. CURRENTTHRESHOLDDETECTION

The following definitions apply and will be used throughout:

VDS = drain-to-source voltage

VGS = gate-to-source voltage

VT = threshold voltage

Vsw = switching voltage

V! = input voltage

Ij = input current

VQ = output voltage

Io = output current

I sw = switching current

I DS = drain-to-source current

W = channel width of MOSFET

L = channel length of MOSFET

G = geometry ratio(W/L) of MOSFET

P = MOStransistor gain factor

Mj = i-th MOSdevice name in the circuit description

|i = effective surface mobility of electrons in the channel

e = permittivity of the gate insulator

t„ = thickness of the gate insulator

Re = channel resistance

x = variable of multiple-valued logic function

The equations describing the behavior of an ideal nMOSdevice in three regions

are:

- Cut-off region : when the gate-to-source voltage (V os) is less than the

threshold voltage (V T)» n° current flows through the transistor.

I D = ifV M -V T <0. (2.1)

- Saturation region : when the gate-to-source voltage is greater than the

threshold voltage and the difference (V os -V T) is less than the drain-to-source voltage

(V DS),

Id = -j^ 5 - VT)
2

if < Vos - VT < VDS. (2.2)

- Linear region : when the gate-to-source voltage is greater than the threshold

voltage and the difference is greater than the drain-to-source voltage.

V 2

Id =P { (V os - VT)V DS --£) if < VDS < Vos - VT . (2.3)

where I D is the drain-to-source current, Vos is the gate-to-source voltage, VT is the

device threshold, and (i is the MOStransistor gain factor. P is dependent on both

the process parameters and the device geometry and is given by

p = m^i (2.4)

The gain factor ($ thus consists of a process dependent factor (|i£/t ox), which

depends on all the process terms including doping density, gate oxide thickness, and

a geometry dependent term (W/L), which depends on the layout of the device.

An approximate expression for I D is derived by assuming that the current in the

channel saturates (i.e., is constant) and is independent of the applied drain voltage.

In saturation [i.e., above VDS = (V os - VT)], the MOSdevice behaves like a current

source, the current being almost independent of VDS.

In Fig. 2.1, the drain of the nMOStransistor MOis connected to the gate, which

results in saturation when Vos - VT £ or VDS > VT (because VDS = Vos).

Fig. 2.1 CMOSinvertor with the current input

We can rewrite (2.2) as,

I»w = CP, (2.5)

where I sw is the switching current, the constant C = (V sw - VT)
2
/2, and Vsw is the

switching voltage of the CMOSinvertor at which V changes from the high level to

the low level in the CMOSinvertor.

When both the pMOS(Ml) and the nMOS(M2) (Fig. 2.1) are in saturation, the

saturation currents for the two devices are given by

Ios P
= 0.5p

p
(V sw - VDS - V,,)

2

Ida. = 0.5(3 n (V sw - V,) 2

with

*DSp
—

"^DSn-

This yields

Vsw = VDs + V, + Vm(gn/P P)
1/2

(2.6)
i + (ivpv

,/2

By setting

P. = PP ,

we obtain

Vsw = (V DS + V, + VJ/2. (2.7)

The switching voltage Vsw depends on the threshold voltages of the PMOSand

NMOStransistors Ml and M2, respectively. Since the transistor size does not affect

the threshold voltage, the Vsw 's are constant on the same IC chip. On the other

hand, I D which is a function of the gain factor p\ depends circuit layout, specifically

geometries of transistors. Therefore, it is possible to produce the various I sw

according to the geometries of nMOS rransistor(MO) in Fig. 2.1 while Vsw is

constant. I sw , written explicitly in terms of transistor geometry, is

Isw = C(V SW-V,)
2 (W/L), (2.8)

where C =0.5 (^).

The corresponding I-V transfer characteristic of the circuit in Fig. 2.1 is shown

in Fig. 2.2.

Fig. 2.2 Ideal I-V transfer characteristic of CMOSinverter

B. MULTIPLE-VALUED LOGIC FUNCTION

A general i variable r-valued MVL function can be written as a sum-of-products

as follows,

n-l i-1

f(x ,x„...,x M) = ZRjQx k (l
Jk

,u jk) (2.9)

where

x(l ,u) = {

r-1 if 1 £ x < u,

otherwise.

Rj (the coefficient of the product term) has the property 1 <, R, <, r-1, the lower

bound 1 and the upper bound u are integers between and r-1, n is the number of

terms, Z denotes sum the operation (TSUM or truncated summation), and n denotes

product operation (MIN).

As an example, consider the one-variable four-valued logic function,

f(x) = lx(0,l) + 2x(l,l) + 2x(3,3)

shown in Fig. 2.3.

Fig. 2.3 Example function

C. BASIC ELEMENTSOF MULTIPLE-VALUED LOGIC FUNCTION

From Eqs. (2.9), the realization of a multiple-valued function requires three

operations

1 truncated sum L,

2. MIN II, and

3. literal x(l,u).

Truncated sum is the most easily implemented operation; it is simply the joining

of wires in a wired sum. The MIN operation is more complex in current mode

CMOS. However, we can take advantage of the fact that the arguments of the MIN

operation are literals and a constant. The literal operation is also more complex.

However, it can be realized by recognizing there are two parts to it, a step-up

function and a step-down function. We describe the last two operations in the

following discussion.

Let

if 1 < x < u,

l
'
u) = lr-1x(l,

It follows that product term

otherwise.

Ix k(l k , Uk). (2.10)

k=0

of (2.9) is r-1 if and only if

i-l

Exk (l k ,u k) (2.11)
k=0

is 0. Since Z is so easily realized in current mode CMOS, we choose to realize

(2.10) over (2.11). This is done with a wired sum which drives a device that detects

the absence or presence of current.

The step functions are obtained by the threshold operation of the current mode

CMOSinvertor. The elementary operations of a multiple-valued logic function in the

current mode CMOSimplementation are

- Step-up function (Fig. 2.4a) : x(c,r-l),

- Step-down function (Fig. 2.4b) : x(0,c),

- Truncated sum : TSUM,

- Logic level : R,

where < c < r-1 and R is a coefficient of a product term.

III. DESIGN OF MULTIPLE-VALUED PLA CELLS

In the previous chapter, the elements of the MVL function have been defined.

Each element is a basic cell in the circuit layout such as the step-up function

generator, the step-down function generator, the column output generator, and the

wired adder for the function output. In addition to these cells, an input replicator is

needed to replicate the input current to the cells in a row.

A. INPUT REPLICATOR

For a CMOScircuit in voltage-mode operating, fan-out is a straightforward

wiring task, but fan-in requires some particular circuitry for each input. In current

mode, the reverse is true: fan-in is very simple by wire connection, but fan-out is

much more complex, requiring circuitry of the type shown in Fig. 3.1.

There are two different directions of current flow in the current mirror, the

positive replicator supplies the forward current (positive direction) to the logic gates

while the negative replicator supplies the backward current (negative direction) to

the logic gates [Ref. 6]. For the unique direction in current flow from inputs to

outputs, neither the positive nor negative replicator are appropriate. It is possible for

the input replicator to give the unique direction of current to the inputs of each

cells with CMOScurrent mirror shown as Fig. 3.1. This circuit shows that the

negative and positive replicators are connected serially.

10

Fig. 3.1 Input replicator

B. THRESHOLDOPERATION

Recall from Chap. II that the literal function generation is composed of two

subcircuits, a step-up and a step-down function generator. Both of these subcircuits

perform a threshold operation in which the relative value of the input with respect

to the threshold is signalled in voltage. However, a current signal is needed.

Specifically, zero current is produced when the input is within prescribed limits.

To produce the current output from the voltage signal, an additional MOSdevice is

needed. In the case of the step-up function generation a pMOS transistor is needed;

this is a voltage controlled current source M3 in Fig. 3.2.

11

Vdd

Iin
I*

y

< I i* ™
—

'

' 1 L
>

<

*

i «

GND

—

Y io

a) Step-down function generator

Vdd

Iin
w

\ f

4 1 +>

—
'

•
'

,

»

: ,

—:—

u

—

<

< *— —t

GND
>

—

\ f Io

a) Step-up function generator

Fig. 3.2 Step function generator

12

If the input current I, exceeds I sw of the invertor, V switches from low to high

with a reasonably sharp transition. When V is much higher than the threshold

voltage of pMOS transistor M3, the device is in saturation and acts as a constant

current source. The current I„ produced depends on the geometry of the pMOS

transistor M3. However, the actual value of the current is not important because the

column output generator responds only to the presence or absence of current. The

output current level of each column (product term) is determined by the number of

variable inputs for the upper limit and the I sw of the column output generator for

the lower limit. The details for this will be discussed in the description of the

column output generator and the simulation of the cells. The circuit of the step-

down function generator is similar to that of the step-up generator with a nMOS

transistor (of Fig. 3.2a) replacing the pMOStransistor M3 (of Fig. 3.2b).

The ideal DC transfer characteristic of a step function generator is shown in Fig.

3.3.

Recall that the literal function is given as

x(l,u), (3.1)

where < 1 < u < r-1. This function realized as two subfunctions, a step-up and

step-down function. Rewriting Eq. (3.1) yields

xTO = x(0,l) + x(u,r-l), (3.2)

in which the step-up and step-down function in the literal function are expressed

separately. Here x(0,l) is a step-down function and x(u,r-l) is a step-up function.

13

lout

Iin

Isw

a) Step-down function

lout

A

Iin

Isw

b) Step-up function

Fi^. 3.3 Ideal DC transfer characteristic of step function generator

14

C. COLUMNOUTPUTGENERATOR
The input of the column output generator is the wired-sum of the outputs of the

cells. This is simply direct wiring of each output to the input of column output

generator. The column output generator produces the coefficient associated with a

product term. It is obtained by employing the step-down function generator. As

mentioned previously, the input of this cell is either zero or high. When the input is

zero, this cell produces the current equal to the product term coefficient, otherwise,

the output is zero. The following equation shows the function of this cell. (Refer to

Eq. 2.10.)

P(p) = R p(0,0), (3.3)

where P is a product term, p is the wired sum of each cell outputs and R is the

coefficient of a product term.

Fig. 3.4 Column output generator

15

D. FUNCTIONOUTPUT

It is interesting to note that the sum operation represented in Eq.(2.11), is not

the truncated sum operation used previous papers [Ref. 3, 7, 8]. It is arithmetic

addition by Kirchhoff s current law (Fig. 3.5). From a logic design point of view, it

is the threshold operation of the function output current that makes it appear as if

indeed truncated sum is the logic operation used.

11

I

12

I

t

II + 12

Fig. 3.5 Wired-sum implementation.

16

IV. SIMULATION OF CELLS

Unlike the switching level simulation in case of binary logic circuits, analog

simulation is required for multiple valued logic circuits. The best known program

for this is SPICE (simulation program with integrated circuit emphasis). In our

work, PSPICE (personal computer version of SPICE) [Ref. 9] was used to simulate

the PLA cells, with MODELparameters supplied by Twente University, Holland.

The most important factor is the geometry of devices in these circuits while others

are process dependent factors.

Input data files are prepared for the PSPICE program with standard SPICE input

format. The outputs of these simulations are given by the DC transfer characteristic.

However, a conversion problem on running SPICE occurred when a DC current

input was applied to a specific circuitry. The transient analysis was better than DC

analysis in this case. Therefore, for the convenience of understanding the results, all

circuits are evaluated by transient analysis rather than DC analysis. In our

simulations, node is always ground (GND), node 1 is VDD, and node 2 is an

input. Dummyvoltage sources are connected at the check points with zero voltage

to measure current values.

A. INPUT REPLICATOR

The purpose of this subcircuit is to supply current to each cell in the PLA equal

to the current at the corresponding input. The input current was applied from jxA

at nsec to 300 |J.A at 30 nsec. In the first simulation, all transistors had the same

size such as 2 lambda length and 3 lambda width for the minimum size in lambda

base design rules (Appendix A). The output of the CMOS replicator did not

replicate the input current while increasing the input current as shown Fig. 4.1a. The

appropriate replication of input current was obtained by adjusting the size of pMOS

transistors as shown Fig. 4.1b.

17

xlO"*
2 1

l I l r i i
i i

—7

1.8
J |

/ -

1.6 /
1.4

' //___-
V
u
i> 1.2
a.

E y^.^X
s

*—

'

1

a
s/

0.8
3 ,'yr
U S/

0.6

y/0.4 //
0.2 //

S i i

0.2 0.4 0.6 0.6 1 1.2 1.4 1.6 l.B 2

Time (sec) xlO -5

xlO~»
«
c

1.8

1 1 1 t 1 1 1 1 1 >

1.6

14 ;jf..

0) r
*'~/

u
V 1.2a
E ''' /a

*-**
1

''' /
0.8

O ,' /
0.6

Jf /
0.4 S

/

0.2 /^
o

0.2 0.4 0.6 O.B 1 1.2 1.4 1.6 1.8 2

Time (sec) xlO" 6

Fig. 4.1 DC transfer characteristic of input replicator

18

B. LOGIC LEVEL VS GEOMETRYOF MOSFET

For the threshold operation, the switching points between logic levels are

specified by the size of reference transistors (MO's) so that the switching point is on

the middle point between logic levels (Fig. 4.4). Thus, the relation between the

geometry ratios are obtained as follows.

Define

I sw = tl for t = 0.5, 1.5, 2.5, (4.1)

where I is unit current for logic level one.

Let G, the unit geometry ratio for unit current I, and Gsw for the threshold, then

Gsw = tG, for t = 0.5, 1.5, 2.5. (4.2)

For the column output generator, the logic output level I c is determined by the

geometry ratio(W/L) of the transistor, because the saturation current I D is linearly

proportional to (3, such that

I = kl,

and,

G = kG, for k = 0, 1, 2, 3. (4.3)

where Gc is the geometry ratio of output current source.

On the basis of Eq 4.2 and 4.3, Table 4.1 can be obtained for the 4-valued

case.

TABLE 4.1 Logic level vs geometry of device,

I = unit current. Unit of VV,L = Lambda(=1.5jim)

LEVEL OUTPUT(W/L) THRESHOLD(VvVL)

-

0.51 (3/6)

1 I (3/3)

1.51 (3/2)

2 21 (4/2)

2.51 (5/2)

3 31 (6/2)

19

C. STEP-UP ORSTEP-DOWNFUNCTIONGENERATOR
All CMOSinverters have the same size of transistors. The most important point

of this circuit is the switching of the output current in accordance with the different

size of transistor (MO) at the input stage (Fig. 3.2). To compare the different

switching points at a time during simulation, three similar circuits with different size

of MOwere described in a input data file (Appendix B, C).

xlO" 4

2
i

!

! ! ! ! ! !

1.8
: j ,

I
;

.J—

0>
u
0)

a,

i
re

1.6

1.4 .u \ll. / -k''X''X !

....-• I

1.2
/ ii /! i

-

C
V

9

1
1 5/5=0.5 /

i

i !

ff/L-ljS j
1V/L=2 5

I

3

O

0.8

0.6 /

;•-

i

i

i

1 1

0.4 /•
i ;

;] ! i

1 1 /

i i /

i

0.2
/

• i : /

i '

: i 1

: 1 1
\ i \

\

i i i i i i i i i

D 0.2 0.4 0.6 0.0 1 1.2 1.4 1.6 1.8 2

Input Current (ampere) xl0~<

Fig. 4.2 DC transfer characteristic of step-up function generator

The only difference between the step-up and step-down function generator is the

type of output current source (M3) (Fig. 3.2) on the invertor output node. The p-

type transistor produces the step-up function (Fig. 4.2) and the n-type produces step-

down function (Fig. 4.3) at the same switching point.

20

xlO" 4

2.5

a-a
6

S 1.5

3

O

0.5

! ! !
1 1 i

'

i

1 ^i
i

1 i'

1 h
1 1 i

1

j j

'-
v

1 {

l i i

; t

i

1 ; : j i

1
i

! :

i

]

\ 1
1

1 JW/L=0.5

1

1

\ W/lUi.5

i

\

W/L=2.5
-

1 i i

1

\

1

\ i
•-

\

\ ;

\

\ ;

\ :

N :

\ :

S i ii i i

0.2 0.4 0.6 0.B 1 1.2 1.4 1.6 1.8 2

Input Current (ampere) x!0~*

Fig. 4.3 DC transfer characteristic of step-down function generator

D. COLUMNOUTPUTGENERATOR
The simulation result of column output generator is shown in Fig. 4.4. The

SPICE data file is attached at Appendix D. The output level is based on Table 4.1.

21

xlO-*

2 i i
! 1 l l 1 1 !

1.8

1.6

\

V
u
Va
6
a

1.4

1.2

W/L=3

c
z>
u
u
3u
—

<

O

1

0.8

0.6

W/L=2
\

\

\

t

\

- -wyL=i 1

0.4 -

|
' "

0.2

\ \

\r
V

i 1 1 1 1

U ' '

0.2 0.4 0.6 0.6 1 1.2 1.4 1.6 1

Input Current (ampere)

.8 2

xlO" 4

Fig. 4.4 DC transfer characteristic of column output generator

22

V. GENERATIONOF MULTIPLE-VALUED PLA

So far, the elementary cells for the multiple-valued PLA have been designed and

simulated individually. The circuit layout of PLA can be built by putting the given

cells together. The CFL (Coordinate Free Lap) [Ref. 10] library functions were used

to write a program which generates the PLA circuit layout. The output of this

program is formed by the MAGIC data file format. The generation program was

written in C language.

A. CONCEPTUALFORMOF MULTIPLE-VALUED PLA

The multiple-valued PLA has two main parts, the column cell corresponding to

a product term and the wired sum of the column output corresponding to a function

output. The block diagram for these parts are shown Fig. 5.1.

(column 1 column 2 column 3 column k

AU

XI

X2

Vm-1

PI P2 P3 Pk

An 1

wired sum

+

function output

Fig. 5.1 Top level design of PLA

23

Each column in Fig. 5.1 in turn consists of step function generators, wired-sum

together as shown Fig. 5.2. The number of literal function generator cells equals to

the number of variables in a product term. The difficulty in this implementation is

the various size of a cell, which affects on the regularity in the layout. The

optimization of the silicon area should be treated by in further studies.

XO(LO.UO)'Au ^^

XKL1.UD'Al ^

Xn-1(L,U)'An I ^
1 '

R(O.O)

Fig. 5.2 A column cell description.

B. PROGRAMDEVELOPMENTFORCIRCUIT LAYOUTGENERATION
The circuit layout is generated by a C program named by mvpla (multiple-

valued PLA) (Appendix E). The input data file contains the function parameters

such as number of inputs, number of outputs and literal function descriptions

[Appendix F]. The input data file format is described in Fig. 5.3. The output file

contains circuit layout descriptions in MAGIC format (Appendix H) [Ref. 10].

24

4 2 number of inputs, number of outputs

1 coefficient of 1st product term of 1st function (output)

2 2 lower value, upper value of literal

1 2

2 3

3

3 coefficient of 2nd product term

3 lower value, upper value of literal

1 1

2 2

2 3

99 end of a function value (99)

2 coefficient of 1st product term of 2nd function (output)

1 3 lower value, upper value of literal

2 2

3

Fig. 5.3 Input data file format for mvpla

In Fig. 5.3, the numbers in first 2 column are example function description as 4-

valued 4-input 2-output MV-PLA. The first row must include number of variables

(inputs) and number of functions (outputs), and each product term has a coefficient

and literals. Each function should be terminated by end of function value (99). All

values except for the first row and end of function value should be integers in range

through 3 for 4-valued function. The number of rows for literal values should be

equal to number of inputs, and the number of end of function values (99) should be

equal to number of functions (outputs). If the input data file includes invalid values,

mvpla will give you error message for the first invalid value and terminate

generation immediately.

mvpla uses SCMOS(Scalable CMOS) technology and abides by the MOSSIS

design rules so that the circuit layout passes the design rule checker (drc command

in MAGIC program). The program does not call library cells or circuit description

files. The primary cells reside inside the program, and the leaf cells are created

during execution of program.

25

The primary SYMBOLcells are as follows:

inreplicator : leaf cell for the input replicator,

gen_mvplacell() : leaf cell for the literal function generator,

columnleafcell : leaf cell for a product term or a column,

columnoutputO : leaf cell for the column output generator,

onefunction : leaf cell for a function or a output,

xlabel : label of input,

flabel : label of output,

mvpla : complete circuit layout to be saved in MAGIC format.

Each leaf cell is not built by one step. As shown in program mvpla.c, those

cells are created by adding parts as required.

C. SIMULATION OF THE MULTIPLE-VALUED PLA

The circuit layout for multiple-valued PLA is described in MAGIC format. To

simulate the circuit layout with SPICE program, first of all, we have to run the

MAGIC program, then extract the circuit description file as the simulation input

data file. We can obtain the input data file (Appendix G) for SPICE from the

extracted circuit description file. SPICE is not a switching level simulation program;

currently the switching level multiple- valued simulation program is not available.

There are limitations for the analog simulation in terms of the number of transistors

and the convergency problem during bias point calculation. However, the verification

can be accomplished within those limitations. It is not necessary for PLA cells to be

verified by all kinds of MVL functions.

The procedure for the simulation after layout generation is shown below.

1. run the MAGIC program with the output of mvpla (magic)

2. extract the circuit description file from MAGIC program (magic:ext)

3. process the extracted file to obtain simulation file (ext2sim)

4. create a SPICE data file from simulation file (sim2spice)

5. modify a SPICE data file appropriately

6. run SPICE

26

The programs for these steps are currently available, which are magic, ext2sim,

sim2spice and spice. [Ref. 10]

Three example 4-valued PLA circuit layouts were generated by mvpla,

1. 1 -input 1 -output function (Appendix F),

2. 4-input 2-output function (Appendix H),

3. 8-input 2-output function (Appendix I).

Example 1 was simulated by SPICE program. Example 3 is for the randomly

chosen function to see the regularity of layout in general case. The circuit layout

does not include the pad frame for the complete form of LSI chip. Addition pad

frame to this circuit layout should be done before sending the circuit description file

to the fabrication lab. The results of SPICE simulation is shown in Fig. 5.4.

V
a.

B
a

C
t>
u
u
3
U
—

'

3
o.

3
O

xlO-*
2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

- I i A i I -i * * - ••- -
; : i : :

j j

: i : : : ; i : i

! [
•

| |
!

| I
|

|

"

|

j"
j

| j
| | | J

"

i i 1 1 i 1 (i i i i

0.2 0.4 0.6 . 0.8 1 1.2 1.4 1.6 l.B 2

Time (sec) xlO -5

Fig. 5.4 DC transfer characteristic of example 1. circuit.

27

VI. CONCLUSIONS

The following represent the primary contributions of this thesis.

- The multiple-valued PLA cells are designed and verified by the analog level

simulation.

- The mvpla program is developed to generate the PLA circuit layout for 4-

valued MVL function.

- The MVL functions are successfully generated by mvpla and some functions

which do not violate the limitation of simulation program are simulated by the

analog level simulation.

The following recommendations and areas of further investigation are suggested.

- Multiple-valued PLA design with radix higher than 4,

- Development of multiple switching level circuit simulation program for

multiple -valued logic circuits,

- Noise margin analysis of multiple-valued logic circuits for each multiple

switching level,

- Comparison with binary PLAs in terms of functionality, size and speed,

- Multiple-valued PLA cell design based on voltage mode operations rather than

current mode operations show promise of significant reduction in size of layout.

28

APPENDIX A
PSPICE INPUT DATA FILE FOR INPUT REPLICATOR

MV-PLA CELL:Input Replicator
* Lamda based design rule: 1.5 Um/Lamda, G = (W/L)
.WIDTH OUT= 80
.OPTIONS NODELIMPTS=3000 NUMDGT=8RELTOL=.01
.TRAN lus 30us

Vdd 1 5V
Iinl 22 PWL(0us OuA 30us 300uA)
*

Vinl 22 2
* for equal size of MOSFET
MO 2 2 CMOSNL=3Um W=4.5Um
Ml 3 3 11 CMOSPL=3Um W=4.5Um
M2 3 2 CMOSNL=3Um W=4.5Um
M3 4 3 11 CMOSPL=3Um W=4.5Um
MLOAD5 5 CMOSNL=3Um W=10.5Um
Vol 4 5

* adjust size of MOSFET
Iin2 220 PWL(0us OuA 30us 300uA)

CMOSNL=3Um W=4.5Um
CMOSPL=3Um W=9Um
CMOSNL=3Um W=4.5Um
CMOSPL=3Um W=9Um

CMOSNL=3Um W=10.5Um

* call library for model card and subckt

.LIB MVPCELL.LIB

.PROBE

.PRINT TRAN I(Vduml) I(Vdum2)

.END

Vin2 220 20
MOO 20 20
M10 30 30 1 1

M20 30 20
M30 40 30 1 1

MLOAD050 50
Vo2 40 50

29

APPENDIX B
PSPICE INPUT DATA FILE(STEP-UP FUNCTIONGENERATOR)

MV-PLA Cell:STEP-UP FUNCTION
* Lamda based design rule: 1.5 Um/Lamda, G = (W/L)
.WIDTH OUT= 80
.OPTIONS NODELIMPTS=3000 NUMDGT=8RELTOL=.01
.TRAN lus 20us
Iin 42 PWL(0us OuA 20us 200uA)
*

* dummy source to measure current

Vi 42 20
*

Xin 20 9 MVPIN
*

XI 9 111 MVP2
Ml 1111 CMOSNL=9Um W=4.5Um
ML1 100 100 CMOSNL=3Um W=4.5Um
VI 1 100
*

X2 9 21 2 MVP2
M2 21 21 CMOSNL=3Um W=4.5Um
ML2 200 200 CMOSNL=3Um W=4.5Um
V2 2 200
*

X3 9 31 3 MVP2
M3 31 31 CMOSNL=3Um W=7.5Um
ML3 300 300 CMOSNL=3Um W=4.5Um
V3 3 300

* call library for model card and subckt

.LIB MVPCELL.LIB

.PROBE

.PRINT TRAN I(Vi) I(V1) I(V2) I(V3)

.END

30

APPENDIX C
PSPICE INPUT DATA FILE(STEP-DOWN FUNCTIONGENERATOR)

MV-PLA Cell:STEP-DONW FUNCTION
* Lamda based design rule: 1.5 Um/Lamda, G = (W/L)
.WIDTH OUT= 80
.OPTIONS NODELIMPTS=3000 NUMDGT=8RELTOL=.01
.TRAN lus 20us
Iin 42 PWL(0us OuA 20us 200uA)
*

* dummy source to measure current

Vps 10 5

Vi 42 20
*

Xin 20 9 MVPIN
*

XI 9 11 1 MVP2
Ml 1111 CMOSNL=9Um W=4.5Um
ML1 10 1 100 10 CMOSPL=3Um W=4.5Um
VI 100
*

X2 9 21 2 MVP2
M2 21 21 CMOSNL=3Um W=4.5Um
ML2 10 2 200 10 CMOSPL=3Um W=4.5Um
V2 200

X3 9 31 3 MVP2
M3 3131 CMOSNL=3Um W=7.5Um
ML3 10 3 300 10 CMOSPL=3Um W=4.5Um
V3 300
*

* call library for model card and subckt

.LIB MVPCELL.LIB
PROBE
.PRINT TRAN I(Vi) I(V1) I(V2) I(V3)

.END

31

APPENDIX D
PSPICE INPUT DATA FILE(COLUMN OUTPUTGENERATOR)

MV-PLA Cell:COLUMN OUTGENERATOR
* Lamda based design rule: 1.5 Um/Lamda, G = (W/L)
.WIDTH OUT= 80
.OPTIONS NODELIMPTS=3000 NUMDGT=8RELTOL=.01
.TRAN lus 20us
Iin 42 PWL(0us OuA 20us 200uA)
*

* dummy source to measure current

Vps 10 5

Vi 42 20

Xin 20 9 MVPIN

XI 9 11 1 MVP2
Ml 11 11 CMOSNL==9Um W=4.5Um

ML10 100 1 10 10 CMOSPL=10.5Um W=4.5Um
ML11 100 100 CMOSNL=3Um W=4.5Um
VI 100
*

ML2 200 1 10 10 CMOSPL=6Um W=4.5Um
ML22 200 200 CMOSNL=3Um W=4.5Um
V2 200

ML3 300 1 10 10 CMOSPL=4.5Um W=4.5Um
ML33 300 300 CMOSNL=3Um W=4.5Um
V3 300
*

* call library for model card and subckt

.LIB MVPCELL.LIB

.PROBE

.PRINT TRAN I(Vi) I(V1) I(V2) I(V3)

END

32

* Subcircuit definitions

* for CMOS-MV-PLACells
* August 25 1988

.SUBCKT MVPIN 2 3

* In Out
Vdd 1 DC 5

M01 2 2 CMOSNL=3Um W=9Um
M02 3 2 CMOSNL=3Um W=9Um
M03 3 3 11 CMOSPL=3Um W=10.5Um
.ENDS
*

.SUBCKT MVP1 3 11 12
* Input_gate NMOS_D&GOut
* Single invertor

Vdd 1 DC 5

Mil 11 3 11 CMOSPL=3Um W=10.5Um
M13 12 11 1 1 CMOSPL=3Um W=4.5Um
M14 12 11 CMOSNL=3Um W=4.5Um
.ENDS

.SUBCKT MVP2 3 11 13
* Input_gate NMOS_D&GOut
* Double invertor

Vdd 1 DC 5

Mil 11 3 11 CMOSPL=3Um W=10.5Um
M13 12 11 1 1 CMOSPL=3Um W=4.5Um
M14 12 11 CMOSNL=3Um W=4.5Um
Ml 5 13 12 1 1 CMOSPL=3Um W=4.5Um
M16 13 12 CMOSNL=3Um W=4.5Um
.ENDS

* Pspice MODELparameters for NMOSand PMOStransistor

.MODEL CMOSNNMOS(LEVEL= 3

+TPG = 1

+VTO = 0.62

+KP = 6.93E-05
+GAMMA = 0.73

+PHI = 0.600
+TOX = 25NM
+NSUB = 2.24E17
+NFS = 1E10
+VMAX = 2.09E05
+ETA = 0.100

33

+DELTA = 0.211

+THETA = 3.47E-02
+KAPPA = 8.83

+CGSO = 1.2E-10

+CGDO = 1.2E-10

+CGBO = 3.4E-10

+RSH = 24
+JS = 1.5E-5

+XJ = 3.50E-07

+LD = 2.27E-07
+CJ = 3.36E-4

+MJ = 0.97

+CJSW = 1.34E-10

+MJSW = 0.65

+PB = 0.94)

.MODEL CMOSPPMOS(LEVEL= 3

+TPG = -1

+VTO = -0.84

+KP = 2.15E-05
+GAMMA = 0.57

+PHI = 0.700

+TOX = 25NM
+NSUB = 3.07E16
+NFS = 1E10
+VMAX = 2.14E05
+ETA = 0.208

+DELTA = 0.121

+THETA = 5.97E-02
+KAPPA = 8.00

+CGSO = 1.7E-10

+CGDO = 1.7E-10

+CGBO = 3.4E-10

+RSH = 67
+JS = 1E-6

+XJ = 1.69E-07

+LD = 3.30E-07

+CJ = 7.27E-4
+MJ = 0.41

+CJSW = 2.90E-10
+MJSW = 0.37

+PB = 0.91)

34

APPENDIX E
PROGRAMFOR4-VALUED MV-PLA CIRCUIT GENERATION

This is the header file for mvpla.c

written by Ko, Y. H.

ECE Department. NPS
Nov. 22 1988

#include "/tools/uw/include/cfl.h"

#include "stdio.h"

#include "strings.
h"

#include "ctype.h"

#define TRUE 1

#define FALSE

#define MIN
#define MAX 3

#define FOR_A_FUN99
#define MAXINPUTS32
#define MAXOUTPUTS32
#define MAXPRODUCTS99

/* min and max size(in lamda) of transistor */

#define WMIN 3

#define LMIN 2

#define WMAX 10

#define LMAX 6

/* define name of layers */

#define Ml "metal 1"

#define M2 "metal2"

#define ND "ndiffusion"

#define PD "pdiffusion"

#define POLY "polysilicon"

#define NDC "ndcontact"

#define PDC "pdcontact"

#define NSC "nsubstratencontact"

#define PSC "psubstratepcontact"

35

#define M2C "m2contact"

#define PMC"polycontact"

/* file definitions */

FILE *infile,*outfile;

/* file names */

char *infilename, *outfilename;

/* leaf cells */

SYMBOL*nmos,*pmos,*cmos,*inv 1 ,*inv2,*stepdn,*stepup;

SYMBOL*cmirror,*cinput,*nout,*pout;

/* layer variables */

SYMBOL*ml ,*m2,*poly,*nd,*pd,*ndc,*pdc,*nsc,*psc,*pc,*m2c;

/* symbol for literal function generator */

SYMBOL*mvplacell[4][4];

/* name of literal function generator cells = magic filename for leaf cells */

char *mvcell[4][4] =
{

{ "mvcell00","mvcell01","mvceU02","mvceU03" }

,

{ "mvcelllO'V'mvcelll I","mvcelll2","mvcelll3" }

,

{ "mvcell20","mvcell21 ","mvcell22","mvcell23" }

,

{"mvcell30",
M
mvceU31","mvceU32","mvcell33"}

/* labels */

SYMBOL*vdd,*gnd,*inlabel,*outlabel;

/* functions with return value type SYMBOL*/

SYMBOL *gen_mvplacell(),

*downout(),

*upout(),

*inputcell(),

*columnoutput();

/* struct of input variable */

typedef struct
{

short 1, /* x(l,u) */

u;

} INPUTS;

/* struct of a product term */

typedef struct
{

short coeff;

INPUTS x[MAXINPUTS];

36

} PRODUCTTERM;

/* struct of a function */

typedef struct
{

PRODUCTTERMpterm[MAXPRODUCTS];
} ONEFUNCTION;

/* function array */

ONEFUNCTIONfun[MAXOUTPUTS];

/* number of variables */

short nvar;

/* number of functions */

short nfun;

37

/3(< JfT 5fT JfJ JjC 5fC »f< JfC J^C JfC JfC JfC 3f< 2yC 5fJ IfC 5j< Sp SJC 5fC Jft JfC 5jC Jp SfC 5ft Jft Sft 5f(5ft 5jC 5jC 5f« 5fC 5(1 JfC 5ft 5f» Jff 3ft 5ft 5j< JjC 5JC 5ft 5fJ 5|C 5f< 5|C 5(C 3|C 5ft 5[C 5JC 5ft 5[C !fs 5ft 5$s 5p 5fC "T» *p 5fC *p !p

This is the program MVPLA.C to generate the multiple valued logic

PLA layout in magic format with scmos technology.

Written by Ko, Y. H.

ECE Department NPS

November 22 1988

#include "mvpla.h"

main(argcargv)

int argc;

char *argv[];

{

/* boolean variables for in out file on command line */

short infileexist = FALSE;

/* variable for logic level */

int level;

printf("\n\n\nmvpla <4-valued> - Version 1.01 - Last updated ll/17/88\nW);

/* check the command line input and process it if exist */

if (argc == 2)

{

/* opne a file */

infilename = argv[l];

/* assign outfile name same as input filename */

outfilename = argv[l];

else if (argc >= 3)

I

/* open file */

infilename = argv[l];

/* assign user defined outfile name */

outfilename = argv[2];

}

else

38

{

printf("\nViUsage: mvpla infile [outfile]\n\n");

exit(l);

printf("\nlnput file : '%s'",infilename);

printf("\nOutput file : '%s.mag'",outfilename);

/* set output format */

cflsetc(" format", "magic");

/* define technology */

cflstart("scmos");

/* set lamda size equal to the magic unit */

cflsetv("grain",l);

/* generate layout complete */

generatelayout(infilename,outfilename);

/* exit cfl */

cflstopO;

puts("\nDone !\n");

}/* end of main */

This routine generate complete MV-PLA layout.

generatelayouUinfl.outfl

)

char *infl;

char *outfl;

{

/* loop variables */

short i,j=0,k,m;

/* input label name */

char *xlabel = "x00",*flabel = "fOO";

/* variables for lower and upper value of input and coefficient */

short lower,upper,coe;

39

/* leaf cells */

SYMBOL*onefunction,*tmpcell,*inreplicator,*columnleafcell,*cout,*mvpla;

/* open input file */

infile = fopen(infl,"r");

/* read the input data from infile, if invalid data, then errorexit */

getdatafile(infile);

/* generate complete MV_PLA layout */

puts("\nViNow, generating CMOS-MV-PLAlayout in magic format ");

/* draw the basic cells first with the given level */

createcells();

for (i=0;i<4;i++)

{

for (j=i;j<4;j++)

{

ps(mvcell[i][j],gen_mvplacell(i,j));

mvplacell[i][j] = gs(mvcell[i][j]);

>

inlabel = mlabel(xlabel,0,0,"top",Ml);

cmirror = my(cxdx(inlabel,cmirror,-4));

/* input part of complete layout */

inreplicator = cmirror;

/* input replicators */

for (m = l;m < nvar;m++)

{

/* change name of input label, x00..x99 */

xlabel[l] = '0' + m / 10;

xlabel[2] = '0' + m% 10;

inlabel = mlabel(xlabel,0,0,"top",Ml);

cmirror = my(cxdx(inlabel,cmirror,-4));

/* stack down input cells */

inreplicator = rrdy(cmirror,inreplicator.-4);

}/*for m*/

/* add Vdd for columnoutput generator */

40

inreplicator = rrdy(box(M2,32,4),inreplicator,12);

/* put Vdd line with label */

inreplicator = ttdx(cydy(box(M2,8,nvar*42+24),vdd,-4),inreplicator,-18);

/* dummy lablel */

mvpla = mlabel("m",0,0,"top",M2);

for (i = 0;i < nfun;i++)

{

printf("\n\nf%ld = ",i);

/* initialize num of product term zero */

j = 0;

onefunction = mlabel("f',0,0,"top",M2);

while (fun[i].pterm[j].coeff != FOR_A_FUN)
{

/* build column leaf cell */

lower = fun[i].pterm[j].x[0].l;

upper = fun[i].pterm[j].x[0].u;

columnleafcell = mvplacell [lower] [upper];

columnleafcell = my(columnleafcell);

/* echo given function to confirm */

printf("%hdxO(%hd,%hd)",fun[i].pterm[j].coeff,lower,upper);

for (k = l;k < nvar;k++)

I

lower = fun[i].pterm[j].x[k].l;

upper = fun[i].pterm[j].x[k].u;

tmpcell = mvplacell [lower] [upper];

printf("x%ld(%hd,%hd)",k,lower,upper);

/* upsidedown odd cell */

if ((l+k)%2) tmpcell = my(tmpcell);

/* stack down cells for input x[0] on top */

columnleafcell = rrdy (tmpcell ,columnleafcell,-4);

}/*for k*/

/* put column output generator */

cout = columnoutput(fun[i].pterm[j].coeff);

columnleafcell = rr(cout, columnleafcell);

41

/* build a function by putting product terms */

onefunction = tt(onefunction,columnleafcell);

/* a column leaf cell generated */

if (fun[i].pterm[j].coeff != FOR_A_FUN)
{

printf("Nn + ");

}

}/* while*/

/* change name of input label, x00..x99 */

flabel[l] = '0' + i / 10;

flabel[2] = '0' + i % 10;

/* put a wired-sum part */

outlabel = mlabel(flabel,0,0,"top",Ml);

onefunction = rrdx(cc(outlabel,box(Ml,(j-l)*98+o,8)),onefunction,14);

/* put functions together */

mvpla = tt(mvpla,onefunction);

}/*for i*/

/* put input replicators at left side of layout */

mvpla = tt(inreplicator,mvpla);

/* put GNDbase line at the right side of layout */

tmpcell = cydy(box(M2,8,4),box(M2,8,8),72);

if (nvar ==1)
tmpcell = cy(box(M2,8,8),tmpcell);

else if (nvar % 2) /* odd number of inputs */

tmpcell = cy(box(M2,8,8),ny(tmpcell,nvar/2));

else

tmpcell = cy(box(M2,8,4),ny(tmpcell,nvar/2));

tmpcell = tt(tmpcell,cydy(box(M2,8,nvar*42+66),gnd,-4));

/* complete layout */

mvpla = bbdy(mvpla,box(M2,8,4),16);

mvpla = ttdx(mvpla,tmpcell,-8);

/* save leaf cells in 'mag' dir */

ps(outfl,mvpla);

42

printf("\n\nOutput to %s.mag...\n",outfl);

}/* generatelayout */

This routine generate complete MV-PLA Cell,

lower, upper : logic value(i.e., 0,1,2,3)

SYMBOL*gen_mvplacell(l,u)

short l,u;

{

short len,wid;

/* declare local symbol vars */

SYMBOL*outcell,*columnout;

createcells();

columnout = box(M 1,4,46);

/* configure up and down step function with the basic cell */

if ((1 > MIN) && (u = MAX))
{

/* step down cell */

getdevsize(&wid,&len,l-0.5);

outcell = tt(bb(inputceU(wid,len),inv2),downout(54)):

outcell = cc(outcell,columnout);

>

else if ((1 == MIN) && (u < MAX))
I

/* step up cell */

getdevsize(&wid,&len,u+0.5);

outcell = ttdy(bb(inputcell(wid,len),inv2),upout(54),-4);

outcell = cc(outcell,columnout);

}

else if ((1 <= MESf) && (u >= MAX))
{

outcell = cydy(box(M2,92,4),box(M2,92,4),15);

outcell = cydy(outcell,box(M2,92,4),ll);

outcell = cc(outcell,columnout);

}

43

else

{

/* up and down together */

getdevsize(&wid,&len,l-0.5);

stepdn = tt(bb(inputcell(wid,len),inv2),downout(8));

getdevsize(&wid,&len,u+0.5);

stepup = mx(ttdy(bb(inputcell(wid,len),inv2),upout(8),-4));

outcell = bb(stepdn,stepup);

outcell = cc(outcell,columnout);

}

/* put common gate input */

columnout = rr(rr(rr(m2c,cc(box(Ml,4,l),box(M2,4,l))),

cc(box(M2,4,4),pc)),box(POLY,4,10));
outcell = ttdy(outcell,columnout,-9);

outcell = rrdy(outcell,box(M2,4,4),-8);

outcell = rrdy(box(M2,4,4),outcell,-8);

outcell = cydy(cydy(box(M2,96,4),outcell,-4),box(M2,96,4),-4);

/* return complete cell */

return(outcell);

}/* gen_mvplacell */

IN : logic level/threshold

OUT: geometry of device in lambda(width/length)

getdevsize(wid,len,value)

short *wid,*len;

float value;

{

if ((value = 0.5) II (value == 1))

{

*wid = 3;

*len = 3 / value;

}

else

{

*wid = 2 * value;

*len = 2;

}

44

}/*getdevsize*/

This routine read the data from infile.

getdatafile(fh)

FILE *m;

{

int tmpcoeff,lower,upper;

/* loop variables and line counter of input data file */

int i,j,k,nline=l;

/* read number of inputs and outputs */

if(EOF == fscanf(fh,"%hd %hd",&nvar,&nfun))

I

printf('\n\n***ERROR*** '%s\ Line %d : ",infilename,nline);

printf(" Unexpected end of file. Need more values.\n\n");

exit();

}

printf('Vi\n\nCheck: %hd input(s) %hd output(s) MV-PLA",nvar,nfun);

if ((nvar <= 0) II (nfun <= 0))

{

printf("\n\n***ERROR*** '%s\ Line %d : ",infilename,nline);

printf("Invaid number of variables or functions.\ri\n");

exit();

}

else if ((nvar > MAXINPUTS) II (nfun > MAXOUTPUTS))
{

prmtf('\n\n***WARNING*** '%s\ Line %d : ",infilename,nline);

printf("Too many inputs or outputs.\n\n");

exit();

}

I* read functions */

for (i = 0;i < nfun;i++)

{

/* function name = output label */

printf("\nNnf%d = ",i);

/* initialize num of product tenn as zero */

45

j = 0;

/* read first coefficient of product term as a sentinal */

if(EOF == fscanf(fh,"%hd",&tmpcoeff))

{

printf("\nVi*** ERROR*** '%s\ Line %d : ",infilename,nline);

printf(" Unexpected end of file, Need more values. \n\n");

exit();

}

fun[i].pterm[j].coeff = tmpcoeff;

/* increment line counter */

nline++;

/* echo print input values to check */

printf("%hd", tmpcoeff);

if ((tmpcoeff <= 0) II (tmpcoeff > MAX))
{

puts(*\v\b A");

printf("\n***ERROR*** '%s\ Line %d : ",infilename,nline);

printf("Invalid coefficient.Vi\n");

exit();

}

while (tmpcoeff != FOR_A_FUN)
{

for (k = 0;k < nvar;k++)

{

/* read lower and upper of a variable */

if(EOF == fscanf(fn,"%d %d",&lower,&upper))

{

printf("\n\n***ERROR*** '%s', Line %d : ",infilename,nline);

printf(" Unexpected end of file, Need more values.ViVT);

exit();

/* increment line counter */

nline++;

/* echo print input values to check */

printf("x%ld(%hd,%d)",k,lower,upper);

/* check data validity and exit with error message if error */

if ((lower > upper) II (lower < MIN) II (upper > MAX))

46

puts('\v\J)\b\b A ");

printf("\n***ERROR*** '%s', Line %d : ",infilename,nline);

printf(" Invalid values .\n\n");

exit();

}

/* update global var's fields */

fun[i].pterm[j].x[k].l = lower;

fun[i].pterm[j].x[k].u = upper;

}/*for k*/

/* count number of product terms in a function */

/* read next coefficient of product term and inputs */

if(EOF == fscanf(fn,"%d",&tmpcoeff))

{

printf(''\n\n***ERROR*** '%s', Line %d : ",infilename,nline);

printf(" Unexpected end of file, Need more values.\ri\n");

exit();

}

/* increment line counter */

nline++;

fun[i].pterm[j].coeff = tmpcoeff;

if (tmpcoeff != FOR_A_FUN)
{

/* echo print input values to check */

printf("\n + %hd", tmpcoeff);

if ((tmpcoeff <= 0) II (tmpcoeff > MAX))
{

puts('\v\b A ");

printf("\n***ERROR*** '%s\ Line %d : ",infilename,nlrne);

printf("Invalid coefficient.ViVi");

exit();

}

if (j > MAXPRODUCTS)
{

printf('VMi*** WARNING*** '%s\ Line %d : ",infilename,nline);

printf("Too many product terms<MAX 99>.\n\n");

exit();

}

47

}/* if */

}/* while*/

}/*for*/

}/* end of getdatafile */

This routine generate the basic cell for the step up function

with the given logic level.

cells : invl, inv2, cmirror.

createcellsO

{

/* local leaf cells */

SYMBOL*mlwire,*polywire;

/* symbols*/
nd = box(ND,3,4);

pd = box(PD,3,4);

ndc = box(NDC,4,4);
pdc = box(PDC,4,4);

nsc = box(NSC,4,4);

psc = box(PSC,4,4);

m2c = box(M2C,4,4);
pc = box(PMC,4,4);
mlwire = box(Ml,4,14);

/* labels */

vdd = mlabel("Vdd!",0,0,"top",M2);

gnd = mlabel("GND!",0,0,"top",M2);

/* put things together */

polywire = U(U(box(POLY,8,2),box(POLY,2,24)),box(POLY,8,2));
nmos = cy(cydx(ndc,nd,-l),ndc);

pmos = cy(cydx(pdc,pd,-l),cc(pdc,box(Ml,10,4)));

invl = cy(cy(cy(cy(psc,nmos),mlwire),pmos),nsc);

/* put poly contact on output */

invl = ccdxy(ccdx(invl,polywire,-l),pc,3,2);

48

/* series of inverter and add m2 contact and GNDline */

inv2 = tt(cydy(box(Ml,10,4),invl,-8),Udy(box(Ml,7,4),invl,-8));

inv2 = cydy(cc(m2c,box(M2,20,4)),inv2,-8);

inv2 = ccdy(inv2,box(M2,20,4),2);

inv2 = cydy(inv2,cc(m2c,box(M2,20,4)),-8); /* complete */

/* create cmirror cell */

/* prepare elements */

nd = box(ND,6,4);

pd = box(PD,7,4);

ndc = box(NDC,6,4);
pdc = box(PDC,7,4);
nsc = box(NSC,7,4);

psc = box(PSC,6,4);

/* build input current mirror cell */

cmirror = ll(ll(ll(ll(psc,ndc),nd),ndc),box(Ml,6,H));

cmirror = bb(bbdy(cmirror,cc(box(Ml,6,4),m2c),4),cmirror);

pmos = rr(rr(rr(rr(box(Ml,6,3),pdc),pd),pdc),nsc);

cmirror = rr(cmirror,pmos);

/* input gates poly */

poly wire = cydx(box(POLY,22,2),rr(box(POLY,2,12),pc),-2);

cmirror = cydy(polywire,cmirror,-27);

/* output gates poly */

polywire = cc(bb(bb(m2c,box(Ml,l,4)),pc),box(M2,9,4));

cmirror = cxdxy(cmirror,polywire,-8,2);

cmirror = rrdy(cmirror,box(Ml,4,4),-8);

cmirror = rrdy(cmirror,rr(box(POLY,2,8),box(POLY,12,2)),-19);

/* put GNDand input line */

cmirror = rrdy(box(M2,26,8),cmirror,-8);

cmirror = cxdx(box(Ml,30,8),cmirror,-6);

cmirror = rrdy(cmirror,box(M2,32,8),-8);

}/* end of createcells */

49

This routine generate the basic cell for the output part,

cell : pout,nout

SYMBOL*downout(w)
short w;

{

SYMBOL*polywire;

/* symbols*/

pd = box(PD,3,4);

pdc = box(PDC,4,4);

nsc = box(NSC,4,4);

pmos = cy(cydx(pdc,pd,-l),cc(pdc,box(Ml,10,4)));

pmos = rr(nsc,pmos);

/* output part of cell */

pmos = tt(box(Ml,3,4),ll(U(pdc,pd),pdc));

pout = bb(rr(pmos,nsc),box(Ml,4,4));

pout = lldy(pout,ll(box(POLY,2,12),box(POLY,8,2)),-23);

pout = lldy(pout,box(M2,w+4,4),-8);

pout = lldy(pout,box(Ml,3,4),-8);

pout = lldy(pout,box(M2,w+4,4),-23);

pout = lldy(pout,box(M2,w+4,4),-42);

return (pout);

}/* downout */

SYMBOL*upout(w)
short w;

I

SYMBOL*polywire;

/* symbols*/
nd = box(ND,3,4);

ndc = box(NDC,4,4);

nmos = cy(cydx(ndc,nd,-l),ndc);

50

/* nmos output */

nmos = bb(nmos,box(M 1,4,4));

nout = tt(box(Ml,3,4),box(Ml,4,26));

nout = lldy(bb(box(POLY,2,18),box(POLY,6,2)),lldx(nmos,nout,-3),-23);

nout = lldy(nout,box(M2,w+4,4),-4);

nout = lldy(nout,box(M2,w+4,4),-19);

nout = lldy(box(M2,w+4,4),nout,-4);

return (nout);

}/* upout */

This routine generate the basic cell for the input part,

cell : cinput

SYMBOL*inputcell(w,l)

short w,l;

{

/* cell width and contact width */

short wmax,wc,wmet;

/* decide max width of cell */

if (w > WMAX-3)

wmax = wc = w;

wmet = 7;

else if (w <= 4)

wmax = 7;

wc = wmet = 4;

else

wc = wmet = w;
wmax = 7;

/* symbols*/
nd = box(ND,w,2+l);
pd = box(PD,7,4);

51

ndc = box(NDC,7,4);/*wc=7*/
pdc = box(PDC,7,4);

nsc = box(NSC,7,4);

psc = box(PSC,7,4);/*wc=7*/

m2c = box(M2C,4,4);
pc = box(PMC,4,4);

pmos = rr(rr(rr(pdc,pd),pdc),nsc);

nmos = rr(rr(rr(psc,ndc),nd),ndc);

cinput = rr(rr(nmos,box(Ml,wmet,16-l)),pmos);

cinput = cxdxy(bbdy(cinput,box(Ml,4,4),4),pc,-4,2);

cinput = ndy(cinput,box(Ml,wmax+7,4),-8);

cinput = cydy(box(M2,wmax+7,4),cinput,-8);

cinput = lldy(cinput,box(POLY,wmax+5,2),-ll);
cinput = rrdy(box(POLY,wc+6,l),cinput,-9-l);

cinput = rrdy(cinput,box(M2,wmax+7,4),-8);

cinput = rrdy(cinput,box(M2,wmax+7,4),-23); /* complete */

/* return complete input part as specified */

return (cinput);

}/* inputcell */

This routine generate the basic cell for the column output part,

cell : columnoutput

SYMBOL*columnoutput(value)

short value;

(

SYMBOL*out,*temp;

short wa,la;

float outlevel;

52

/* input part */

ndc = box(NDC,4,4);

psc = box(PSC,4,4);

out = cy(rr(cy(psc,ndc),box(ND,3,8)),ndc);

out = cxdy(rr(out,box(Ml,4,34)),pc,2);

out = rrdy(box(Ml,4,4),out,-8);

out = rrdy(box(POLY,10,6),out,-15);

/* add 2 inverter */

out = bb(out,inv2);

out = ttdy(out,box(POLY,2,14),-17);

/* output part */

/* get size of transistor as voltage-controlled current source */

outlevel = value;

getdevsize(&wa,&la,outlevel);

if (wa <= 4)

{

pdc = box(PDC,4,4);

nsc = box(NSC,4,4);

)

else

{

pdc = box(PDC,wa,4);
nsc = box (NSC, wa, 4);

}

temp = rr(rr(rr(pdc,box(PD,wa,la+2)),tt(box(Ml,3,4),pdc)),nsc);

temp = rr(box(Ml,4,36-la),temp);

temp = rrdxy(temp,box(POLY,wa+4,la),2,-9-la);

/* connect output part */

out = bbdxy(out,temp,-2,-4);

/* add Vdd and GNDlines */

out =cydy(box(M2,96,4),ttdxy(box(M2,96,4),out,-54,12),-12);

retum(out);

}/* columnoutput */

53

APPENDIX F

CIRCUIT LAYOUTGENERATEDBY PROGRAM(mvpla)
for 1-INPUT 1-OUTPUT 4-VALUED PLA

54

APPENDIX G

PSPICE INPUT DATA EXTRACTEDFROMCIRCUIT LAYOUT

*** SPICE DECKcreated from testll.sim, tech=scmos
Ml 6 5 1 4 CMOSPL=3.0U W=10.5U
M2 7 6 1 4 CMOSPL=3.0U W=4.5U
M3 8 7 1 4 CMOSPL=3.0U W=4.5U
M4 9 8 1 4 CMOSPL=3.0U W=4.5U
M5 6 6 10 CMOSNL=3.0U W=7.5U
M6 6 7 10 CMOSNL=3.0U W=4.5U
M7 7 8 10 CMOSNL=3.0U W=4.5U
M8 11 5 1 4 CMOSPL=3.0U W=10.5U
M9 12 11 14 CMOSPL=3.0U W=4.5U
M10 13 12 1 4 CMOSPL=3.0U W=4.5U
Mil 14 13 1 4 CMOSPL=3.0U W=4.5U
Ml 2 16 15 1 4 CMOSPL=3.0U W=4.5U
M13 15 17 1 4 CMOSPL=3.0U W=4.5U
M14 17 5 1 4 CMOSPL=3.0U W=10.5U
M15 11 11 10 CMOSNL=9.0U W=4.5U
M16 Oil 12 10 CMOSNL=3.0U W=4.5U
M17 12 13 10 CMOSNL=3.0U W=4.5U
Ml 8 14 16 1 10 CMOSNL=3.0U W=4.5U
M19 15 16 10 CMOSNL=3.0U W=4.5U
M20 17 15 10 CMOSNL=3.0U W=4.5U
M21 17 17 10 CMOSNL=3.0U W=4.5U
M22 18 5 1 4 CMOSPL=3.0U W=10.5U
M23 19 18 1 4 CMOSPL=3.0U W=4.5U
M24 20 19 1 4 CMOSPL=3.0U W=4.5U
M25 18 18 10 CMOSNL=3.0U W=4.5U
M26 18 19 10 CMOSNL=3.0U W=4.5U
M27 19 20 10 CMOSNL=3.0U W=4.5U
M28 21 20 1 10 CMOSNL=3.0U W=4.5U
M29 22 22 10 CMOSNL=3.0U W=9.0U
M30 5 22 10 CMOSNL=3.0U W=9.0U
M31 15 5 4 CMOSPL=3.0U W=10.5U
M32 23 21 14 CMOSPL=3.0U W=4.5U
M33 24 23 1 4 CMOSPL=3.0U W=4.5U
M34 21 21 10 CMOSNL=9.0U W=4.5U
M35 25 24 1 4 CMOSPL=4.5U W=4.5U
M36 26 14 1 4 CMOSPL=3.0U W=4.5TJ
M37 27 26 1 4 CMOSPL=3.0U W=4.5u
M38 25 27 1 4 CMOSPL=3.0U W=6.0U

55

M39 28 9 1 4 CMOSPL=3.0U W=4.5U
M40 29 28 1 4 CMOSPL=3.0U W=4.5U
M41 25 29 1 4 CMOSPL=3.0U W=6.0U
M42 21 23 10 CMOSNL=3.0U W=4.5U
M43 23 24 10 CMOSNL=3.0U W=4.5U
M44 14 14 10 CMOSNL=9.0U W=4.5U
M45 14 26 10 CMOSNL=3.0U W=4.5U
M46 26 27 10 CMOSNL=3.0U W=4.5U
M47 9 9 10 CMOSNL=9.0U W=4.5U
M48 9 28 10 CMOSNL=3.0U W=4.5U
M49 28 29 10 CMOSNL=3.0U W=4.5U
C50 25 119.0F

C51 5 135.0F

C52 1 1113.0F

56

APPENDIX H

CIRCUIT LAYOUTFOR 4-INPUT 2-OUTPUT MVL FUNCTION

CO

n
CM

i

<s

r-j

I

msjfmgmaffim
HiiBsrsiisriBriMMaiiraii^HirfHMiaasnsirwB-^

57

APPENDIX I

CIRCUIT LAYOUTFOR RANDOMLYCHOSENMVL FUNCTION

ID

U
(/J

I

I

in
•**

r 1

tn

n

:>nr.>:i.^;?iii!BBnB-:::ir.»i-K.}iiiiK>>n:>.i.w;:'iiBBiias.'i>:'';i-K}iiB

58

LIST OF REFERENCES

1. Kawahito, S., and others, "A High-Speed Compact Multiplier Based on
Multiple-Valued Bi-Directional Current-Mode Circuits," Proceeding of the

International Symposium on Multiple- Valued Logic, pp. 172-180, May 1987.

2. Kameyama, M., Kawahito, S., and Higuchi, T., "A Multiplier Chip with

Multiple-Valued Bi-Directional Current-Mode Logic Circuits," Computer, pp.

43-56, April 1988.

3. Kerkhoff, H. G., and Butler, J. T., "A Module Compiler for High-Radix CCD
PLA'S", preprint.

4. Sasao, T., and Terada, H., "Multiple-Valued Logic and the Design of PLA's
with Decoders," Proceeding of the International Symposium on Multiple-

Valued Logic, pp. 62-70, May 1979.

5. Lee, H. S., A CAD Tool for Current-Mode Multiple-Valued CMOSCircuits,

Master's Thesis, Naval Postgraduate School, Monterey, California, December
1988.

6. Tuinenga, P. W., SPICE A Guide to Circuit Simulation and Analysis Using
PSpice, Prentice Hall, 1988.

7. Dueck, G. W., and Miller, D. M., "A 4-Valued PLA Using the MODSUM,"
Proceeding of the International Symposium on Multiple- Valued Logic, pp. 45-

52, May 1986.

8. Onneweer, S. P., and Kerkhoff, H. G., "High-Radix Current-Mode CMOS
Circuits Based on the Truncated- Difference Operator," Proceeding of the

International Symposium on Multiple- Valued Logic, pp. 131-143, May 1986.

9. PSpice, Microsim Corporation, 1987.

10. Scott, W. S., and others, 1986 VLSI Tools, University of California, Berkeley,

1985.

11. Tirumalai, P., and Butler, J. T., "On the Realization of Multiple- Valued Logic
Functions using CCDPLA's," Proceeding of the 14th International Symposium
on Multiple-Valued Logic, pp. 32-42, May 1984.

59

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station

Alexandria, VA 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Code 62 1

Department of Electrical and Computer Engineering

Naval Postgraduate School
Monterey, CA 93943-5000

4. Prof. J. T. Butler, Code 62BU 3

Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5000

5. Prof. C. Yang, Code 62YA 2

Department of Electrical and Computer Engineering

Naval Postgraduate School
Monterey, CA 93943-5000

6. Air Force Central Library 2

Sindaebang Dong, Gwanak Gu,
Seoul, Republic of Korea

7. Library of Air Force Academy 2

Cheongwon Gun, Chung Cheong Buk Do 370-72

Republic of Korea

8. Ko, Yong Ha 2

852, Pyoseon-Ri, Pyoseon-Myeon, Cheju Do 590-44

Republic of Korea

9. Kerkhoff, Hans G. 1

IC Technology and Electronics Group
Department of Electrical Engineering, University of Twente
7500 AE Enschede, The Netherlands

60

10 Dr. George Abraham, Code 1005
Office of Research and Technology, Applied Physics

Naval Research Laboratories

4555 Overlook Ave, N.W
Washington, DC 20375

11 Dr. Robert Williams
Naval Air development Center, Code 5005
Warminster, PA 18974-5000

12 Dr. Parthasarathy Tirumalai

Hewlett-Packard Co.

5301 Stevens Creek Blvd, 52L/57
Santa Clara, CA 95052

13 Dr. Joo-Kang Lee
POSTECHResearch Institute of Science and Technology
P.O. Box 125 Pohang City, Kyungbuk 680
Republic of Korea

14 LCDRJohn Yurchak
Dept. of Computer Science

Naval Postgraduate School

Monterey, CA 93943

61

31 9 - £9 3 f)

Thesis
K716255
c.l Design of multi-

ple-valued programmable
logic arrays.

Thesis
K716255 Ko

c.l Design of multi-
ple-valued programmable
logic arrays.

