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We develop a model of coalition formation based on personal proximities among the 
players of an n-person game. Several examples are worked out in detail, showing that 
certain coali tions are much more stable than others, and/or much more li kely to form 
than others. We also consider the dynamics of such coalition-formation. By a numerical 
example, we show that small changes in the initial conditions can lead to very different 
results in the coali tions formed in a given game. 

1. Historical Background 

In von Neumann and Morgenstern's [1944] treatment of n-person games, the solu­
tion concept which they give - the stable set as it is known today - seems to 
present an endogenous coalition structure. In fact, the three-point solution to the 
symmetric simple 3-person game has an apparently clear interpretation: two of the 
players will form a coali t ion against the other, and split their winnings equall y. 
Since there are three possible 2-person coalitions, we obtain three points. There is 
no way to distinguish among the three coalitions. 

Unfortunately, things do not proceed so nicely from that point on: in general , 
stable sets consist of many points (imputations), with no explanation given as to 
which coali tions form to produce each point. For example, the partially discrimi­
natory stable sets of 3-person games depend on all three of the 2-person coali t ions 
for their external stability . 

Other solution concepts are in general no better: either they give us outcomes 
in terms of payoff with no explanation as to coalitions (such is the Shapley [1953] 
value) or they beg the question by telli ng us which outcomes can be expected 
(or, possess some type of stability) for given coali tion structures (e.g., the several 
bargaining sets and kernel). No attempt is made at predicting the actual coalitions 
that will form. (Of course, there are certain special types of games for which some 
solution concepts do give a coali t ion structure - the best known example is the 
core of 2-sided matching games, see Gale and Shapley [1962], Roth [1984a, b].) 
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A nice approach to the problem of coalition formation, for general character" 
tic function games, first appeared with Myerson's [1977] modification of the ShalS­
ley value by the introduction of a graph structure on the players of the garnP­
Though this approach also started by assuming a graph structure and obtainin : 
numerical payoff for this structure, nevertheless it led to Aumann and �M�y�e�r�s�o�~�'�s� 
[1988] article which treats the formation of links between players as an endogenous 
phenomenon. 

A similar point can be made about Owen's [1977] generali zation of the Shap.. 
ley value by the assumption of a priori coalitions. This generalization led to Hart 
and Kurz's [1983] article which treats the coalition structure as endogenous. Both 
this and the above method were used by Carreras and Owen [1988, 1996] in pre­
dicting, with some success, coalition formation in two of the Spanish regional 
parliaments. 

Apart from these approaches, we find models such as that of Bloch [1995, 1996], 
Yi and Shin [2000], Ray and Vohra [1999], Bellefiamme [2000], and Macho-Stadler 
and Paz-Espinosa [2003], in which the process of coalition formation is treated as a 
non-cooperative game, with players, in some sequence, making offers which become 
binding as soon as others accept them. 

2. Stability of the Coalitions 

As opposed to the Myerson/ Aumann (M- A) and Hart/Kurz/Owen (H-K-0) 
approaches, both of which are static in nature, and in contradistinction to the other 
approaches, which are non-cooperative in spirit, we consider a dynamic, cooperative 
model. This model is related not only to the M- A and H-K-0 models, but also to 
the Harsany [1957] dividends and to the multilinear extension [Owen (1972)] and 
based on the idea of a "distance" between players. 

Essentially, it is our belief that coalitions, even if advantageous from an eco­
nomic point of view, fail to form because their members are at a distance, in ome 
sense, from each other. This can be a physical (geographical) distance (perhaps the 
players are unable to communicate), but can just as easily be a psychic distance: 
two possible partners feel poorly about each other, or simply disagree as to how 
a coalition should be managed. Forces (or mere chance) can bring them together; 
once all members of a coalition are close enough together, the coalition will form. 
Contrariwise, forces can drive the players apart and thus cause a coalition to dis­
band. We can expect that, in many cases, inefficient outcomes will obtain simply 
because the internal forces make it impossible for all players to cooperate. 

Example 1. Consider a 3-player game, given in characteristic function form by 
v({i}) = O,v(S) = 100 for each S with 2 players, and v({l,2,3}) = 120. Suppose 
that, somehow, coalition {1,2} has formed, and these two players are consequently 
splitting the 100 units with payoff x = (50, 50, 0). (It may be better to think of thi 
payoff as an income stream than as a one-time payment.) There are an additional 
20 units available to the grand coalition, and it seems that it could well form, to 
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h 
- (55 55 10) which certainly dominates x (and is in fact 

· a payoff sue as Y - ' ' ' . · · · 3 · t the give h d "f 1 rs 1 and 2 consider mvitmg mo · ) O the other an i P aye 
pareto-supenor . h n th f them rr:ay well feel some trepidation: it will be merely 
coalition, one or t e o er o . sk for a "fairer" share of 
a matter of time before their �l�n�e�w�1�·�t�p �a�:�t�:�~�y�'� �~�'� �~�e�(�~�~�s�4�~�o� ;O) will leave both 1 and 2 
the 120 units, and an eventua sp i a ' ' ' ' 
worse off than before. 

arn le 2. Consider a 3-person game, with v( {i}) = v( {2 , 3)) �~�.� 0, v( {l, 
2
} L: 

Ex p ( {l 3}) = v(N) = 120. Once again, suppose the coaht10n �~�l�,� 2} 
100, and �~� ' d. . . of the 100 units between 1 and 2. Clearly, this outcome 

d with some ivi s10n . l·t· {orrne ' . h. . e by defecting and formmg the coa i wn 
. t ffi ient· 1 can mcrease is mcom ' ·11 
is no e c ' . This however causes a problem as 2 wi 
{1, 3}, obtaining at least 2? un3its more. as to maintain the {1 2} coali tion. Thus 

k ffort to dnve away so ' 
clearly ma e an e . and the 20 units additional profit may 
1 will �f�i�~�d� himself �s�~�b �J �e�c�t�t�t�o� stor:e �.�r�:�;�g�e�~�~�:�e� (Things might be different if v( {1, 3}) 
be insufficient for him to ry o n . 
were 180 instead of 120.) 

first consider the fact that each game can be expressed as a li.near �c�o�m�b�i�~�a �-
We . . Th if v is a game (in characteristic funct10n form) with 

tion of unanimity games. us . . 
t N e know that it can be expressed m the form player se , w 

v = "l:= CTUT 

TCN 

where, for any coalition T' the unanimity game UT is defined by 

{
1 if Tc S 

UT ( S) = O otherwise, 

and the coefficients CT are the Harsanyi dividends, defined as 

CT= 2:= (-l)t-s 
SCT 

s and t being the cardinalities of S and T �r�e�s�p�e�c�~�i�v�e�~�y�.� . 
Consider' next, the multilinear extension, which is usually written as 

F(q1, ... 'qn) = 2:= {rr qi. I1 (1 - qi)} v(T) 
TCN iET iEN-T 

but can also be written in the equivalent form 

F(q1, ... 'qn) = "2:= \IT qi1 c(T) 
TCN l iET 

or more concisely, 

F(qi, ... , qn) = 2:= c(T)P(T) 
TCN 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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where �~�(�T�)� is �~�h�e� product rriET qi . Now, in the usual interpretation oft 
the vanable qi is thought of as the probability that iwill "jo in the club ,, �~�e� MLE, 
case the term in braces in ( 4) becomes the probability that th 1. : in Which 

) 
. e coa it10n T ( 

no greater will form. On the other hand the product P(T) · th and . . . . is e probabili 
some coalition containing T as subset will form. Note that th· th ty that h is eory assu 
t at only one coalition will form, and (b) that the probabilitie . . mes (a) 
Th

. sq, are mdepe d 
is means, among other things that in (4) the sum of th t . n ent. . ' ' ' e erms m bra . 

equal to 1, and, m (6), that for disjoint Sand T, P(S u T) = P(S)P(T) ces 
18 

. . �~�n� the �o�~�~�e�r� hand, in real life, these last two conditions need not �h�o�l�~� 
disJomt coaht10ns can form, and membership of two pl . . . Several . . ayers m a given coali . 
can ?e correlated (positively, negatively, or not at all). Let us therefore �t�i�~�n� 
consider the formula (6) once agam 

F = L c(T)P(T) 
TCN 

where P(T) can be of more general form than before. We will here int t p 
as the probability that the members of Twill cooperate and thus . erprnle (T) 
c h . ' require o y that 
1or eac i, ' 

P({i}) = 1. (7) 

�~�e� assume next that �t�~�e� �p�l�a�~�e�r�s� are positioned in some metric space, preferabl 
�~�u�c�h�d�e�a�n� space of some dimens10n. The simplest is to assume positions on the �r�e�~� 
lme. Then, P(T) should be some function of the distances among the loc t . . 
of th b . f T a rnns, x, e mem ers i o , decreasing as these distances increase. ' 

A suitable candidate for such a function will be 

P(T) =exp {- 2:=1xi - m(T)I} 
iET 

( ) 

where m(T) is the midpoint of set T, namely 

m(T) = (2= Xi ) jt 
iET 

(9) 

t being the cardinalit y of set T. 
In. this case, then, F is a function of the positions Xi of the several players. 

We will make :he assumption that, in general , there are forces moving the players 
along the gradient of this function, and look for local maxima as representing stable 
configurations. 

Example 3. Consider the three-person game defined by v( { i}) = o for all i, and 

v({l,2}) = v({l,3}) = v(N) = 1; v({2,3}) = O. 

It is easy to see that C12 = ci3 = 1, CN = -1, and all other cs = O. Thus we 
have 

F = P( {l , 2}) + P( {1, 3}) - P( {1, 2, 3} ). 
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Now, let us suppose the three players are located at points x, y, and z respec­

tively. Then 

P( {1, 2}) = exp{-\x - y\} 

P( {1 , 3}) =exp{ -\x - z\} 

P( {1 , 2, 3}) = exp{-\x - m\ - \y - ml - \z - m\} 

m = (x + y + z)/3. 

It seems natural to expect that, in such a game, 1 would somehow be located 
between 2 and 3. We will also assume that 1 is closer to 2 than to 3, and so we will 

posit that 

y ::; x ::; m ::; z. 

In this case, we find that 

F = exp{y- x} + exp{x - z} - exp{(2x + 2y- 4z)/3}. 

The partial derivatives are here 

Fx = -exp{y - x} + exp{x - z} - 2exp{(2x + 2y- 4z)/3}/3, 

Fy = exp{y - x} - 2exp{(2x + 2y - 4z)/3}/3, 

Fz = -exp{x - z} + 4exp{(2x + 2y - 4z)/3}/3. 

We look for maximizing points. The usual rule is that, at maxima, these deriva­
tives are equal to 0. Some care must now be taken, however, since the derivatives 
change at points where two of the variables are equal, or where one of them equals 
the mean m. At such points we must distinguish between right and left deriva­
tives: for a local maximum, the right derivative must be non-positive, and the left 

derivative non-negative. 
Since it is only the distances that matter, we can, without loss of generality, let 

y = 0. Setting Fz = 0, we obtain 

3exp{x - z} = 4exp{(2x - 4z)/3}. 

Conjecturing that 1 and 2 must be very close together, we set x = 0, and so 

3exp{ - z} = 4exp{ - 4z/3}. 

This is easily solved to give us z = 3 log(4/3). At this point, further, we find that 

the derivative with respect to x is 

Fx+ = -1 +exp{ - z} - 2exp{ - 4z/3} /3 

= -1 + (3/4)3 - (2/3)(3/4)
4

. 

This is negative, but it is in fact the right derivative. At this point, where 
x = y, the left derivative differs in that the first term becomes positive. Thus the 
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left derivative would be 

Fx- = 1 +exp { - z} - 2exp { _ 4z/3}/ 3 
= 1 + (3/4)3 

- (2/3)(3/4)4 . 

which is positive. Similarly, the derivatives with respect to y are 

which is positive, and 

Fy- = 1 - 2 exp { - 4z/3}/3 

= 1 - (2/3)(3/4)4 . 

Fy+ = -1- 2exp{ -4z/3}/3 

= -1 - (2/3)(3/4)4 

which is negative. Thus we find a local maximum· 1 and 2 t 
at a distance 3 log( 4/3) from them There . . :1 . are ogether, while 3 is 

· rs a s1m1 ar maximum where 1 d 
together, while 2 is 3 log(4/3) from them There are no oth ' . an 3 are 

w; ld f · er maxima 
e cou o course study this from the point of view of d .. 

each pla h h' ynamrcs assumm 
yer c anges rs position in the direction of the gradr'ent E t: g 

co · h · · ssen rally 1 ill 
nverge wi t either 2 or 3, whichever is closer to start The othe l . w 

to the g· d' t A · · r P ayer will move wen rs ance. ny closer than that, he will be repelled. 

�E�(�x�{�~�}�m�)� ple 4. Con_sider instead the sli ghtly different three-person game defi eel b 
v i = 0 for all i, and n 'Y 

v({l,2})=1; v({l,3})=v(N)=a; v({ 2, 3})=0, 

�~�h�e�r�e� a > 1. In this case 3 is clearly more attractive (to 1) than 2 . Th . 
rs whether this greater attractiveness will change the situation. rs. e question 

In this case c - 1 c - 1 ' 12 - ' 13 - a, CN = - , and all other cs = O. Thus we have 

F = P( {l , 2}) + aP( {l , 3}) - P( {l , 2, 3} ). 

As above, we will assume that 1 is closer to 2 than to 3 and ·11 . 
that , so we wr posit 

y :::; x :::; m :::; z. 

In this case, we find that 

F =exp {y - x} +a exp {x - z} - exp {(2x + 2y- 4z)/3} . 

The z-derivat ive here is 

Fz =-a exp {x - z} + (4/3) exp {(2x + 2y - 4z)/3}. 

Assumi.ng �~�n�e�e� again that 1 and 2 are very close together, we set x = y = O. Thus 
the denvat1ve becomes 

Fz = - a exp { - z} + ( 4/3) exp { - 4z /3}. 
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getting this equal to 0, we obtain 

aexp{ - z} = (4/3)exp{ - 4z/3} . 

This gives us z = 3log(4/3a). Note however, that we are assuming z > 0. Thus 
J/30'. must be greater than 1, i. e., this analysis is valid only for a < 4/3. Note how, 
as a approaches 4/3 (from below), the distance from players 1 and 2 to player 3, 
which is z, goes to 0. 

Still assuming that 1 < a < 4/3, there is another maximum, with x = z (i.e., 1 
and 3 together), and y at a distance of 3log(4/3). 

For a �~� 4/3, finall y, there is only one maximum, also with x = z, and y at a 
distance of 3 log( 4/3). 

This analysis is quite interesting. Essentially, it seems to say that, so long as 
2's and 3's attractiveness (to 1) are approximately equal, there are two possible 
outcomes, in which 1 forms a coalition with either 2 or 3 (generall y depending on 
which one was closer at the beginning of the process). Note, however, that as the 
discrepancy increases (i.e., as a increases beyond 1), it becomes more and more 
diffi cult for the {1, 2} coali t ion to remain together (the equilibrium distance to z 
decreases). Eventually, for a �~� 4/3, the coalition {1, 2} cannot survive: 3 is just 
too attractive. 

Example 5. Let us return to the problem of Example 1. We assume a symmetric 
3-person game, with v( { i}) = 0 for all i, and v( { i, j}) = 1 for all 2-person coalitions. 
In that case we find all Cij = 1, and CN = v(N) - 3. In cases where v(N) �~� 3, all 
the dividends are non-negative, and all players will eventually converge. Thus we 
will be interested in cases where v(N) < 3, and will set 

f3 = 3 - v(N). 

Now, we have 

F = P( {l , 2)} + P( {1 , 3}) + P( {2 , 3}) - f3P(N). 

We would like to see whether a three-person as opposed to a two-person coali tion 
will form. Assume, t hen, that 1 and 2 are very close together , while 3 is some 
distance away. To begin, set, as before, 

y :::; x :::; m :::; z. 

Then, 

F = exp {y - x} + exp { x - z} +exp {y- z} - f3exp {(2x + 2y - 4z)/3} . 

To see whether 3 will remain apart from the others, we take the derivative 

Fz = - exp { x - z} - exp { y - z} + ( 4(3 / 3) exp { (2x + 2y - 4z) / 3} . 

Assuming 1 and 2 are both at position 0, this takes the form 

Fz = -2 exp { - z} + (4/3/ 3) exp { - 4z/3}. 
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Setting this equal to 0, we have 

2exp{ - } = (4{J/3)exp{ -4z/3} 

which gives us 

z = 3 log(2{3/3). 

Again, note t hat his assumes z > O so that �2�~�/�3� > 1 I th . . . . ' ,., · n o er words th 
pe.rson �c �o�a�h�t�i�~�n� is m equilibrium only so long as v(N) < i.5. For v(N �~� e two­
third player will be welcomed into the group. ) - 1.5, the 

3. Dynamics 

An interesting question deals with the dynamics of the situation G. . . 
configuration, which coalitions are likely to form? . iven an initial 

The simplest possibilit y is a gradient method in which these 1 1 t d ' vera p ayer 
owa.r s an optimum. If for example they are located at positions in one-d· �~�o�v�e� 

Euclidean space, say imensional 

x(t) = (xi (t) , ... , Xn(t)) 

then a motion of the form 

dx/dt = V F(x(t)) (10) 

can be a good representation of the way the players move in our configurat· I h. h d. · ion space 
n ig e: imens10ns, the generalization is obvious: each player's positio £ ll · 

the gradient. n o ows 

Now, �i�~� the �i�n�i�t�~ �a �l� �p�o�~�i�t�i�o�n� in such a system is close to a (strict) local maximum 
then �g�r�a�d�i�e�n�~� �m�o �t �i�~�n �.� �~�i�l�l� �a�l�~�~�y�s� lead towards that particular maximum. On �t�h�~� 
�~�t�h�e�r� hand, if the imtial posit10n is not close to any of the maxima th th is d . , en ere 

a goo question as to where the configuration will head. In general, we expect 
convergence to some local maximum, but where there are many such maxima it is 
very difficult to tell, at least by analytic means, which maximum will be �r �e�a�~ �h�e�d�.� 
We have. therefore used numerical techniques. (We used the differential equations 
package m Maple 9.5.) 

For this purpose, we considered the game of Example 4, with a = 1.2. In this 
game, player must essentially choose between 2 and 3 W'th th. 1 f 1 3 . r . . i is va ue 0 a, payer 

is s ightly .more attractive. Thus the coalition {1 , 3} seems more likely to form. If, 
h{owe}ver , 1 is suffi ciently close to 2 (as opposed to 3), we can expect the coalition 
1, 2 to form. We therefore set y < x = 0 < z, with IYI < z. 

We fir st used the initi al conditions x = O y = -1 z - 1 2 w ·th th d" f . ' , - . . i ese con 1-

10ns, x mcreases until approximately t = 1 05 At that t. t t t d M . . . · · ime, x s ar s o ecrease . 
. eanwhile, Y is mcreasing. At about time t = 2, x and y come together. The conclu­

swn seems to be that 1 is at first drawn to 3 because of his greater attractivene 
Eventuall y, however, 2 is close enough to bring 1 back to him. 
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We then used the initial conditions x = O,y = -l ,z = 1.1. This relatively 

5
rnall change in the initi al conditions has however large consequences. In this case, 

:c increases while z decreases, until they come together at about t ime t = 1.5. 
}lleanwhile, y increases until about t = 1.5 when it starts to decrease. In this case, 
the coaliti on {1 , 3} forms. Player 2 approaches at fi rst but then realizes he will not 

be welcome, and moves away. 
Of course, the given dynamics, determined by the equations (10): �x�~�(�t�)� = 

F;(x(t)), essentiall y assumes all players are equall y able to take advantage of a 

situation. The more general system 

�x�~�(�t�)� = CiFi(x (t)), (11) 

where the coeffi cients Ci are positive but not necessaril y equal, could give a more 

interesting set of results. 

4. Concluding Remarks 

In this paper, we develop a model of coali t ion formation based on personal prox­
imities among the players of an n-person game. Some examples are worked out in 
detail, showing that certain coalitions are much more stable than others, and/ or 
much more likely to form than others. We also consider the dynamics of such 
coalition-formation. By a numerical example, we show that small changes in the 
ini t ial conditions can lead to very different results in the coalitions formed in a 
given game. Further research along this line could prove to be fruitful. 
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Ann-person different ial game r (x, T-t) with independent motions from t he ini t ial state 
x and with prescribed duration T- t is considered. Suppose that y(s) is the cooperative 
trajectory maximizing the sum of players' payoffs. Suppose also that before starting the 
game players agree to divide the j oint maximal payoff V(x, T - t; N) according to the 
imputation a, which is considered as a solution of a cooperative version of the game 
r(x, T - t) . Using individual rationality of the imputation a we prove that if in t he 
game f(y(s), T - s) along the cooperative trajectory y(s), the solution will be derived 
from the imputation a with the use of the imputation distribution procedure (IDP) , for 
each given c > 0 there exists c-Na.sh equil ibrium in r(x , T - t) for which the payoffs of 
the players in the game will be equal exactly to the components of the imputati on a 
(cooperative outcome). This means that the imputation a is strategicall y supported by 
some speciall y constructed c-Na.sh equilibr ium in r(x, T- t) . A simil ar result is true for 

a discrete game with perfect information. 

1. Continuous Time Case 
Consider n-person differential game f( x0 , T - to) with prescribed duration and 
independent motions on the time interval [to , T]. Motion equations have the form: 

Xi= f i (Xi , Ui), Ui E ui c Re, Xi E Rn) 

Xi (to) = �x�~�,� i = 1, ... ,n. 
(1) 

It is assumed that the system of differential equations (1) satisfies all condit ions 
necessary for the existence, prolongability and uniqueness of the solut ion for any 

n-tuple of measurable controls u1 (t) , ... , un(t). 
The payoff of player i is defined as: 

Hi (xo, T - to; u1(-), ... , un(-)) = J.T hi(x(T))dT, 
to 

where hi (x) is a continuous function and x(T) = { x1(T) , . . . ,xn(T)} is the solution 
of (1) when open-loop controls u1(t) , .. . , un(t) are used and x(to) = { x1(to), . . . , 

Xn (to)} = { �x�~� , ... , �x�~ �}� . 
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