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I. INTRODUCTION 

HE cognitive architecture proposed in this paper 

provides a minimalist approach for modeling human 

decision making based on the concept of situation. While 

multiple cognitive architectures exist in the literature, the 

framework proposed here seeks to incorporate the impact on 

relevant concepts from cognitive science, psychology, and 

social psychology in a relatively simple manner. The intent is 

to avoid a  “kitchen”  sink  approach by identifying a framework 

to account for the influence of these notions using the smallest 

number of concepts and parameters possible. The prototype 

architecture provides a framework for experimentation with 

software agents for use in agent based social simulations with 

potential for the use of the architecture in conjunction with 

empirical data collection efforts. The need for an agent 

decision making architecture centered on the recognition of a 

given situation is highlighted by the literature on decision 

making and the need to reduce complex state spaces in agent 

environments [1], [2].   

 Agent architectures capable of recognizing relevant 

situations enable the use of algorithms such as reinforcement 

learning [3]. Reinforcement learning provides multiple 

techniques to enable software agents to select actions in given 

situations based on a reward policy specified by the modeler. 

The use of utility based rewards allows these policies to be 
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tailored to the desired use case and role.  

Applications such as battlefield command and control 

systems and agent based social simulations require agents 

capable of allocating selective attention to relevant percepts in 

a given context. This combination of bottom up and top down 

processing in conjunction with the constraints of working 

memory facilitate the construction of a situation. The 

framework allows for the representation of human behavioral 

phenomena such as change blindness, where changes in a 

scene are not observed due to the effects of top down 

processing on selective attention. This framework also 

provides a mechanism for agents to participate in collective 

learning within a social network, to determine which agents to 

communicate with and to determine what messages should be 

attended to.  

This paper reviews the concept of situation as defined by 

both the cognitive science and artificial intelligence literature.  

Next, the paper describes the proposed agent architecture and 

the utility-based action selection policy. Initial results of the 

prototype architecture in a benchmark environment are 

discussed. The paper ends with a discussion of planned future 

work. 

II. BACKGROUND 

This section provides a brief overview of the concept of sit-

uation as used in this paper, cognitive architectures, cognitive 

social simulation, and reinforcement learning. 

A. Situation 

The term situation is typically used to refer to the current 

circumstances in which an entity finds itself. The situation can 

encompass the state of the external environment and the 

internal state of the entity itself. This term is often used in 

conjunction with a notion of awareness. Taken together, 

situation awareness is often defined  as   the  “perception  of   the  
elements in the environment within a volume of time and 

space, the comprehension of their meaning and the projection 

of their status in the near future [4].” This notion of situation is 

further decomposed into three levels: 1) perception, 2) 

comprehension, and 3) projection. Perception involves the 

detection of information from the environment. 

Comprehension involves the attribution of meaning from the 

perceived   information   relative   to   the   individual’s   goals.  
Projection   involves   forecasting   the   impact   of   the   individual’s  
current comprehension of the perceived information on future 
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states of the world relevant to their goals [5].  

The term situation, as defined in relation to situation 

calculus, refers to an initial state, s, as well as the result of 

action, a, in state s, Result(s, a) [1]. A situation in this 

language is formed by the set of percepts that an individual 

senses from its environment, as constrained by the rules of the 

environment   and   the   capability   of   its   sensors.   The   agent’s  
ability to use percepts to form and recognize the situation can 

be constrained by concepts such as working memory and 

selective attention [6]. A combination of bottom up 

processing, sensing of salient percepts from the environment, 

with top down processing of information, relevant to a given 

task or context, results in the formation and recognition of a 

situation [6]. Individuals or agents can then leverage the 

recognition of this situation to select appropriate actions given 

their goal set and prior knowledge. The impact of prior 

knowledge and experience on the ability to recognize 

situations relevant to the task at hand and quickly make 

decision has been examined extensively, forming the basis for 

recognition prime decision making [2]. 

B. Cognitive Architectures 

Cognitive architectures provide a specification of the structural 

components of intelligent software agents of varying levels of 

sophistication, but all with a common goal of implementing a 

unified theory of cognition. The degree to which the 

architecture seeks to replicate what is known of human 

cognition varies by use case. A distinction is made in the 

literature between cognitive models, which are more narrowly 

scoped and seek to explain some phenomena, and cognitive 

architectures which seek to provide domain generic 

frameworks representative of the functional processes that 

occur within the human mind. Three broad categories of 

cognitive architectures have been identified by the National 

Research Council: symbolic, sub-symbolic (or connectionist), 

and hybrid [7]. Multiple cognitive architectures have been 

implemented and used in a variety of settings. Three of the 

more prominent cognitive architectures are ACT-R, SOAR, 

and CLARION [7].   

 ACT-R, whose development started in 1983, has 

traditionally focused on serving as a platform for research on 

cognition and representation of fundamental psychological 

processes [7]. ACT-R uses a combined form of symbolic and 

numerical representation with production firing based on log 

odds of success of a particular rule in a given situation [8]. 

ACT-R deals with the notion of working memory capacity 

through its use of declarative memory. Declarative memory 

decays as the size of the information pushed in increases, 

making it seem more closely tied to a capacity based 

representation of working [9]. ACT-R has been used in a 

number of applied settings to include the modeling of 

adversarial behavior [7].  

 The SOAR architecture has gone through eight major 

versions between 1982 and 2007, all maintaining a pure 

symbolic processing approach and using production rules for 

long-term knowledge representation [10]. The traditional 

SOAR, up through SOAR 8, consisted of symbolic long-term 

memory and symbolic short-term memory. The long-term 

memory represented knowledge as production rules. The 

short-term  memory  contained  the  agent’s  current  assessment  of  
the situation, based on perception and information from long-

term memory. SOAR is characterized as taking a functional 

approach to the representation of working memory capacity. 

The general processing cycle in SOAR is to receive an input 

from perception causing changes in short-term memory, based 

on changes in short-term memory the goal of the agent is 

revisited, and operators are proposed and evaluated on their 

appropriateness to achieve the given goal based on the notion 

of a symbolic or numeric preference. Fixed decision 

procedures then select the appropriate operator, with 

mechanisms in place to accommodate conflicts should they 

arise. The actions associated with the chosen operator are 

executed by the rule based system with appropriate output 

passed to the environment [10]. Laird highlights extensions to 

the traditional SOAR in the latest version, SOAR 9, to provide 

capability for long-term memory representation, additional 

learning mechanism, and non-symbolic processing [10].  

 CLARION is a cognitive architecture consisting of four 

subsystems: the action-centered subsystem, the non-action 

centered subsystem, the motivational subsystem, and the meta-

cognitive subsystem.  Each subsystem provides two levels of 

knowledge representation, a top level for explicit knowledge 

representation and a bottom level for implicit knowledge 

representation. These bottom-up associations between action, 

state, and outcome inform action selection [9]. Interaction 

occurs between the two levels during action selection and 

learning. The action-centered subsystem controls all actions, 

external and internal to the agent. The non-action centered 

subsystem stores and maintains general knowledge. The 

motivational subsystem determines motivations for perception, 

action and cognition. The meta-cognitive subsystem controls 

the system of systems, providing central control [5]. The role 

of motivation and emotion in cognitive architectures will be 

discussed in greater detail below. 

C. Motivation and Emotion in Cognitive Architectures 

Sun points to evidence from social psychology supporting a 

dual view of human motivation, with implicit and explicit 

motivations playing a top down and bottom up role in the 

formation of intent [11]. The interplay between these explicit 

and implicit motivations as described by Sun allows for an 

implicit motivation, or need, to lead to a more explicitly stated 

motivational goal to satisfy the implicitly motivated need [12].  

Sun provides a set of low (example: food, water, sleep etc) and 

high (example: social approval, social status, reciprocation etc) 

level primary drives as sources for implicit motivation [12]. 

The strength of these implicit motivations is determined by 

examining each in light of five considerations (proportional 

activation, opportunism, contiguity of action, interruption 

when necessary, and combination of preferences) with the 

result being the specification of an explicit motivational goal.  

This general idea is attractive, but a more compact means of 

addressing these fundamental motivations is employed here 

relying  on  Kenrick  et  al.’s  renovation  to  the  classic  pyramid  of  
needs [13].  
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The  core  of  Maslow’s  theory  of  motivation rests on the 

notion that there are multiple independent fundamental 

motivational systems and that these motives are organized into 

a prioritized hierarchy [13]. The fundamental implicit 

motivations proposed by are from bottom to top: 1) immediate 

physiological needs, 2) self protection, 3) affiliation, 4) 

status/esteem, 5) mate acquisition, 6) mate retention, and 7) 

parenting. An important distinction to recognize is that the 

goals are overlapping, with lower level goals becoming 

activated once developed when appropriate situations arise, 

regardless of highest attained level of development.  Kenrick 

states that a motivational system must  contain  “(a)  a  template  
for  recognizing…environment  threats  or  opportunities,  (b)  
inner motivational/physiological states designed to mobilize 

relevant resources, (c) cognitive decision rules designed to 

analyze trade-offs inherent in various  responses, and (d) a set 

of responses designed to respond to threats or opportunities 

represented by the environment inputs [13].”  These  functional 

requirements are contained in the meta-cognition module of 

the proposed architecture and reflect the central role of 

situation in cognition.  

The role of emotion in the meta-cognitive processes is 

recognized as playing an important role in decision making 

and individual and social behavior [7]. At the most abstract 

level, emotions can be defined as mental states based on the 

individual or agent’s current situation relative to its 

motivational goals and beliefs. Emotions express themselves in 

multiple means, but the primary focus of this research will be 

to represent their impact perception, cognition, and the 

appraisal process itself through a form of cognitive appraisal 

[7]. The notion is that the emotional state of the individual 

impacts its interpretation of the situation and subsequent 

decision making processes as well as its perception of 

subsequent information from the environment through the 

interaction of emotion with selective attention. Subsequent 

cognitive appraisals are also conducted from the view of the 

emotional state in which the agent resides when the appraisal 

begins. This aspect of affective processing remains to be fully 

explored and incorporated into cognitive architectures [7]. 

D. Cognitive Social Simulations 

Cognitive architectures, described in some contexts as 

micro-level formal models, are simulation based models of 

human information processing often built to emphasize distinct 

aspects of cognition. Agent based models are tools for holistic 

analysis of systems, but require a reductionist approach in the 

development of micro-level behaviors for individual actors. 

Agents are intended to represent human behavior in the most 

simplified manner that is still useful [14]. Agent based social 

simulations represent human cognition at varying levels of 

sophistication [7], but typically adhere to the most rudimentary 

level of an agent as defined by Russell and Norvig. 

Summarized here, an agent senses information, or percepts 

from its environment, using sensors, updates its internal 

representation of the world, and selects actions based on this 

updated internal state [15]. Depending on the needed level of 

resolution the agent can represent either an individual or group 

of individuals. Sun points out that agent based social 

simulations and cognitive architectures have developed in 

relative isolation from each other, but that the use of 

appropriate cognitive architectures could benefit agent based 

social simulation by providing a realistic basis for the 

representation of individual agents [16]. While the potential 

for agent based social simulations and cognitive architectures 

to provide a multi-level examination of human behavior 

including the sociological and psychological perspectives 

respectively exists [8], the National Research Council is less 

clear on the use of cognitive architectures to represent group 

cognition [7]. Limited research has been conducted to develop 

cognitive architectures to address the representation of groups, 

this area has not been fully developed or applied broadly in 

social simulations [17]. 

E. Reinforcement Learning 

 Reinforcement learning provides a flexible tool to facilitate 

action selection in agent modeling across multiple domains. 

Utilizing these techniques, an agent can leverage the percepts 

from its environment received via organic sensors to select 

actions to execute in the environment via actuators [15].  

Depending on the agent prototype chosen, the agent might 

make use of only the most recent percepts or an ordered 

sequence of percepts in order to assess the state of the 

environment, or situation. The agent uses these percepts to 

understand its current situation and identify the action choices 

relevant to the current situation. The basic elements of 

reinforcement learning (a policy, a reward function, a value 

function, and an optional model of the environment) allow the 

agent to identify how to map situation to actions [3]. The 

complexity of domains comprising the application areas for 

agents motivates the need for approaches to reinforcement 

learning that learn robust policies while efficiently utilizing 

computing resources. 

Model free methods of reinforcement learning, such as Q-

learning, provide general purpose methods of learning 

associations between rewards and actions [3]. Various 

methods exist to handle credit assignment and the problem of 

balancing exploration versus exploitation. The use of utility as 

a reward function provides the modeler with great flexibility in 

defining goals and objectives [15]. The concept of a state 

action pair is often used to describe the relationship between 

actions and the agent’s current information regarding the state 

of the environment in which it is operating. The notion that 

equivalent states can be grouped into a set of situations has not 

been fully expanded in the literature on reinforcement 

learning. Reinforcement learning techniques have been 

successfully incorporated into existing cognitive architectures, 

but these architectures do not link the learning to the notion of 

a situation put forward in this research [16]. 

III. PROPOSED COGNITIVE ARCHITECTURE 

This section provides a description of a practical cognitive 

architecture for use in social simulations in which the notion of 

a situation plays a central role.  
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A. Architectural Overview 

A cognitive architecture provides structure to integrate 

cognitive models, models which attempt to account for 

functionality within the human brain, with a unified 

representation of cognition. The architecture presented here is 

based on the information processing model provided by 

Wickens et al. and is influenced by perceptual control theory 

[18]. The proposed cognitive architecture attempts to represent 

individual situation based cognition suitable for use in 

software agents intended to be integrated into social 

simulations. The architecture is presented in a general manner 

in this section.  
Environment
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Sensors
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Percepts
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Perception

Percepts

Percepts

Selective Attention

Working Memory
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Action(Situation)

Identify Equivalent 

Situations

ID Relevant Actions

Low High

Update 

Expectations

 
)LJXUH����6LWXDWLRQ�EDVHG�FRJQLWLYH�DUFKLWHFWXUH��
 

Each of the functional components for the proposed 

architecture and their relationships to the whole will be briefly 

described prior to a more detailed description of each 

component in subsequent sections. The perception module, 

influenced by the goals of the agent from meta-cognition, 

receives and processes information from the environment in 

the form of percepts, subject to constraints on working 

memory and the allocation of selective attention influenced by 

elements of meta-cognition. The output of the perception 

module is a situation based on the most recent sensory 

information available. The meta-cognition module receives 

and processes the situation from the perception module, 

updating motivations, emotional state, expectations and 

ultimately outputting an updated goal state along with a top 

level method category to achieve that goal. The decision 

making module uses the updated situation, annotated with 

additional information from the meta-cognition module, to 

determine the method of action selection and ultimately the 

action to be expressed in the environment. The long-term 

memory module interacts with the other modules in the 

architecture providing a repository for long term goals, beliefs, 

values and interests, as well as reward histories, methods, and 

actions. This architecture distinguishes itself from previously 

proposed architectures for cognitive social simulation through 

the use of expectations in meta-cognition module, the 

incorporation of the notion of mental simulation and the 

central role of situation. 

B. Perception: Working Memory, Selective Attention, and 

the Formation of Situation  

The main function of the perception module is to form a 

situation constrained by the limits of working memory and 

informed by selective attention. Percepts arrive to the 

perception module via sensors that sense information from the 

environment and from the internal agent feedback 

mechanisms. Note that this architecture treats inter-agent 

communications through the receipt of information via 

percepts and the decision to communicate via action selection. 

Percepts are screened for relevance based on selective 

attention and if found relevant to the current situation are 

processed into working memory.  Selective attention is driven 

by top down processing from the task and context [6]. 

Selective attention is influenced by the current motivations and 

emotions from the meta-cognition module. In communications 

selective attention is informed by information regarding the 

relationship with the other agent and notions such as trust. 

Working memory is limited to 7-10 percepts, the generally 

accepted limit [18]. The final set of percepts is considered a 

description of the current situation, considering both external 

perceptual  information  and  information  from  the  agent’s  
internal state. 

 

 

 

 

 

 

 

 

 

 

 

 

C. Meta-cognition: Motivation, Emotion, and the 

Establishment of Goals and Rewards 

The meta-cognitive module provides the agents top-down 

direction based on motivations and emotions elicited by a 

given situation input from the perception module. Meta-

cognition is broadly defined as any cognitive process that 

monitors or controls other aspects of cognition or thinking 

about thinking [17]. Meta-cognition is described by Flavel as 

occurring in three phases: 1) meta-cognitive knowledge stores 

information regarding the environment, task, and known 

strategies; 2) meta-cognitive experience stores information 

describing previous means of achieving a given result; 3) 

meta-cognitive regulation describes the process of monitoring 

and controlling progress on cognitive tasks [19]. The meta-

cognitive module also hosts the agent’s information regarding 

the  motivation  of  agent’s  behavior. 
 The input to the meta-cognition module is the most recent 

situation provided by the perception module. Using this 

updated situation the meta-cognition module conducts an 

update to determine which motivations are active and to assess 

the emotional impact of the new situation. The situation object 

in conjunction with information from long term memory is 

1. Percept received from sensors. 

2. Percept is checked for Relevancy(selective attention, 

percept); if percept is relevant it is passed to working 

memory. 

3. If space is available in working memory percept is 

added; else oldest percept is dropped. 

4. Current set of percepts is used to create a 

Situation(percept1,..perceptN) which is passed to the 

meta-cognition module for processing. 

)LJXUH����6WHSV�LQ�SHUFHSWXDO�SURFHVV��
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used to form expectations about likely future situations [20]. 

Goals and methods are selected using input on motivation, 

emotional state, and expectations in conjunction with long 

term memory. As a result of this step selective attention is 

updated and the updated situation and goal are passed to the 

action selection module. 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. Situation Based Action Selection: Learning, Recognition 

Prime Decision-making, and Mental Simulation  

Situation based action selection facilitates the reduction of the 

state space of the model through the notion of equivalent states 

being categorized as unique situations. For each unique 

situation there exists a set of relevant candidate actions. 

Actions have an associated activation level provided by a 

utility based reinforcement learning algorithm [3]. If the agent 

has enough experience, defined as a specified number of trials 

of each action, then the agent action selection is controlled by 

a softmax function, such as the Boltzman distribution, with a 

greedy setting, replicating recognition prime decision making 

[2]. If the agent has some level of experience in the situation 

then action selection can still be conducted using the softmax 

function, but with an exploratory setting. If the agent has no 

experience in the situation, then mental simulation is 

conducted, with the agent using available knowledge regarding 

the environment to project future states based on the actions 

currently available [2], [21]. An alternative to the case where 

sufficient experience is not present is to base the decision 

making mode on the risk level associated with the given 

situation. In this formulation, if the requisite experience to use 

recognition prime decision making is not present, when risk is 

low the agent simply uses the softmax function with an 

exploratory setting, while if risk is high the agent uses mental 

simulation.  

 

 

 

 

 

 

 

 

 

 

E. Long-term Memory: Remembering the Situation 

Long-term memory stores information learned over time for 

future retrieval based on the situation. Reward histories from 

prior action selections as well as long term beliefs and issue 

stances are maintained in long term memory. Relevant actions 

for given situations as well as mappings of equivalent 

situations can be returned from long term memory based on 

need in a given situation.  

IV. PROTOTYPE IMPLEMENTATION 

This section describes the results of the prototype situation 

based cognitive architecture in a benchmark environment. The 

section provides an overview of the benchmark environment, a 

review of the functionality implemented in the current 

prototype, an overview of the experimental design, and 

analysis and results. 

A. Benchmark Environment 

The benchmark environment consists of a simple virtual 

environment with a text based interface modeled after the 

DikuMUD  family  of  combat  oriented  MUD’s.  Player’s  of  this 

type of game typically assume the role of a young adventurer 

with the goal of increasing the strength of an in game avatar 

[20]. This simple environment, implemented in Python, allows 

for the prototyping of the cognitive architecture described 

above.  

B. Current Architecture 

This description describes how the concepts described above 

are implemented in Python within the current architecture in 

the benchmark environment for use by the agent within the 

benchmark environment.  

 

1) Perception 

The  perception  module  controls  the  agent’s  receipt  of  and  use  
of information from the environment. Percepts are provided in 

the form of text based updates to state variables that describe 

the  state  of  the  environment  from  the  agent’s  perspective [20]. 

Perception is constrained to those state variables that are 

collocated with the agent. Percepts describing the state of the 

agent are also provided. The environment provides four 

percept types: ‘A’ representing agent actions,’ E’ representing 

events, ‘+’ representing the initialization of a time interval 

during which a variable was perceived, and ‘  –‘ representing 

the removal of a percept from the sensor range.  

 
(20.0029997826 + location Red_Goblin79 The_Northern_Meadow4) 

(23.7319998741 A w spock84) 

(23.7319998741 E go spock84 west) 

(23.7319998741 - place The_Northern_Meadow4) 

 

Logical atoms are formed with percept type and the percept 

name, ignoring the time stamp and forming predicates with the 

result [20]. Working memory constrained by limiting the list of 

percepts to those that are no older than t. A example is shown 

below. 

 
10 : ( percept goE spock84 south ) 

11 : ( percept sA spock84 ) 

12 : ( percept location- spock84 The_Northwestern_Meadow9 ) 

1. Situation object is received from perception module. 

2. Motivation(situation) and Emotion(situation) are 

determined. 

3. A prediction of the next situation is accomplished 

based on Expectation(situation, motivation, emotion). 

4. The most urgent goal is chosen for action, 

Goal(expectation, motivation, emotion). 

5. Current situation and goal are passed to action 

selection module; update selective attention within 

perception module. 

1. Situation, method, and goal received from meta-

cognition module. 

2. RelevantActions(situation, method, goal) are 

identified. 

3. DecisionMode(situation, actions, experience, risk) 

determines decision mode. 

4. Action selected and expressed in the environment.  

)LJXUH����6WHSV�LQ�PHWD�FRJQLWLYH�SURFHVV��

)LJXUH����6WHSV�LQ�DFWLRQ�VHOHFWLRQ�SURFHVV��
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13 : ( percept place- The_Northwestern_Meadow9 ) 

14 : ( percept spock- spock84 ) 

15 : ( percept location+ spock84 The_Western_Meadow7 ) 

16 : ( percept Red_Goblin+ Red_Goblin79 ) 

 

A collection of percepts is used to identify the current situation 

through pattern matching and first order logic rules, with the 

situation then being declared as a current fact. 

 

2) Meta-cognition 

The meta-cognition module uses this current situation to 

determine the most relevant goal and method. This is again 

achieved through production system rules stored in long term 

memory that specify a goal for each situation and some 

number of methods to achieve that goal. In the case where 

multiple methods can be used to achieve the goal, 

reinforcement learning is used to select the method for 

execution. The particular method of reinforcement learning 

used here is described in the subsequent discussion of action 

selection. A sample rule is shown below. 
(defrule FindObject 

(CurrentGoal ?g) 

(goalProperty ?g name FindObject) 

(percept spock+ ?userID) 

(percept location+ ?userID The_Southern_Meadow5) 

=> 

(assert(action e)) 

 

3) Long-term memory 

Long term memory contains the reward histories supporting 

the reinforcement learning algorithms, situation to action 

relationships, and top level rules. Meta-cognitive rules, 

situation to action mappings, and memory decay parameters 

are provided to the agent prior to run time. The firing time of 

each rule is recorded along with the time at which utility was 

received by the agent as shown below. 
firing times [5.25899982452, 9.6609997749299996, 

19.042999982800001] 

utilities [(1.0, 14.263999939)] 

 

4) Action selection 

Given the goal and method based on the current situation 

from the perception module, the action selection module 

implements a form of recognition prime decision making. For 

the given situation, as represented by the goal and method, the 

agent selects from a subset of possible actions, constrained by 

the situation. The agent selects an action for expression in the 

environment using utility based reinforcement learning. Point 

utility is a real number (approximated in implementations by a 

floating-point  number)  that  represents  the  agent’s  degree  of  
contentment with the conditions in its environment at a 

specific point in time. Since the agent's knowledge of the 

current status of the environment comes only via percepts, and 

so can change only when a percept is received, we define a 

point utility value for each percept received. This value 

depends only upon that percept and the state at that time, as 

the state summarizes all past percepts. The point utility 

function is thus defined as : ,u S P  .   

  A single action will generally affect more than one point 

utility value. Therefore, it is important to aggregate utility in 

order to capture the effects of an action on point utility values 

received over time. The traditional aggregation method is to 

form the exponential moving average of the point utility 

values. Let pi be the percept sequence, and ti the sequence of 

times at which the percepts arrive. Let si be the corresponding 

sequence of states. Then the corresponding sequence of point 

utility values is ui=u(si,pi). Given the choice of exponential 

base 0<λ<1, the exponential moving average of the sequence 

starting at time t is, 

 ( ) ( )it t
i i

i

q t u t t     (1.1) 

,where is the unit step function, which is zero when its 

argument is negative and one otherwise.  

 Clearly the expected future aggregate utility of an action 

in a particular situation must be an important factor in any 

decision to select it. The obvious estimator of the expected 

future aggregate utility of an action is the average of the 

aggregate utility received when the action was taken in the 

past. Let  be the action selected in situation  at time . 

Then the aggregate utility actually received after this action is 

given by . Let define  to be the set of all times at 

which action  was taken in situation . Then we will take the 

estimator of the expected future aggregate utility of action a in 

situation  to be 
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( )
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| ( , ) |t t a

q t
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 ( , )Q a( , )Q a( , )  (1.2) 

, where | ( , ) |t a  is the number of elements in the 

set ( , )t a .  is an estimator of the Q function typically 

defined in reinforcement learning in the special case that the 

set of situations is identical to the set of individual states. 

 Action selection is tricky for learning agents. To have the 

best possible chance at finding an optimal action selection 

policy, they must walk a line between adequate exploration of 

underused actions and exploitation of actions that have 

produced good results in the past. The most common 

approaches used in reinforcement learning, namely the -

greedy method or the softmax (Boltzmann distribution) 

method are applicable here.  
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 (1.3) 

The action i with the greatest expected utility, P, is selected. 

Note that in  this  case  the  temperature,  τ,  is  used  to  control  the  
level of exploration and exploitation.  

C. Experiment one 

The experiment will examine a simple agent seeking to find a 

randomly generated moving object within a 3 x 3 domain 

hosted on a MUD type server described above as an example 

of recognition primed decision making. Once the object is 

identified the agent remains in place until the object has 

moved, then continues to pursue the object as it continues its 

random movement. In this simple case the agent is asked to 
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learn which of the four policies maximize its overall utility 

over the course of a set period. Each course of action (COA) is 

distinct. In COA 1, the agent patrols the perimeter of the grid-

world and receives a reward for the detection of a single 

object. COA 2 differs from COA 1 only in the timing of the 

reward, which occurs following the sequential detection of two 

objects. 

 

 

 

 

 

 

 

In COA 3, the agent remains in its current location until the 

domain generates a co-located object, at which time it receives 

a reward. COA 4 is identical to COA 3 with the exception of 

the requirement to identify 2 objects, as in COA 2. The reward 

for a single object, COA 1 and COA 3, is 1.0 and the reward 

for the sequential detection of two objects, COA 2 and COA 4, 

is 2.0. The agent has the opportunity to select one of the four 

possible  COA’s  each  time  it  finds  itself  in  the  situation  of  
having just obtained a goal. 

The  agent  in  this  case  must  learn  which  of  the  four  COA’s  
available should be chosen in the given situation. In this 

simple case the focus is on the recognition prime decision 

making component of the cognitive architecture. Two settings 

of the temperature parameter, 0.333 and 0.667, that controls 

the level of exploration and exploitation of the learning agent 

through the Boltzmann distribution were explored. Each case 

was allowed to run for 10,800 seconds resulting in 113 

decision points for the medium temperature case and 127 

decision points for the low temperature case. The low 

temperature case is equivalent to the notion of recognition 

prime decision making as a form of greedy reinforcement 

learning executed when the agent has sufficient experience in 

the environment. The medium temperature case might be used 

when the agent has some level of knowledge regarding the 

situation and the risk is perceived as relatively low. 

Even with this midrange exploration setting, however, the 

expected utility of each COA begins to separate following 

approximately 80 decision points, and the rank order of the 

COA's does not change following the 69th decision point. 

Note that by the end of the run the activation levels for COA  

2, actively searching for two objects, and COA 3, waiting for a 

single object, have separated themselves from COA 1 and 

COA 4 by over 0.1.  The average activation level mirrors the 

rank order of the figure 6 (COA2 = 0.33, COA3=0.24, COA4= 

0.19,  COA1=0.14).  The  agent’s  performance  in  the  
environment as measured by time to detect an object did not 

improve with each successive attempt and in fact varied 

greatly over the latter portion of the run.  

In the low temperature case, the expected utility of the COAs 

shows greater variability in the first 50 decisions than in the 

later portions of the run. Interestingly, COA 4 in this case does 

not show any change in expected utility until approximately 

decision point 50 as well. The ranking of the courses of action 

by expected utility becomes stable earlier in this case than the 

medium temperature case (~DP 50 as opposed to DP70), but 

late in the run COA 4 crosses over with COA 1 in ranking. The 

end of run ranking is the same as in the previous case. The 

average expected utility corresponds to the ranking seen above 

with the exception of COA1 and COA 4 (COA2 = 0.343, 

COA3=0.227, COA4= 0.093, COA1=0.193). 
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)LJXUH����([SHFWHG�XWLOLW\�IRU�HDFK�FRXUVH�RI�DFWLRQ�DW�
VHTXHQWLDO�GHFLVLRQ�SRLQWV�IRU�WHPS �������WRS��DQG�
WHPS �������ERWWRP���

From the perspective of representing recognition prime 

decision making with reinforcement learning, the results of the 

bottom chart illustrate how, with some minimal level of 

experience in the situation and environment, in this case 

approximately 40 encounters with the situation, the agent is 

able to correctly choose the course of action with the greatest 

expected utility. In the case where the agent does not have 

sufficient experience and risk is perceived as low, a medium to 

high temperature setting allows the agent to explore for a 

greater period of time, approximately 40 exposures to the 

situation prior to the dominant COAs consistent selection. The 

next section will describe the use a dynamic temperature 

schedule in the same task. 

D. Experiment two 

The second experiment explores the use of a dynamic 

temperature during runtime, controlling the balance of 

exploration and exploitation based on the updated situation as 

described by percepts from the environment.  The notion of 

controlling the temperature dynamically can facilitate a more 

robust representation of recognition prime decision making. 

Initially a novice agent will need to explore the environment to 

gain some level of experience, but once a sufficient level of 

experience is obtained the agent will need to exploit the 

knowledge it has learned about the environment. This section 

explores the use of time to control the temperature. 

The simplest possible method of illustrating the concept of a 

dynamic temperature is through the use of a decay function 

driven by the current simulation time. The general form of this 

simple approach is shown below. 

)LJXUH����6HDUFK�SDWWHUQV�&2$�	��OHIW��&2$�	��ULJKW��
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  The  new  temperature,  τnew , is driven by a modeler driven 

half life specified by te with t being the current simulation 

time. In this case the simulation was run for 5000 seconds, 

with a half life specified at 2500 seconds and an initial 

temperature of 1.0.  The resulting expected utilities of each 

course of action as well as the temperature over time are 

shown below.  
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In this case, the agent converges to the preferred course of 

action by approximately the 20
th

 decision point. This illustrates 

that even with a simple time based approach for dynamically 

adjusting the temperature, learning can be facilitated with 

fewer encounters with the decision point than with the fixed 

cases above.   

V. CONCLUSIONS AND FUTURE WORK 

This paper introduced a situation based cognitive architecture 

for use in social simulation that builds on the concepts of 

perception, meta-cognition, action-selection, and long term 

memory. The proposed architecture imposes constraints on 

information processing representative of those that exist in 

humans. The perception module incorporates notions of 

working memory and selective attention. Meta-cognition is 

influenced by motivation and emotion. The action selection 

module incorporates concepts inspired by recognition prime 

decision making and the consideration of risk. Central to each 

process is the notion of situational relevancy.  

 Experimental results from the current prototype cognitive 

architecture were presented for a simple text based 

environment as a proof of principle. A utility based 

reinforcement learning method that places the notion of 

situation in a central role was introduced and results examined 

as a means of representing recognition prime decision making. 

A simple means of dynamically adjusting the balance between 

exploration and exploitation as a function of time was also 

introduced.  

 Future work will seek to implement the impact of emotion, 

motivation, and expectation on the selection of methods and 

goals in the meta-cognition module. The action selection 

module will be expanded to include selection of decision mode 

as during runtime allowing the agent to dynamically shift from 

recognition prime decision making to a more exploratory 

mode or to mental simulation based on the situation. The use 

of other elements of the situation to control the level of 

exploration and exploitation will be further explored. The 

incorporation of the architecture into a target social simulation, 

the Cultural Geography model, is ongoing [22]. The uses of 

cognitive architectures that leverage a robust notion of 

situation within a social setting have yet to be fully explored 

[16]. Ongoing efforts will explore the concept of trust 

formation and communications through the use of these 

technologies. 
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