
Calhoun: The NPS Institutional Archive
DSpace Repository

NPS Scholarship Publications

2016-04-29

Covering Numbers for Semicontinuous Functions

Royset, Johannes O.

https://hdl.handle.net/10945/48684

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



Covering Numbers for Semicontinuous Functions

Johannes O. Royset
Operations Research Department

Naval Postgraduate School
joroyset@nps.edu

Abstract. Considering the metric space of extended real-valued lower semicontinuous functions
under the epi-distance, the paper gives an upper bound on the covering numbers of bounded subsets
of such functions. No assumptions about continuity, smoothness, variation, and even finiteness of the
functions are needed. The bound is shown to be nearly sharp through the construction of a set of
functions with covering numbers deviating from the upper bound only by a logarithmic factor. The
analogy between lower and upper semicontinuous functions implies that identical covering numbers hold
for bounded sets of the latter class of functions as well, but now under the hypo-distance metric.
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1 Introduction

Covering numbers of classes of functions play central roles in parts of information theory, statistics, and

applications such as machine learning; see for example [26, 16]. A large variety of results are available.

The pioneering work [17, 11] deal with continuous and smooth functions; see [19] for a recent discussion.

Functions of bounded variation are considered in [7] and analytic functions in [13]. An upper estimate

for the covering numbers of the unit ball of Gaussian reproducing kernel Hilbert spaces is given in [29],

with further refinements and applications in [27, 18]. Covering numbers of sets of convex functions are

established in [14, 12], with significant improvements in [15].

In this paper, we provide upper bounds on the covering numbers of bounded subsets of extended

real-valued lower semicontinuous (lsc) functions on IRd under the epi-distance metric. We permit any

d = 1, 2, ... and establish an upper bound on the ε-metric entropy number, which is the logarithm of

the ε-covering number, that is of order O(ε−d(log ε−1)d+1). This upper bound is nearly sharp as we

construct a bounded set of lsc functions that has ε-metric entropy number cε−d log ε−1 for some c > 0.

It is well-known that bounded subsets of lsc functions are totally bounded under the epi-distance

metric [20, Theorem 7.58] and consequently the covering numbers of such sets are finite. Here, we

establish for the first time a quantification of these covering numbers. The class of lsc functions is quite
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expansive as it includes functions defined on all of IRd that might even take on the values ±∞. This class

is of interest in various function identification problems and their applications in statistics and operations

research [25, 23, 24], and is fundamental to constrained minimization problems, which abstractly can

be represented by lsc functions [20]. Since the negative of a lsc function is an extended real-valued

upper semicontinuous (usc) function, the results developed here carry over directly to bounded subsets

of the usc functions, now under the hypo-distance metric. Further applications arise in probability

theory because there the hypo-distance metrizes weak convergence of distribution functions on IRd,

which obviously are usc [22]. Thus, as an example, the covering numbers given in this paper provide

directly covering numbers for bounded sets of distribution functions on IRd.

Technically, we rely on set-convergence of epi-graphs, coined epi-convergence by R. Wets in [28],

which is quantified by a modified Pompeiu-Hausdorff distance between subsets of IRd+1. This perspec-

tive was placed on a firm footing in [4, 2, 5, 8]; see also [6, 9, 10] for work on the convex case. The

relevant results are available in [20, Chapter 7], which together with recent developments in [24, 21],

provide the foundations for the present derivations.

After the review of background material in Section 2, the main theorems are stated in Section 3.

Proofs and supporting results are given in Section 4.

2 Background

We let lsc-fcns(IRd) := {f : IRd → IR : f lsc and f ̸≡ ∞}, where IR := IR ∪ {−∞,∞}. Thus, every

f ∈ lsc-fcns(IRd) has a nonempty closed epi-graph epi f := {(x, x0) ∈ IRd × IR : f(x) ≤ x0}. We adopt

the sup-norm on IRd, which leads to slight simplifications below, but other choices would only influence

the constants in the main results. Let IB(x, ρ) := {y ∈ IRd : ∥x − y∥∞ ≤ ρ}, ρIB := IB(0, ρ), and

ρS := ρIB × [−ρ, ρ] ⊂ IRd × IR. The epi-distance dl is defined for any f, g ∈ lsc-fcns(IRd) as

dl(f, g) :=

∫ ∞

0
dlρ(f, g)e

−ρdρ,

where the ρ-epi-distance, ρ ≥ 0, is given by

dlρ(f, g) := sup
{∣∣dist (x̄, epi f)− dist

(
x̄, epi g

)∣∣ : x̄ ∈ ρS
}
,

with dist giving the usual point-to-set distance, i.e., for x̄ = (x, x0) ∈ IRd × IR,

dist
(
x̄, C̄

)
= inf

{
max{∥x− y∥∞, |x0 − y0|} : (y, y0) ∈ C̄

}
if C̄ ⊂ IRd × IR is nonempty

and dist(x̄, ∅) = ∞. It is clear that dlρ(f, g) is closely related to the Pompeiu-Hausdorff distance between

epi f and epi g, and in fact equivalent as ρ tends to infinity. Roughly speaking, the epi-distance between

f and g is the weighted average of truncated versions of the Pompeiu-Hausdorff distance between their

epi-graphs.

It is well-known that (lsc-fcns(IRd), dl) is a complete separable proper metric space [20, Theorem

7.58] (see also [24]). We recall that a metric space is proper if every closed ball in that space is compact.
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The epi-distance induces the epi-topology on lsc-fcns(IRd), also called the Attouch-Wets topology. For

fν , f ∈ lsc-fcns(IRd), ν ∈ IN := {1, 2, ...., },

dl(fν , f) → 0 if and only if fν epi-converges to f.

Epi-convergence neither implies nor is implied by pointwise convergence. Uniform convergence en-

sures epi-convergence, but fails to handle extended real-valued functions satisfactory—a necessity in

constrained optimization problems. Epi-convergence ensures convergence of solutions of minimization

problems (see for example [20, Chapter 7] and [3, 1, 21]). It is therefore of particular importance in the

area of optimization with numerous applications in machine learning, statistics, and control, but also of

significance in study of partial differential equations where the closely related notion of Γ-convergence

appears.

Following the usual definition of covering numbers, we let for any F ⊂ lsc-fcns(IRd) and ε > 0,

N(F, ε; dl) be the smallest number of closed balls in lsc-fcns(IRd) with radii ε that cover F .

3 Main Results

In this section, we establish lower and upper bounds on the covering numbers for bounded subsets of

lsc-fcns(IRd). The proofs are postponed to the subsequent section.

3.1 Theorem (covering numbers; upper bound) Suppose that d ∈ IN and F ⊂ lsc-fcns(IRd) is bounded.

Then, there exist c ≥ 0 and ε̄ > 0 (independent of d) such that

logN(F, ε; dl) ≤
(c
ε

)d
(
log

1

ε

)d+1

for all ε ∈ (0, ε̄].

The constant c depends on the size of a ball that contains the set under consideration, which brings

in the need for boundedness. If the epi-distance had been defined using another norm on IRd+1 than the

sup-norm, c would have changed and possibly have depended on d. Bounded subsets of lsc-fcns(IRd)

contain a wide variety of functions. For example, it follows from Proposition 4.1 below that the set

{f ∈ lsc-fcns(IRd) : f(0) ≤ 0} is contained in a ball centered at the zero-function with radius one.

Thus, this set is bounded and can be covered as stipulated in Theorem 3.1. We observe that the

significance of the point 0 ∈ IRd+1 derives from its selection as the center of the ball ρS in the definition

of dlρ. However, any other point could have been selected with only trivial implications.

Although a comparison to the classical result of O(ε−d) for Lipschitz continuous functions on

bounded subsets, which goes back to [17] (see for example [26, Theorem 2.7.1]), is not entirely rel-

evant due the different metrics, we note that our bound is only slightly worse (a logarithmic term)

for the larger class of lsc functions. Moreover, we do not require any bound on the variation of the

functions and allow functions defined on all of IRd, possibly extended real-valued.

The proof of Theorem 3.1 leverages recent approximation results for lsc functions. In [24] (see also

[21]), we show that lsc functions can be approximated by piecewise constant functions called epi-splines

that resemble the simple functions of integration theory. The error in approximation, in the epi-distance
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metric, can be related directly to the number of pieces in the epi-splines. The challenge then becomes

that of counting the number of balls centered at epi-splines that are needed to cover a particular subset

of lsc-fcns(IRd).

We next state a lower bound on the covering numbers.

3.2 Theorem (covering numbers; lower bound) For every d ∈ IN , there exist a bounded subset F ⊂
lsc-fcns(IRd) and corresponding c ≥ 0 and ε̄ > 0 (independent of d) such that

logN(F, ε; dl) ≥
(c
ε

)d
log

1

ε
for all ε ∈ (0, ε̄].

In comparison with the upper bound of Theorem 3.1, we see that the lower bound differs by a

logarithmic factor only. Let 0 be the function in lsc-fcns(IRd) that is identical to zero everywhere.

We note that the size of the bounded set F in Theorem 3.2 does not have to be large. In fact, an

examination of the proof reveals that F might be selected to have dl(0, f) ≤ r for all f ∈ F , with r > 1

and arbitrarily close to 1.

The proof of Theorem 3.2 constructs a collection of functions which is finite on a grid of points in

[0, ρ]d, with ρ > 0 and grid points spaced roughly ε apart. At each of these grid points, a function takes

on one value among a set of discretized values between 0 and ρ, again spaced roughly ε apart. Outside

these grid points, the functions are infinity. It is clear that the number of such functions is (ρ/ε)n,

where n = (ρ/ε)d. Thus, its logarithm is of the order O(ε−d log ε−1). The proof proceeds by showing

that no two of these functions are in a common ε-ball. Thus, it is necessary to have a number of balls

to cover F that is at least the same as the number of functions constructed in this manner.

4 Proofs and Supporting Results

We start this section with estimates of the epi-distance. An auxiliary quantity is instrumental. For

ρ ≥ 0 and f, g ∈ lsc-fcns(IRd), let

d̂lρ(f, g) := max
{
e
(
epi f ∩ ρS, epi g

)
, e

(
epi g ∩ ρS, epi f

)}
,

where the excess of a set C over a set D is given by

e(C,D) := sup{dist(z,D) : z ∈ C} if C,D are nonempty,

e(C,D) = ∞ if C nonempty and D empty, and e(C,D) = 0 otherwise. Roughly speaking, d̂lρ(f, g) is the

Pompeiu-Hausdorff distance between epi f and epi g, appropriately intersected with ρS. The relations

among dl, dlρ, and d̂lρ are summarized next. The result is stated for the Euclidean norm on IRd+1 in [20,

Exercise 7.60], but remains unchanged in the present context of the sup-norm as established in [21].

4.1 Proposition [21, 20, Exercise 7.60] For f, g ∈ lsc-fcns(IRd) and ρ ≥ 0, the following holds, where

we use the notation δf = dist(0, epi f) and similarly for g:

(i) d̂lρ(f, g) ≤ dlρ(f, g) ≤ d̂lρ′(f, g) for ρ
′ ≥ 2ρ+max{δf , δg};
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(ii) dlρ(f, g) ≤ max{δf , δg}+ ρ;

(iii) dl(f, g) ≥ (1− e−ρ)|δf − δg|+ e−ρdlρ(f, g);

(iv) dl(f, g) ≤ (1− e−ρ)dlρ(f, g) + e−ρ[max{δf , δg}+ ρ+ 1];

(v) |δf − δg| ≤ dl(f, g) ≤ max{δf , δg}+ 1.

The next result is essentially a direct consequence of Proposition 4.1.

4.2 Proposition For f ∈ lsc-fcns(IRd) and r ≥ 0, dl(0, f) ≤ r implies dist(0, epi f) ≤ r.

Proof. Proposition 4.1(v) gives that r ≥ dl(0, f) ≥ | dist(0, epi0)− dist(0, epi f)| = dist(0, epi f).

We rely on a “discretization” of lsc functions in terms of epi-splines [24, 21] and adopt the notation

clA for the closure of a subset A of a topological space. Moreover, for any f : IRd → IR and x ∈ IRd, let

liminfx′→x f(x
′) := limδ↓0 infx′∈IB(x,δ) f(x

′). Epi-splines are defined in terms a finite collection of subsets

of IRd. A finite collection R1, R2, ..., RK of open subsets of IRd is a partition of IRd if ∪K
k=1 clRk = IRd

and Rk ∩ Rl = ∅ for all k ̸= l. Specifically, an epi-spline s : IRd → IR, with partition R = {Rk}Kk=1 of

IRd, is a function that

on each Rk, k = 1, ...,K, is constant real number,

and for every x ∈ IRd, has s(x) = liminfx′→x s(x
′).

The family of all such epi-splines is denoted by e-spl(R). The ability of epi-splines to approximate lsc

functions is established by the next result; see [24, 21] for further information.

4.3 Proposition For a partition R = {Rk}Kk=1 of IRd and ρ ≥ 0, we have that for every f ∈
lsc-fcns(IRd), there exists an s ∈ e-spl(R) such that

d̂lρ(s, f) ≤ µρ(R) := inf
{
η ≥ 0 : Rk ⊂ IB(x, η) for all x ∈ ρIB and k satisfying x ∈ clRk

}
.

If µρ(R) ≤ ρ, then s can be taken to satisfy −ρ′ ≤ s(x) ≤ max{−ρ′,min{ρ′, f(x)}} for any ρ′ > ρ and

x ∈ IRd.

Proof. The first part of the proposition is a direct application of [21, Theorem 5.9]. The fact that s can

be taken to satisfy −ρ′ ≤ s(x) ≤ max{−ρ′,min{ρ′, f(x)}} for any ρ′ > ρ follows from an examination

of that theorem’s proof.

4.4 Proposition [24, Theorem 3.17] If s, s′ ∈ e-spl({Rk}Kk=1), then

dl(s, s′) ≤ max
k=1,...,K

sup
x∈Rk

|s(x)− s′(x)|.
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We are then ready to give proofs of the main results.

Proof of Theorem 3.1. Since F is bounded, there exists an r > 0 such that f ∈ F implies that

dl(0, f) ≤ r. Let γ1, γ2, γ3 > 0 be such that γ1 + γ2 + γ3 = 1. Set ε̄ ∈ (0, 1) such that

2(r + 1)

r

[
log

1

ε
+ log

1

γ1
+

r

2
+ log (r + 1)

]
− 1 > γ2ε for all ε ∈ (0, ε̄].

Fix ε ∈ (0, ε̄] and define ρ to be the expression on the left-hand side of the previous inequality. We next

construct a partition of IRd and set ω > 1 and

n =

⌈
2ωρ

γ2ε

⌉
,

where ⌈a⌉ is the smallest integer no smaller than a. The partition is obtained by dividing the ball

IB(0, ωρ) = [−ωρ, ωρ]d into nd balls of equal size. Specifically, let K = nd+1 and Rk, k = 1, 2, ..., nd, be

the collection of nonoverlapping open boxes of the form
∏d

i=1(l
k
i , u

k
i ), with lki , u

k
i ∈ IR, uki − lki = 2ωρ/n,

lki = 2(k − 1)ωρ/n − ωρ, k = 1, ..., n, and ∪K−1
k=1 clRk = [−ωρ, ωρ]d. Also, RK = IRd \ [−ωρ, ωρ]d. We

denote by R = {Rk}Kk=1 this partition. Clearly, µρ(R) = 2ωρ/n. Next, we consider a discretization of

parts of the range of lsc functions and set

m =

⌈
ωρ

γ3ε

⌉
+ 1.

The points σj = −ωρ + 2(j − 1)ωρ/(m − 1), j = 1, 2, ...,m, discretize the interval [−ωρ, ωρ]. The

epi-splines in e-spl(R) that take on one of these m values on each Rk is a collection of mK unique epi-

splines. Let S ⊂ e-spl(R) be this collection of mK epi-splines. That is, s ∈ S if for every k ∈ {1, ...,K},
there exists a jk ∈ {1, ...,m} such that s(x) = σjk for x ∈ Rk. We now show that∪

s∈S
IB(s, ε) ⊃ F.

Let f ∈ F be arbitrary. By Proposition 4.3 and the fact that µρ(R) = 2ωρ/n ≤ γ2ε < ρ, there

exists s0 ∈ e-spl(R) such that

d̂lρ(f, s0) ≤ µρ(R) and − ωρ ≤ s0(x) ≤ max{−ωρ,min{ωρ, f(x)}} for x ∈ IRd.

Proposition 4.2 ensures that dist(0, epi f) ≤ r. Thus, there exists an x such that ∥x∥∞ ≤ r and f(x) ≤ r.

Consequently, s0(x) ≤ max{−ωρ,min{ωρ, f(x)}} ≤ r. So we also have that dist(0, epi s0) ≤ r.

Since ε, γ1 ≤ 1,

ρ ≥ 2(r + 1)

r

[r
2
+ log(r + 1)

]
− 1 = r +

2(r + 1)

r
log(r + 1) ≥ r.

Thus, using the notation ρ̄ = (ρ− r)/2, Proposition 4.1 gives that

dl(f, s0) ≤ (1− e−ρ̄)dlρ̄(f, s0) + e−ρ̄(r + ρ̄+ 1)

≤ d̂lρ(f, s0) + e−ρ̄(r + ρ̄+ 1)

≤ µρ(R) + e−ρ̄(r + ρ̄+ 1)

= 2ωρ/n+ e−ρ̄(r + ρ̄+ 1).
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In view of Proposition 4.4, there exists s ∈ S such that dl(s, s0) ≤ ωρ/(m − 1) since we can select s

such that |s(x)− s0(x)| ≤ ωρ/(m− 1) for all x ∈ IRd. The triangle inequality then gives that

dl(f, s) ≤ ωρ/(m− 1) + 2ωρ/n+ e−ρ̄(r + ρ̄+ 1).

It remains to show that the right-hand side is less than ε. We start with the last term. By concavity

of the log-function, we have that

log

(
1

2
(ρ+ r) + 1

)
≤ log (r + 1) +

ρ− r

2r + 2
.

Consequently,

log
[
e−ρ̄(r + ρ̄+ 1)

]
=

1

2
(r − ρ) + log

(
1

2
(ρ+ r) + 1

)
≤ 1

2
(r − ρ) + log (r + 1) +

ρ− r

2r + 2

=
r

2
− r(ρ+ 1)

2(r + 1)
+ log(r + 1)

= log γ1ε,

where the last equality follows from inserting the expression for ρ. Thus, e−ρ̄(r+ ρ̄+1) ≤ γ1ε. We then

examine the second term. Inserting the expression for n, we obtain that

2ωρ

n
≤ γ2ε.

Finally, we consider the first term. In view of the definition of m, we have that

ωρ

m− 1
≤ γ3ε.

Thus, dl(f, s) ≤ ε. Since f is arbitrary, we have established that ∪s∈SIB(s, ε) covers F . The logarithm

of the number of functions in S is (nd +1) logm. At this point, the order of the result is immediate. A

possible expression for the constant c is obtained as follows. Let c1 = 2(r + 1)/r and

c2 =
2(r + 1)

r

[
log

1

γ1
+

r

2
+ log (r + 1)

]
− 1.

Thus, ρ = c1 log ε
−1 + c2. Moreover, let c3 = 2ω/γ2 and c4 = ω/γ3. Using these expressions, we find

that

(nd + 1) logm ≤

[(
c1c3 +

c2c3 + 1

log ε̄−1

)d(1

ε
log

1

ε

)d

+ 1

]
log

[(
c1c4 +

c2c4 + 2

log ε̄−1

)
1

ε
log

1

ε

]
Let

c5 = c1c3 +
c2c3 + 1

log ε̄−1
and c6 = c1c4 +

c2c4 + 2

log ε̄−1
.
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We then find that

(nd + 1) logm ≤ cd7

(
1

ε
log

1

ε

)d [
log c6 + log

1

ε
+ log log

1

ε

]
, where c7 = c5 +

1

ε̄−1 log ε̄−1
.

Using the fact that log log ε−1/ log ε−1 ≤ e−1 for ε ∈ (0, 1), we obtain that

(nd + 1) logm ≤ cd7

[
log c6
log ε̄−1

+ 1 + e−1

]
1

εd

(
log

1

ε

)d+1

,

which gives a particular expression for c in the theorem statement. Since the choice of ε̄ is independent

of d, this c is independent of d.

Proof of Theorem 3.2. Let ρ > 0 and F = {f ∈ lsc-fcns(IRd) : f(x) ≤ ρ for at least one x ∈
[0, ρ]d}. We show that F cannot be covered with a lower number of balls than stipulated. Clearly,

dist(0, epi f) ≤ ρ for all f ∈ F . Thus, in view of Proposition 4.1(v), dl(0, f) ≤ ρ+ 1 for all f ∈ F and

F is therefore bounded.

Next, let ε ∈ (0, ρe−ρ/6]. We discretize [0, ρ]d by defining xki = kρ/nε, k = 1, ..., nε − 1 and

i = 1, ..., d, where

nε =

⌊
ρe−ρ

3ε

⌋
≥ 2,

with ⌊a⌋ being the largest integer not exceeding a. The discretization of [0, ρ]d then contains the points

(xk11 , xk22 , ..., xkdd ), with ki ∈ {1, 2, ..., nε−1} and i = 1, ..., d. Clearly, the distance between any two such

points in the sup-norm is at least ρ/nε ≥ 3εeρ. We carry out a similar discretization of [0, ρ] and define

yl = lρ/nε, l = 1, ..., nε. The functions that are finite on the discretization points of [0, ρ]d, with values

at each such point equal to yl for some l, and have value infinity elsewhere are given by Sε, i.e.,

Sε ={f ∈ lsc-fcns(IRd) : for each x = (xk11 , ..., xkdd ), with ki ∈ {1, 2, ..., nε − 1}, f(x) = yl

for some l = 1, ..., nε; f(x) = ∞ otherwise}.

Certainly, Sε ⊂ F . We next define

Gε(f) = {g ∈ lsc-fcns(IRd) : d̂lρ(f, g) ≤ εeρ}, f ∈ lsc-fcns(IRd).

We establish that Gε(f) ∩ Gε(f
′) = ∅ for f, f ′ ∈ Sε, f ̸= f ′. Suppose for the sake of a contradiction

that there is a g with g ∈ Gε(f) and g ∈ Gε(f
′) for f, f ′ ∈ Sε, f ̸= f ′. Then, d̂lρ(f, g) ≤ εeρ and

d̂lρ(f
′, g) ≤ εeρ. However, since f ̸= f ′, there exists a point x ∈ [0, ρ]d with |f(x) − f ′(x)| ≥ 3εeρ.

Without loss of generality, suppose that f(x) ≤ f ′(x)− 3εeρ. Since f(z), f ′(z) = ∞ for all z ̸= x with

∥z − x∥∞ < 3εeρ, we have that d̂lρ(f, g) ≤ εeρ implies that g(z) ≤ f(x) + εeρ for some z ∈ IB(x, εeρ).

Moreover, d̂lρ(f
′, g) ≤ εeρ implies that g(z) ≥ f ′(x) − εeρ ≥ f(x) + 3εeρ − εeρ = f(x) + 2εeρ for all

z ∈ IB(x, εeρ). Since this is not possible for g, we have reached a contradiction. Thus, Gε(f)∩Gε(f
′) = ∅

for f, f ′ ∈ Sε, f ̸= f ′.

By Proposition 4.1(i,iii), for any f ∈ lsc-fcns(IRd),

dl(f, g) ≥ e−ρdlρ(f, g) ≥ e−ρd̂lρ(f, g) > e−ρεeρ = ε for all g ̸∈ Gε(f).
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Hence, for f ∈ Sε, an ε-ball that contains f needs to be centered at some g ∈ Gε(f). Since the sets

Gε(f), f ∈ Sε, are nonoverlapping, a cover of Sε by ε-balls must involve a number of balls that is at

least as great as the number of functions in Sε, which is nmε
ε , where mε = (nε − 1)d. Thus,

logN(F, ε; dl) ≥ nd
ε log nε ≥

(
ρe−ρ

3ε
− 2

)d

log

(
ρe−ρ

3ε
− 1

)
.

Let c1 = | log(ρe−ρ/4)| and ε̄ = min{ρe−ρ/12, e−2c1}. Continuing form the previous inequality, we then

find that

logN(F, ε; dl) ≥
(
ρe−ρ

6

)d [
1 +

log(ρe−ρ/4)

log ε−1

]
1

εd
log

1

ε
.

Since log ε−1 ≥ 2| log(ρe−ρ/4)| for ε ∈ (0, ε̄], we have that

logN(F, ε; dl) ≥
(
ρe−ρ

6

)d
1

2

1

εd
log

1

ε
for ε ∈ (0, ε̄],

and the conclusion is reached.
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