
Calhoun: The NPS Institutional Archive
DSpace Repository

NPS Scholarship Theses

2012-12

Development and analysis of security policies
in security enhanced Android

Rimando, Ryan A.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/27896

Downloaded from NPS Archive: Calhoun



 

 
NAVAL 

POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 
 

 
 

THESIS 
 

Approved for public release; distribution is unlimited  

DEVELOPMENT AND ANALYSIS OF SECURITY 
POLICIES IN SECURITY ENHANCED ANDROID 

 
by 
 

Ryan A. Rimando 
 

December 2012 
 

 Thesis Advisor: George W. Dinolt 
 Second Reader: Karen Burke 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i 

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
December 2012 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE   
Development and Analysis of Security Policies in Security Enhanced Android 

5. FUNDING NUMBERS 
 

6. AUTHOR(S)  Rimando, Ryan 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Postgraduate School 
Monterey, CA  93943–5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES   
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of 
Defense or the U.S. Government. IRB Protocol number N/A.  
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 
A 

13. ABSTRACT (maximum 200 words)  

This thesis examines Security Enhanced Android. Both its policy and its additional security features are explored. The policy is 
examined in depth, providing a better understanding of the security provided by SE Android. We analyze the default SE Android 
policy. We identify a potential weakness and change the policy to facilitate control over communication channels. A proof-of-
concept set of applications is developed to demonstrate how SE Android can be used to improve application security. The proof-of-
concept policy is then analyzed to determine if security goals are met. 

 
 
 
 
 
 
 
 
 
 
 
 

 
14. SUBJECT TERMS Android, SE Android, SE Linux, Security Policy  15. NUMBER OF 

PAGES  
121 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)  
 Prescribed by ANSI Std. 239–18 

  



 ii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii 

Approved for public release; distribution is unlimited 
 
 

DEVELOPMENT AND ANALYSIS OF SECURITY POLICIES IN SECURITY 
ENHANCED ANDROID 

 
 

Ryan A. Rimando 
Civilian, Federal Cyber Corps 

B.S., College of Charleston, 2010 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN COMPUTER SCIENCE 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
December 2012 

 
 
 

Author:  Ryan A. Rimando 
 
 
 

Approved by:  George W. Dinolt 
Thesis Advisor 

 
 
 

   Karen Burke 
Second Reader 

 
 
 

Peter J. Denning 
Chair, Department of Computer Science 

  



 iv 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 v 

ABSTRACT 

This thesis examines Security Enhanced Android. Both its policy and its additional 

security features are explored. The policy is examined in depth, providing a better 

understanding of the security provided by SE Android. We analyze the default SE 

Android policy. We identify a potential weakness and change the policy to facilitate 

control over communication channels. A proof-of-concept set of applications is 

developed to demonstrate how SE Android can be used to improve application security. 

The proof-of-concept policy is then analyzed to determine if security goals are met. 

 



 vi 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 vii 

TABLE OF CONTENTS 

I. INTRODUCTION........................................................................................................1 
A. DISCUSSION ...................................................................................................1 
B. SCOPE ..............................................................................................................1 
C. ORGANIZATION OF THESIS .....................................................................2 

II. BACKGROUND ..........................................................................................................3 
A. INTRODUCTION ............................................................................................3 
B. CIA PRINCIPLES ...........................................................................................3 
C. ACCESS CONTROL.......................................................................................3 

1. Discretionary Access Control..............................................................5 
2.  Mandatory Access Control ..................................................................5 

a. Role-Based Access Control Model ...........................................5 
b. Type Enforcement Model..........................................................7 
c. Bell-LaPadula Model ................................................................8 

3.  Capability-based Systems ....................................................................9 
D. SECURITY ENHANCED LINUX ...............................................................10 
E. ANDROID ......................................................................................................10 
F. SE ANDROID.................................................................................................12 
G. RELATED WORK ........................................................................................12 

III. ANDROID AND ITS SECURITY FEATURES .....................................................15 
A. ANDROID FRAMEWORK ..........................................................................15 
B. ANDROID SECURITY MODEL .................................................................17 
C. ANDROID PERMISSIONS ..........................................................................19 
D. APPLICATION COMPONENTS ................................................................21 

1. Activities..............................................................................................21 
2. Services................................................................................................22 
3. Content Providers ..............................................................................22 
4. Broadcast Receivers ...........................................................................23 

E. INTENTS ........................................................................................................23 
F. BINDER ..........................................................................................................25 

IV. SE LINUX ...................................................................................................................29 
A. INTRODUCTION..........................................................................................29 
B. SE LINUX ACCESS CONTROL MODELS ..............................................29 

1. Type Enforcement ..............................................................................29 
2. Role-based Access Control ................................................................31 
3. Multi-Level Security ..........................................................................32 

C. SE LINUX POLICIES ...................................................................................32 
D. SE LINUX POLICY TOOLS .......................................................................33 

V. SE LINUX IN ANDROID (SE ANDROID).............................................................35 
A. INTRODUCTION..........................................................................................35 
B. FEATURES ....................................................................................................35 



 viii 

C. REFERENCE POLICY ................................................................................36 
1. Domain Rules .....................................................................................36 
2.  Application Domains .........................................................................37 
3. Seapp_contexts ...................................................................................39 
4. Install-time MAC ...............................................................................40 
5. Important System Applications ........................................................42 

a. General System Apps ..............................................................43 
b. Init............................................................................................43 
c. Zygote ......................................................................................44 
d. Service Manager .....................................................................44 
e. Media Server ...........................................................................44 
f. Installd .....................................................................................45 

6. Macros .................................................................................................45 
7. MLS .....................................................................................................47 

D. SE MANAGER...............................................................................................48 
E. SE ANDROID VS EXPLOITS .....................................................................48 

1. RageAgainstTheCage ........................................................................48 
2. Exploid ................................................................................................49 

VI. PROOF OF CONCEPT APPLICATIONS AND POLICY ...................................51 
A. SCENARIO INTRODUCTION ...................................................................51 
B. ARCHITECTURE OF APPLICATIONS ...................................................51 

1. Main Application ...............................................................................51 
2. Trusted Controller .............................................................................53 
3. Calendar Applications .......................................................................54 

C. SECURITY GOALS/REQUIREMENTS ....................................................55 
D. ANDROID SECURITY .................................................................................56 

1. Deficiencies .........................................................................................56 
E. SE LINUX POLICY DEVELOPMENT ......................................................57 

1. App.te ..................................................................................................57 
2. Seapp_contexts ...................................................................................58 
3. Poc_app.te ...........................................................................................59 
4. Mac_permissions.xml ........................................................................60 

F. SE LINUX POLICY ANALYSIS .................................................................60 
1. Apol .....................................................................................................60 
2. Qisaq....................................................................................................62 

G. DISCUSSION .................................................................................................63 

VII.  CONCLUSION ..........................................................................................................67 
A. FUTURE WORK ...........................................................................................67 
B. SUMMARY ....................................................................................................69 

APPENDIX A. PROOF OF CONCEPT CODE ........................................................71 
A. PACKAGE COM.PROC.DISPLAYAPP ....................................................71 

1. MainActivity.java...............................................................................71 
2. DisplayActivity.java ...........................................................................72 
3. AndroidManifest.xml.........................................................................76 



 ix 

B. PACKAGE COM.POC.TRUSTEDCONTROLLER .................................77 
1. MainService.java ................................................................................77 
2. TcService.java ....................................................................................80 
3. Android.Manifest.xml........................................................................80 

C. PACKAGE COM.POC.VIEW0 ...................................................................81 
1. View0Service.java ..............................................................................81 
2. view0provider.java.............................................................................83 
3. DBHelper.java ....................................................................................86 
4. DatesTable.java ..................................................................................87 
5. AndroidManifest.xml.........................................................................88 

APPENDIX B. SE POLICY ........................................................................................91 
A. SEAPP_CONTEXTS .....................................................................................91 
B. POC_APP.TE .................................................................................................91 
C. MODIFICATION TO TE_MACROS .........................................................92 
D. MODIFICATIONS TO APP.TE ..................................................................92 
E. MODIFICATIONS TO MAC_PERMISSIONS.XML ...............................93 

LIST OF REFERENCES ......................................................................................................95 

INITIAL DISTRIBUTION LIST .......................................................................................101 

 
  



 x 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 xi 

LIST OF FIGURES 

Figure 1. RBAC element relationships..............................................................................6 
Figure 2. Android Framework, from [20] .......................................................................17 
Figure 3. Permission Request, from [23] ........................................................................19 
Figure 4. Implicit intent .............................................................................................24 
Figure 5. Confused Deputy Attack ..................................................................................25 
Figure 6. Example message sequence diagram for binder ..............................................26 
Figure 7. Example type definition and rule declaration, from  [28] ................................30 
Figure 8. The first rule specifies a transition from initrc_t to ping_t on 

execution of a ping_exect_t process. The second rule allows that 
transition to occur, from [28] ...........................................................................31 

Figure 9. The user u is authorized for the role sysadm_r, from [28] ..........................32 
Figure 10. A process running in the sysadm_r role can transition to the 

student_r role, from [28] ...........................................................................32 
Figure 11. Role sysadm_r is authorized to enter the ifconfig_t domain, from 

[28] ...................................................................................................................32 
Figure 12. Apol Screenshot ...............................................................................................34 
Figure 13. AVRs specifying domain access rules for system devices, from [33] .............37 
Figure 14. AVRs for appdomain, from [33] ..................................................................38 
Figure 15. seapp_contexts statements, from [33] .....................................................40 
Figure 16. mac_permissions.xml, from [33] .....................................................................41 
Figure 17. Zygote dyntransition permissions, from [33] ....................................44 
Figure 18. Service manager IPC rules, from [33] .............................................................44 
Figure 19. app_domain and tmpfs_domain macros, from [33] ...............................45 
Figure 20. netdomain AVRs, from [33] .......................................................................46 
Figure 21. Socket macros, from [33] .................................................................................46 
Figure 22. Binder macros, from [33] .................................................................................47 
Figure 23. Selection Activity of the Main Application .....................................................52 
Figure 24. Display Activity with view 0 selected (left) and view 1 selected (right) .........53 
Figure 25. Communication channels for the applications .................................................55 
Figure 26. Apol analysis of information flow using the default app.te file ..................58 
Figure 27. Additions to seapp_contexts ............................................................................58 
Figure 28. Process security contexts .................................................................................59 
Figure 29. File security contexts .......................................................................................59 
Figure 30. poc_app.te domain associations ................................................................59 
Figure 31. Information flow from Apol for view1_app to view0_app .....................61 
Figure 32. AVRs allowing flow from display_app to controller_app and 

controller_app to view0_app and view1_app ................................61 
Figure 33. Qisaq information flow between view0_app and view1_app ..................62 
Figure 34. New architecture. Only the two flows of the same mode occur at the same 

time. .................................................................................................................64 
Figure 35. Proposed policy change for new architecture ..................................................65 



 xii 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 xiii 

LIST OF TABLES 

Table 1. Domain Definition Table, from [8] ....................................................................8 
 

  



 xiv 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 xv 

LIST OF ACRONYMS AND ABBREVIATIONS 

ACL   Access Control List 

AOSP   Android Open Source Project 

AVR   Access Vector Rule 

DAC   Discretionary Access Control 

DDT   Domain Definition Table 

DIT   Domain Interaction Table 

Flask   Flux Advanced Security Kernel 

IDE   Integrated Development Environment 

IPC   Inter-process Communication 

MAC   Mandatory Access Control 

MCS   Multi-Category Security 

MLS   Multi-Level Security 

PID   Process Id 

POLP   Principle of least privilege 

RBAC   Role-based Access Control 

SE   Security Enhanced 

TE   Type Enforcement 

UID   User Id 



 xvi 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 xvii 

ACKNOWLEDGMENTS 

I would like to thank my thesis advisor, Dr. George Dinolt, and my second reader, 

Karen Burke, for their help and support throughout the thesis process. I am grateful to the 

National Science Foundation’s Scholarship for Service (SFS) Program and the 

opportunities it has provided me. I would also like to thank Dr. Cynthia Irvine, the Naval 

Postgraduate School SFS Principal Investigator, and Valerie Linhoff for all their work in 

the SFS program that made my time at Naval Postgraduate School an enjoyable 

experience. 

  



 xviii 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 1 

I. INTRODUCTION  

A. DISCUSSION 

Mobile computing is becoming increasingly more prevalent in the world today. 

From smartphones to tablets, people are using mobile computing more and more. Now, 

nearly half of adults in the U.S. own smartphones [1]. This also provides attackers with a 

new vector of attack for exploiting devices and obtaining user information. Thus, there is 

a need for better mobile security.   

There are a number of platforms from BlackBerrys to iPhones for attackers to 

target. Attackers tend to pick the easiest and largest target possible. With Android’s U.S. 

market share being around 50% [2] and it’s completely open source nature, it is a prime 

target for attackers. Trend Micro reports that the number of malicious applications in Q2 

of 2012 was around 20,000 [3]. They also note that these malicious applications were 

downloaded 700,000 times before Google was able to remove many them. Researchers 

have been and are working on a number of techniques to counter this threat. Recently the 

NSA (U.S. National Security Agency) became involved in this process. 

Early in 2012, the NSA made their first public release of Security Enhanced 

Android, or SE Android. SE Android’s aim is to improve Android security through the 

introduction of MAC and other security enhancements.   

B. SCOPE 

This thesis contributes to the currently limited literature on SE Android. With SE 

Android still being in its infancy, there is much more work that can and should be done. 

The scope of this thesis is a study of SE Android and how to use its added security 

functionality to improve application security. This research examines SE Android’s 

security policy and how it interacts with Android. A proof-of-concept application is 

developed to demonstrate how the policy can be adjusted to provide security for specific 

applications. In the process of developing the proof-of-concept we analyze the original  

 

 



 2 

SE Android security policy and modify it to facilitate control of communication channels. 

We identify a weakness in the current SE Android security policy and provide changes to 

enhance security. 

C. ORGANIZATION OF THESIS 

General background on information security is presented in Chapter II. Also 

included in that chapter are brief histories of SE Linux, Android and SE Android for 

those unfamiliar with them. Chapter III covers the architecture of Android as well as its 

various security mechanisms. Chapter IV briefly covers SE Linux’s type enforcement and 

role-based access control policies and implementations. Chapter V provides an in-depth 

look at SE Android and how it works to improve security in Android. Chapter VI covers 

a proof-of-concept application, which utilizes the enhanced security provided by SE 

Android. Chapter VII is contains a summary and suggestions for future work. 

 

 

 

  



 3 

II. BACKGROUND 

A. INTRODUCTION 

In this chapter we provide some background that will be useful in later parts of 

the thesis. We begin by introducing some basic security principles. This will be followed 

by a brief summary of Access Control followed by descriptions of three specific models 

relevant to this thesis. Then, brief histories of SE Linux, Android, and SE Android will be 

covered. Lastly, a summary of related works will be given. 

B. CIA PRINCIPLES 

Information security is the protection of information and information systems 

from unauthorized usage. It is based around three primary principles. These principles are 

often referred to as the CIA triad: 

• Confidentiality – refers to the protection of information from access by 
unauthorized individuals 

• Integrity – involves the protection of information against unauthorized 
modification or deletion 

• Availability – the assurance that information is accessible in a timely 
fashion to authorized individuals 

These three principles are at the core of information security. An argument can be 

made for adding to these principles. Two common proposals are authenticity and non-

repudiation. Authenticity is the validation that a communicating party is who they claim 

they are. Non-repudiation is a guarantee that the sender of a message cannot deny having 

sent the message and similarly the recipient cannot deny receiving it. 

The security and privacy of information while stored, processed, or transmitted is 

protected by preserving these principles in information systems. One of the mechanisms 

used to preserve these principles is access control. 

C. ACCESS CONTROL  

Access control is the mechanism by which the system provides both 

Confidentiality and some forms of Integrity security. Access control is perhaps the most 



 4 

fundamental security mechanism used today. In general, access control models consist of 

three basic elements: 

• Subjects – the actors within a system. Primarily they are the processes or 
other elements that do “processing.” 

• Objects – the items on which subjects operate. Typically these are files or 
file like objects that store information. 

• Actions – the operations subjects perform on objects. These actions can 
include things like reading, writing, and executing. 

It is the relationship of these elements that serves as the basis for access control 

models. These relationships are usually represented in Access Control Lists (ACLs). 

ACLs contain the allowed permissions for each subject of a system. Every subject is 

allowed to perform only the specified actions on any given object as specified in the 

ACL. In systems where ACLs are implemented, every time a subject wishes to perform 

an action on an object, the system must check the ACL. The mechanism that performs 

these checks is essential to ensuring the security provided by access control. That 

mechanism is called the reference monitor. 

The reference monitor was first introduced in the “Anderson Report” in 1972 [4]. 

This influential computer security paper defined three principles that reference monitors 

need to follow: 

• Tamper-proof – The reference monitor must be protected from 
interference or tampering by an attacker. This ensures that the reference 
monitor properly enforces the security policy 

• Completeness – The reference monitor must always be invoked. Every 
operation subjects perform on objects must be validated by the reference 
monitor lest an attacker bypass and therefore violate the security policy 

• Verifiable – The reference monitor must be small and simple enough to 
be properly analyzed and tested. This ensures that the mechanism is not 
flawed and properly enforces the security policy 

Many different access control models have been developed. There are two main 

approaches on how access control is implemented: Discretionary Access Control and 

Mandatory Access Control. We discuss those briefly along with Capability-based 

systems. 



 5 

1. Discretionary Access Control 

Discretionary Access Control, or DAC, is currently the most prevalent form of 

access control. In DAC, access is granted at the discretion of the owner or creator of an 

object. In other words, if John creates a file, he can choose whether or not to give Jane 

access and what kind of access she has.  

DAC mechanisms are generally recognized as an inadequate protection 

mechanism when used as the sole method of access control. The discretion at which 

permissions can be passed between users makes the potential for vulnerabilities much 

higher than in MAC models. For instance, if an application that is running on behalf of a 

user is compromised by an attacker, then the attacker will be able to modify all the 

resources that user has access to. This is why applications running as “root” on Unix like 

systems or “Administrator” on Windows based systems are so dangerous in a DAC 

environment. Nevertheless, the ease of implementing and the granularity of control 

available make DAC an attractive access control model. 

2.  Mandatory Access Control 

Mandatory Access Control, or MAC, allows for more controlled access control. In 

MAC, access is granted based on some defined security policy enforced by the 

underlying system. Access control is not left to the discretion of the originator. Users 

must adhere to the rules set forth by the security policy. There are a number of different 

models for MAC based access control:  Bell-LaPadula, Biba, Clark-Wilson, Role-Based 

Access Control, Type Enforcement, etc. For the purposes of this thesis, we will discuss 

the Role-Based Access Control models and the Type Enforcement model as these are the 

models at work in SE Linux. Additionally, the Bell-LaPadula model will be discussed as 

it is found in the MLS extension for both SE Linux and SE Android. 

a. Role-Based Access Control Model 

Role-Based Access Control (RBAC) was originally introduced in 1992 by 

Ferraiolo and Kuhn [5]. RBAC provides access to objects based on a user’s role. This 

idea of roles is analogous to roles in an organization. For instance, accountants and 



 6 

salesman would be separate roles. By grouping users based on their roles, the size and 

complexity of security policy implementation is vastly reduced. Instead of assigning 

permissions to individual users, permissions are assigned to roles, which users/subjects 

may be a member. The major elements in RBAC are: 

• Users – human or process 

• Role – job function within context of organization or system 

• Permission – operation rights on objects 

• Session – instance of a user’s connection to the system 

 

Figure 1 shows the relationships between these elements. Users can be 

assigned multiple roles. Similarly, Roles can contain any number of users. Roles are 

assigned a number of permissions. 

 

 

Figure 1.   RBAC element relationships 

In RBAC, operations performed by users are called transactions. There are 

three basic rules in RBAC as set forth in [6]: 

• Role assignment – Subjects can only execute transactions if that 
subject has selected or been assigned a role. Identification and 
authentication is not considered a transaction, but all other 
operations are. Therefore, all active users must have some active 
role. 

• Role authorization – The active role of a subject must have been 
authorized for that subject. Thus, users can only take on roles for 
which they have been authorized. 



 7 

• Transaction authorization – For a subject to execute a 
transaction, that transaction must be authorized for the subject’s 
active role. This, combined with role assignment and authorization, 
ensures that users can only execute those transactions for which 
they are authorized. 

There are several different models or levels of RBAC that were introduced 

in a framework called RBAC96 [7]. RBAC0 is the basic model of RBAC. It embodies the 

basic principles of RBAC: users are assigned to roles, permissions are assigned to roles, 

and thus users acquire the permissions of their given roles.   

RBAC1 is RBAC0 with role hierarchies. The role hierarchy allows roles to 

subsume others. In other words, a user assigned to a role R has access to any sub-roles of 

R. 

RBAC2 enhances RBAC0 by introducing constraints. Constraints are used 

in a number of different ways. Mutual exclusivity constraints can restrict a user from 

being a member of two roles, restrict two roles from having the same permissions, restrict 

one role from have two permissions. Cardinality constraints can place limits on how 

many users are a member of a role. Prerequisite constraints can require role membership 

of a role A only if the user is a member of role B. These constraints can be used to ensure 

separation of duties. RBAC3 is simply a combination of the features provided by RBAC1 

and RBAC2.  

b. Type Enforcement Model 

Type Enforcement (TE) is a very flexible and fine-grained security model 

[54]. Like most other models, TE divides system elements into subjects and objects. In 

TE, every subject and object is labeled. Subjects are given domain labels and objects 

have type labels. These labels are referred to as security contexts. Access control is 

enforced by comparing a subject’s security context against an objects security context. 

Access can be granted between two domains or from a domain to a type; so essentially 

there are two groups of permission types: domain-domain and domain-type. 

The TE model permission map is represented in two tables: the Domain 

Definition Table (DDT) for domain-type relations and the Domain Interaction Tables 



 8 

(DIT) for domain-domain relations. Table 1 represents an example of a Domain 

Definition Table. Subjects, the rows, can access objects, the columns, based on the 

permissions indicated in the cells. For instance, the ftp process domain has read and write 

access to public files. 

 

 
Table 1.   Domain Definition Table, from [8] 

One of the goals of the TE model is to control the flow of information 

from one process to another. By controlling access to the objects or containers, the flow 

of information can be tracked by observing how the subjects are allowed to interact with 

the objects. For instance, consider subjects A and B and object C. If subject A has write 

access to object C and B has read access to object C, then subject A can pass information 

to subject B through object C.  

c. Bell-LaPadula Model 

The Bell-LaPadula model is probably the most well-known model for 

MAC. Introduced in 1973, it focuses on protecting the confidentiality of classified 

information [9]. As with most all other models, the Bell-LaPadula model splits elements 

in the system into subjects and objects. Subjects are the active elements in the system that 

can act upon the passive elements, objects.   

Each subject and object is labeled with a security attribute. A simplified 

version of this model labels subjects and objects with two elements: a sensitivity level, 

and a category. For subjects, the sensitivity level can be thought of as a security 

clearance, and similarly for objects, the sensitivity level corresponds to a security 

classification. In many implementations, sensitivity levels correspond to Confidential, 



 9 

Secret, and Top Secret. Sensitivity levels fall in a hierarchy with Secret dominating 

Confidential and Top Secret dominating Secret and by transitivity Confidential. 

Categories, or compartments, serve to further isolate information 

following the need-to-know principle. Within each sensitivity level, there may be any 

number of categories. For instance, at the Secret level there may be data for troop 

locations and weather data. We may not want everyone at the Secret level to be able to 

read the troop location data and using categories allows for that.  

These labels and compartments are organized in a partially ordered set 

with a least upper and greatest lower bound called a lattice [29]. In a lattice, higher 

sensitivity levels dominate lower levels (e.g. Secret dominates Confidential).   

There are three key properties to the Bell-LaPadula model: 

• Simple Security Property – This property specifies that a subject 
cannot read any objects that are at a higher sensitivity level. This is 
commonly referred to as no read-up. 

• Star Property – This property states that a subject cannot write to 
any objects that are at a lower sensitivity level than itself. This is 
commonly referred to as no write-down. 

• Discretionary Security Property – This states that an access 
matrix is used to specify additional access controls. Note that this 
property does not mean that access is at the discretion of the 
owners. 

When all of these properties are satisfied, the confidentiality of the 

information is ensured. A subject at the Secret level cannot read data from the Top Secret 

level nor can it write information down to the Confidential level. 

3.  Capability-based Systems 

Capability-based security is a security model that relies on, as the name suggests, 

capabilities. The idea behind it is fairly simple. Security comes from the handling of 

capabilities, which are commonly described as analogous to keys. While that analogy is 

not entirely accurate [27], it serves our purposes for comparing it to binder – a service 

used to manage access in Android and SE Android, which we describe in detail below. 

Capabilities are values that reference an object along with its associated rights, similar to 



 10 

a key being associated with a particular lock. In capability systems, these keys are un-

forgeable. Thus the only way to obtain the key is to either be the original creator, or 

receive it from some entity that already has a copy of the key.   

D. SECURITY ENHANCED LINUX 

SE Linux was officially released by the NSA in 2000. Based on the Flask Security 

Architecture [10], SE Linux is designed to provide a flexible MAC solution capable of 

supporting a variety of security policies. It has since been adapted to use the Linux 

Security Module framework, an extension of the Linux kernel, and was officially adopted 

in the mainline kernel in 2003. Now, SE Linux is included in a number of Linux 

distributions including Fedora, Red Hat, and Ubuntu [55–57] and actively used in other 

systems such as EnGarde Secure Linux and Chromium OS [64, 65]. 

SE Linux makes use of MAC, TE and RBAC models. All subjects and objects in 

the system are assigned security labels, which will be used to determine access rights. 

RBAC is layered on top of TE to use roles in the grouping domain types. The specifics of 

SE Linux implementation of these models are discussed in Chapter IV. 

The core feature of SE Linux that makes it so widely used is its flexible policy 

configuration. SE Linux policies consist of any number of configuration files that contain 

all the rules to be enforced by the kernel. Unfortunately, the level of granularity SE Linux 

provides often causes these policies to become very large making it difficult for 

administrators to configure and understand the policy that is implemented. A number of 

tools have been developed to aide in the handling of the development and analysis SE 

Linux policies and the configuration files used to implement them.   

E. ANDROID 

Android is an operating system designed for smartphones and other mobile 

devices. Android, Inc. was founded in 2003 to develop smarter mobile devices. Now 

owned by Google, Android is completely open-source and maintained under the Android 

Open Source Project. Android launched commercially in 2008 and has gone through a 

number of versions since. The latest stable version is Jelly Bean, or Android 4.1, 

following the typical convention of naming versions after some kind of food. Android 



 11 

continues to evolve with new features, and lately it has been modified to support tablet-

like features. 

As of 2010, it is the leading smartphone platform in the world. Some of this 

success can be attributed to its rich community of application developers. The Android 

Market is now part of Google Play1, Google’s online store, and houses half a million 

applications as of May 2012. With the goal of being a developer friendly platform, 

Android has a relaxed vetting process for pushing applications to market, making it easy 

for developers to get their products to users.   

Unfortunately, the ease with which applications can be introduced to the Android 

Market also increases the risk of malicious applications proliferating to devices. In order 

to minimize the impact of the inevitable malicious applications, Android provides a 

number of security mechanisms to mitigate the threat, including having the user involved 

in the determination and application of their security model. Android’s security 

mechanisms will be discussed in further detail in Chapter III. 

In addition to security mechanisms in the OS, the Android Market also has the 

capability of remotely removing malware from devices. Should malware be identified on 

the Market, this capability allows for rapid and scalable remediation without requiring the 

users to be involved. 

Early in 2012, Google announced that they were scanning Android applications 

for malware using what they called, Bouncer [11]. Bouncer is an automated scanning tool 

that traverses the Android Market looking for malicious software. Bouncer supposedly 

provides some protection against malicious applications while keeping with the Android 

theme of being a developer friendly platform. It performs a number of analyses on new 

applications using both static and dynamic techniques. However, during Black Hat 2012, 

Percoco and Schulte demonstrated how Bouncer could be circumvented by using a 

JavaScript bridge to add new, malicious capabilities to an originally benign application 

[63].   

                                                 
1 https://play.google.com/store/apps 



 12 

F. SE ANDROID 

SE Android was developed by the NSA and released in January 2012 [12]. SE 

Android is an ongoing project at NSA and is a work in progress [12]. With the increasing 

desire to make mobile devices usable in the U.S. government, SE Android was developed 

with the goal to provide increased security to Android by providing MAC.   Since 

Android is based on the Linux kernel, SE Android naturally is inspired by and largely 

based on SE Linux. SE Android is intended to be transparent to developers and users, 

requiring minimal interaction.   

SE Android was originally developed on Gingerbread v 2.03 of Android but is 

now compatible with Android OS version 4.1.1. It can be run on the emulator, both the 

arm and x86 versions, and, so far, on the following devices:  Galaxy Nexus, Nexus S, and 

the Motorola Xoom [12].   

According to Smalley [13], SE Android is not a fork of Android, a government-

specific version of Android, a complete solution for all security concerns, nor has it been 

evaluated or approved for use. It is a set of security enhancements to Android focused on 

closing security gaps that have not yet been addressed. Like SE Linux, SE Android is 

intended for wide applicability and looks to be adopted into mainline Android. 

There is very little literature on SE Android. Most of what exists is limited to a 

wiki page2 that focuses on obtaining and installing SE Android and a set of slides that go 

along with a presentation at the Android Builders Summit of 2012. Additionally, there is 

a message board at http://marc.info/?l-selinux where questions and issues with SE 

Android are discussed. Aside from these sources, information on SE Android can be 

garnered from the source files. 

G. RELATED WORK 

There has been some work done in improving the security of Android and mobile  

 

 

                                                 
2 www.selinuxproject.org/page/SEAndroid (Active 16 October 2012) 



 13 

devices in general. This section will briefly discuss some of this work. It is important to 

note that not all of this relates to providing MAC in Android, but it may still be of 

interest. 

SE Android was not the first attempt at integrating SE Linux in Android. Shabtai, 

Fledel, and Elovici developed an SE Linux implementation for Android in 2010 [14]. 

Their approach is very similar to the one that now exists in SE Android. It seems, 

however, that their implementation of SE Linux is merely a subset of the features that are 

incorporated in SE Android. Nevertheless, they pointed out some of the difficulties in the 

integration of SE Linux into Android that were solved in SE Android. These difficulties 

include labeling support for the yaffs2 file system used by Android and modification of 

the zygote3 source code to enable explicit labeling of its children. 

There are other attempts at improving Android security using a variety of 

different methods. Most of these focus on the identification and elimination of malicious 

activity. One example would be trying to prevent jail-breaking or rooting of devices, 

which, while legal as of 2010 under Section 1201(a) (1) of the U.S. Copyright Law [59], 

is generally frowned upon. There is always a demand for rooting as this functionality 

allows power users full control over their devices. Another example for improving 

security would be the identification of the data that leaks out over the network.   

TrustDroid was developed by researchers in Germany in 2011 [15]. TrustDroid’s 

focus was to isolate groups of applications into separate domains. For instance, one may 

wish for corporate applications to be isolated from private user applications. This cannot 

be accomplished using standard Android features. TrustDroid makes this possible with 

domain and data isolation and its application of a special security policy and mechanisms 

for enforcing it. TrustDroid extends Android’s middleware and kernel to provide MAC 

features. These extensions allow for applications to be assigned different trust levels. 

TrustDroid divides applications into three different levels: system applications, trusted 

third party applications, and untrusted third party applications. These levels, or “colors,” 

allow a policy manager to determine an application’s isolation rules. 

                                                 
3 Zygote will be discussed further in a later section. 



 14 

TaintDroid is a framework that can detect the leakage of sensitive information 

[16]. It utilizes a dynamic taint based analysis to detect information leakage [60]. It uses a 

data flow analysis technique using data sources and sinks. It taints private data (sources) 

and tracks that data as it propagates through the system. If that data reaches a sink, then it 

will alert the user. 

XManDroid [17], or eXtended Monitoring on Android, attempts to solve the 

problem of IPC-based (Inter-Process Communications) privilege escalations by enforcing 

policies on IPC channels similar to TaintDroid. XManDroid dynamically analyzes 

applications’ transitive permission usage in order to prevent application-level privilege 

escalation attacks at runtime. Unlike TaintDroid, XManDroid can detect the use of covert 

channels leaking sensitive information. 

  



 15 

III. ANDROID AND ITS SECURITY FEATURES 

This chapter is intended to provide a brief overview of the Android OS itself and 

its security features. In order to understand how to properly secure Android applications 

using SE Android, we must first have a thorough understanding the properties 

(permissions, IPC, etc.) of applications in the Android environment. We will also indicate 

weaknesses in the features and, in some cases, examples of exploits. 

A. ANDROID FRAMEWORK 

The Android Framework is laid out in Figure 2. As stated earlier, Android is 

based on the Linux kernel that provides the main system services to the Android software 

stack. The Linux kernel sits at the lowest level. It contains services such as device 

drivers, networking, and management of the file system, memory, power control, and 

process creation and management [18]. It also includes init. Init is the process 

responsible for taking care of all initialization when Android is booted up. Init 

processes the init.rc script file to set up the native services and performs the 

functions of a typical Linux system boot up. 

Several kernel enhancements, such as the binder driver, discussed below, were 

added to support Android. 

The next level up in the framework contains the Android native libraries. Written 

in C and C++ these libraries are used by numerous system components in the application 

layers. The Android Runtime includes the Dalvik virtual machine and core libraries.   

All applications in Android run in a Dalvik VM. Android applications are written 

in Java which must first be converted into Dalvik executable files in order to run in the 

Dalvik VM. One may think that this provides sandboxing of applications, but the Dalvik 

VM is not a security boundary as any application can also include native code. 

The application framework layer provides tools and services for use by 

applications. Like the applications themselves, these are all written in Java. There are a 

few critical system processes in Android to make note of [19].     



 16 

One of the first services started is zygote. Aptly named, zygote is the master 

Dalvik VM process and the father of all Dalvik processes on the device. All processes are 

forked from zygote. Along with zygote, init also starts up some daemons. For 

instance, vold, the volume daemon, which manages the file system and rild, the radio 

interface link daemon, are started.   

The next process to start up is the system_server. The system_server 

manages many of the native services. It is responsible for initializing most of the core 

services. Among these are: 

• activity manager - responsible for managing the activities running on the 
device. It manages memory and state information as activities move 
through the activity stack. It is also the entity responsible for performing 
permission checks on intent deliveries [41]. 

• system content providers - a number of content providers are provided 
with Android for managing contacts, photos, music, etc. 

The activity manager starts several core applications: com.android.phone 

and android.process.acore. At this point most of the services are up and 

running. 

 



 17 

 

Figure 2.   Android Framework, from [20] 

B. ANDROID SECURITY MODEL 

Android is a very interesting OS in terms of its security model. It is unique in that 

it attempts to provide the users more control of the security of the system. This, combined 

with its open source nature, leads to some interesting techniques and challenges for 

providing security.   

Android is largely based on Linux. As such, it has retained some of the security 

features familiar to Linux users including things like UNIX user identifiers (UIDs) and 

file permissions, which it utilizes for DAC [21].   

There are two primary features of the base Android security model. The first is 

Application-level permissions that encompass controls of application components and 

system resources. The second is Kernel-level sandboxing, which involves isolating 

applications from each other and the system, and also prevents the bypassing of 

application-level security controls.   



 18 

Perhaps the most important principle in the Android security model is the concept 

of sandboxing. Android applications run under their own unique UID with their own 

permissions with one exception. All applications must be signed by the developer’s 

private key when placed on the Android market. This signing is used to “identify the 

author of an application and establishes trust relationships between applications” [18]. 

The system allows for different applications to run under the same UID if signed by the 

same author.   

By default, applications running under one UID can neither read nor write data of 

applications signed by a different UID. Sharing data in Android must be done explicitly 

through the use of the inter-process communication (IPC) techniques. This isolation 

provides great inherent security because compromised applications do not necessarily 

result in a full compromise of the device provided the developer is careful when declaring 

permissions and the user correctly validates application permission requests on 

installation. 

However, even with such security features, Android is still susceptible to 

malware. This weakness comes from two primary sources: unintended installation of 

malicious applications and weak security practices by application developers. Malicious 

applications can vary significantly in their maliciousness. Unprivileged malware, or 

malware that has access to Normal permissions, as discussed in the next section, could 

be a great annoyance and hindrance to the user by randomly playing noises or running 

down the battery. Privileged malware, or malware with Dangerous permissions, can 

lead to stolen data or monetary loss. The greater danger comes from legitimate 

applications that have been coded carelessly leaving data or services unsecured. 

Accordingly, developers need to take greater care in considering how they are using 

users’ data and what services they are providing. 

Several instances of careless data management in Android (and other systems) 

applications were documented in late 2010 [22]. It was discovered that several banking 

applications for both Android and the iPhone were storing user information on the 

devices in an insecure manner. The USAA android application stored images of pages 

visited using the application that could potentially contain sensitive information. TD 



 19 

Ameritrade’s application was storing usernames in plain text on the phone. Bank of 

America’s application saved the user’s answer to their security questions in plain text on 

the device. 

C. ANDROID PERMISSIONS 

Every application that a user installs comes with a request for a set of application-

specific permissions that is set by the applications developer. These permissions allow 

the application to access system (or other application’s) data or services. These include 

things like READ_CONTACTS, which grants permission to read the user’s contact book 

and SEND_SMS, which allows the application to send SMS messages. Additionally, 

custom permissions may be created and used by the application. For instance, an 

application could use a custom permission to restrict other applications from using its 

service. Permissions for each application are found in their individual 

AndroidManifest.xml files created by the developer and placed on the mobile 

device as part of the installation process. These permissions are displayed to the user who 

must agree to them in order to install the application. An example of this process is 

shown in Figure 3. 

 

Figure 3.   Permission Request, from [23] 



 20 

There are four protection levels for permissions: 

 Normal – Permissions for minor features like VIBRATE.   

Dangerous – Permissions for features that can reconfigure the device or 

incur fees. Users will be explicitly warned about dangerous permissions 

on install. 

Signature – The permissions are only granted to other applications signed 

with the same key as this program. 

SignatureOrSystem – These permissions are for programs installed as 

part of the system image and typically aren’t be used by developers. 

This system of requesting and granting permission puts a great deal of the 

responsibility for security in the hands of both the developer and user. The user must be 

aware of both what the application is advertising it does and the permissions it requests. 

Fortunately, the application reviews on the Android Market and developer’s reputation 

may help alert naïve users who attempt to install malicious or insecure applications on 

their devices.   

The developer must be sure to follow the principle of least privilege (PLOP) when 

requesting permissions. The principle of least privilege is a common concept in 

information security that requires every entity (be it a process, user, or program) have 

access only to the information and resources that are sufficient and necessary for its 

purpose [4]. Unfortunately, developers do not always follow this principle. As found in 

[24], as many as one-third of Android applications, as configured in their manifest, are 

over privileged. However, typically only a few permissions were over-privileged so there 

appears to be a good faith effort in the developer community to follow the principle of 

least privilege. 

Once an application is installed, the permissions can’t be changed. This eliminates 

direct attempts at privilege escalation (attempts that are confined to a single application). 

Privilege escalation can still occur through indirect means. 

How can attackers conduct privilege escalation attacks indirectly? One concern is 

that of application collusion attacks. Put simply, a collusion attack occurs when two 



 21 

different permission sets combine to offer actions not intended to be allowed. In the 

Android world, this can be accomplished by two applications communicating.   

Imagine that an attacker writes up two applications:  one for managing contacts, 

and another for a cloud-based calendar application. The contacts manager has 

permissions to read from the contact list and the calendar application can connect to the 

network. Assume that these applications are following POLP. On their own, these 

applications can be considered secure. However, if the contact managing application can 

communicate, overtly or covertly, with the calendar application, then there is the 

potential for contacts to leak out over the network to an attacker. 

D. APPLICATION COMPONENTS 

Android applications can be made up of four primary components: activities, 

services, content providers, and broadcast receivers. This section will briefly describe 

these components and their related protection mechanisms. 

1. Activities 

An Android application is a collection of tasks, each of which is called an activity. 

Each activity within an application has a unique task or purpose. They are the 

components with which users directly interact. Android allows for multiple applications 

to run concurrently, but there is only one activity actively running at any given time. The 

Android OS keeps track of all running activities on an activity stack. The activity on top 

of the stack is the active activity, while those below cannot be interacted with until all 

activities higher on the stack are destroyed. 

Activities are started via intents, which are discussed later. The Activities are 

usually run in their own distinct process so they cannot access the calling process’s data. 

Control on who is allowed to start a specific Activity is provided by permission checks in 

the application manifest; specifically by adding the android:permission attribute 

in the <activity> tag. 



 22 

2. Services 

Tasks that do not require user interaction can be encapsulated in a service. 

Services can be used in a number of ways: offloading time-consuming processing, 

performing a task that needs to be done regularly, or, as the name implies, providing a 

service for other components. Like Activities, they can be started with an intent. And, 

similarly, they can be protected via permissions in the <service> declaration in the 

manifest. Applications can communicate with services using the bindService() 

method that will result in a communications channel called a binder channel (discussed 

later). 

3. Content Providers 

Content providers are essentially databases and the programs to access them used 

both for data storage and the sharing of information among applications. They are SQLite 

databases [25]. Android provides a number of default content providers. For instance, the 

provider called ContactsContract contains the phones contacts. The browser 

provider manages the web browser history and bookmarks. The MediaStore, 

CallLog, and settings providers are also provided.  

Access control to content providers is achieved through permissions. There are 

two separate permissions, read and write, with the write permission being a blind write. 

As with all permissions, these must be declared at application installation time and cannot 

be requested at run-time. Applications that wish to access another application’s content 

provider must specify the permissions using the <uses-permission> element in 

their manifest.   

The application that created and manages the content will of course always have 

full read and write permissions. If a content provider’s application does not specify 

access permissions in its manifest, then no other application will have access to the 

provider’s data. This allows for private data storage. 



 23 

4. Broadcast Receivers 

Broadcast messages are one way in which applications and components can 

communicate with each other. Broadcasts are sent out as intents to multiple 

applications. Broadcast receivers can read and handle these intents, allowing for 

messaging between applications. Which messages are received can be restricted by 

specifying the sender’s manifest permissions. This will cause the activity manager to 

check if the sender has the required permission before delivering the intent. 

Broadcasts can also be protected in the other direction, requiring that the receiver 

have the appropriate permissions declared in its manifest to receive the message. In this 

way the applications, which receive a particular intent, can be controlled. 

E. INTENTS 

Intents are the primary method by which Android processes move data and is 

the mechanism used for the majority of Android’s inter-process communication. They are 

essentially data containers. Data sent using intents are actually sent over binder 

interfaces, the real backbone of Android IPC (which is discussed in the next section). As 

most developers deal at the intent level of abstraction, it is important to talk about 

intents specifically.   

An intent generally consists of a recipient, an action to be performed by the 

recipient, and often data. If a recipient is explicitly identified, then it is sent to the 

specified recipient; if not, then it is up to the Android platform to determine which 

application can perform the requested action. There are a number of ways in which 

intents are used in Android. These include: starting a new activity, sending broadcast 

messages, communicating with services, accessing data in content providers, etc.   

By default, applications can only receive system (internal) intents, they will 

not respond to intents sent by other applications. In order for an application to receive 

external intents, the receiving application’s manifest must be configured 

appropriately. Either the application must have the EXPORTED flag set 



 24 

(android:exported=“true”), or the intents must be explicitly identified via 

Intent Filters. 

Intent filters by themselves offer no security against hostile callers. To enable 

control of who can call a certain application component, a permission requirement can be 

added to the receiving application’s manifest corresponding to the appropriate 

component. Activity permissions can restrict who starts the activity. Service permissions 

restrict who can start or use that particular service. Broadcast receiver permissions 

control which applications can receive the broadcast intents. Content provider 

permissions can control who can read or write data in the content provider. 

As stated earlier, intents do not have to explicitly identify a recipient. This 

leads to a vulnerability to hijacking attacks. For instance, if an intent is sent to open a 

website without setting the recipient to com.android.browser, then it is possible 

for a malicious application to intercept this intent and launch a response to the request. 

 

Figure 4.   Implicit intent 

Another potential vulnerability is that of the confused deputy. In the confused 

deputy problem, an innocent but perhaps unsecure program is enticed by a third party 

into misusing the authority of the innocent program. Cross-site request forgery is a good 

example of a well-known confused deputy attack. In Android, this type of attack exploits 

the permission scheme [26]. In Figure 5, application A, the attacker application, has no 

permissions; application B, the confused deputy, has permissions to access application C, 

but no permission checks on its exported components. Application B is thus vulnerable to 

a confused deputy attack by allowing A access to its exported components in turn 

providing A access to the protected components in application C. Of course, this can be 

mitigated by B ensuring it conducts permission checks on its components, but in this case 

we put trust in the developers and applications, we are not relying on either Linux or 

Android mechanisms for protection. 

Intent i = new Intent(Intent.ACTION_VIEW) 
i.setData(Uri.parse(“http://www.google.com”)) 
this.startActivity(i) 



 25 

  

 
Figure 5.   Confused Deputy Attack 

F. BINDER 

Binder is the framework for inter-process communication in Android. It is derived 

from OpenBinder developed by Palm Inc. [62]. It has been incorporated into Android to 

facilitate communication between Android applications. We will give a brief overview of 

how binder works. One thing to consider while reading this is that, binder can be 

considered a capability-based architecture.   

Binder is a kernel module that allows for two applications to communicate. An 

application that wishes to provide a service for other applications must create a binder 

interface which the other applications will use to communicate with that particular 

service. When creating this interface, a binder reference token is created that uniquely 

identifies that binder interface. This token, along with the service’s common name (that 

which is published in the manifest), is registered with the service manager. In order for 

other applications to communicate with the service, they must ‘know’ the token of the 

service with which they wish to communicate.  ‘Knowing’ a token means that it has been 

added to a data structure that the binder kernel module maintains. The binder module 

creates and manages the data structures that hold all the binder references each 

application knows. These trees are populated by the binder kernel module as binder 

references are passed from one application to another.   

If an application, A, wishes to communicate with another application, B, several 

steps must take place. First, A will ask the service manager what B’s binder token is by 

providing B’s common name. The service manager will provide A with B’s token. 

Application A will then make a binder call with B’s token, at which point the binder 



 26 

kernel will check to make sure that B’s token is in A’s permission tree. If so, 

communication can proceed; if not it is halted. The purpose of this scheme is to ensure 

that binder references cannot be guessed. This, along with the uniqueness of binder 

tokens allows for the binder token to also be used as a shared key. The message sequence 

for a calling application wishing to use a service provided by another application is 

shown in Figure 6. 

 

 

 

Figure 6.   Example message sequence diagram for binder 

Note that the application level permissions of the service and the application are 

not checked by binder. This means that the service manager must check the permissions 

of calling applications in order to maintain security. What the binder does to facilitate this 

is to ensure that the calling applications UID and PID are provided to the service; thus 

preventing spoofing of permission sets. 

This should sound similar to capability-based systems. In the binder framework, 

the binder references are the capabilities. The only right afforded to applications with a 

particular reference, is the ability to use that reference to communicate with the 



 27 

associated application. In the binder framework, the primary distributor of capabilities is 

the service manager. When a component wishes to be made public for communication it 

provides its capability to the service manager, essentially inviting anyone to communicate 

with it. 

 

  



 28 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 29 

IV. SE LINUX 

A. INTRODUCTION 

In this chapter, we will briefly introduce SE Linux and the basic principles behind 

it. There are entire books written on the subject of SE Linux, so we will only cover the 

basics [28]. 

B. SE LINUX ACCESS CONTROL MODELS 

SE Linux uses a combination of MAC, Type Enforcement (TE), and Role-based 

Access Control (RBAC) for its security model. At the TE level, SE Linux associates each 

process with a domain. Every domain is given a set of permissions that is necessary and 

sufficient for it to function properly. These permissions limit the files the domain can 

access and the types of operations the domain can perform on the files. The files 

themselves must also be labeled with permissions. These permissions are called a file’s 

security context. Security contexts are stored in a table and are identified by security 

identifiers, or SIDs. SE Linux makes its security decisions based on these SIDs. During 

system initialization, initial SIDs are loaded into the security context table. 

In SE Linux, the default rule is to allow no access, so every access must be 

specified with a TE rule. This type of fine-grained access control leads to exceedingly 

large security policy configurations and makes analyzing them in their entirety somewhat 

difficult. SE Linux uses RBAC in addition to TE to help simplify user management. 

Additionally, SE Linux provides options for MLS. 

1. Type Enforcement 

Type Enforcement is the main model at work in SE Linux. Every subject and 

object in the system is given a domain or type label. Subjects are labeled with domains 

and objects are labeled with types. In SE Linux, domains are actually just types 

associated with processes. The term domain is used in order to avoid confusion. This also 

means that SE Linux only has one matrix that represents access control. Instead of having 

DDTs for domain-type access control and DITs for domain interactions, as in the original 



 30 

Type Enforcement implementations, SE Linux uses a single matrix used by the Security 

Server. The Security Server makes the security relevant decisions based on the SE Linux 

policy. 

In the TE model, access is denied unless an allow permission is explicitly defined 

in a TE rule. Figure 7 displays a typical type definition and rule declaration. Type 

declarations name a type, and, optionally, associate attributes with the type name. Rule 

declarations usually have four parts: 

Source type – typically the domin type of the process attemphing access 

Target type – the type of an object being accessed 

Object class – the class of object that the specified access is permitted. These 

group objects of the same category. For instances files, directories, and sockets 

would be different object classes. 

Permissions – the kind of access the source type is allowed for the target and 

object class. 

 

Figure 7.   Example type definition and rule declaration, from  [28] 

In Figure 7, the type declaration is identifying shadow_t as a type and 

associating it with the attribute file_type. The rule declaration is allowing the auth 

domain to read or get attributes for a file object with a type of shadow_t. 

The second statement in Figure 7 is an example of one of the two general 

categories of TE rules. Access Vector Rules (AVR) are rules that authorize access 

permissions for subjects over objects. There are a number of different AVRs: allow, 

auditallow, dontaudit, and neverallow. Allow rules permit access. 

Auditallow rules will allow access, but will also log the action. Dontaudit denies 

access, but does not log the attempted action. Neverallow specifies that the action 

should never be allowed, even if there is an allow rule somewhere else in the policy 

type shadow_t, file_type; 
allow auth shadow_t:file; 



 31 

allowing for it. Any action which does not have a corresponding rule is automatically 

denied and the attempt is logged. 

The other category of TE rules are the transition rules. Transition rules define 

default types assigned during object creation or domain transitions. Newly created objects 

are assigned types based on the domain of the creating process and the object’s class.   

Domain transitions are domain changes caused by a process performing an exec 

command (new process creation). The new default type that is assigned to the exec’d 

process is based on the domain of the current proccess and the type of the program being 

executed. It’s important to note that domain transition rules only specifiy that a given 

transition can occur; it does not allow it to occur. Therefore, domain transitions must also 

have an associated AVR to allow for the transition to occur. 

 

Figure 8.   The first rule specifies a transition from initrc_t to ping_t on execution of a 
ping_exect_t process. The second rule allows that transition to occur, from 

[28] 

2. Role-based Access Control 

RBAC works alongside TE in SE Linux. For operations to be allowed in SE 

Linux, they must satisfy both TE and RBAC constraints in addition to standard Linux 

DAC. RBAC in SE Linux is essentially the same as described in Chapter II. The three 

basic elements are:   

• users are authorized for a set of roles 

• transitions between roles are authorized, but only if a transition between 
the two roles in question is authorized 

• every role is authorized for a set of domains.   
Each of these three elements is governed by different statements. 

 

 

 

 

type_transition initrc_t ping_exec_t:process ping_t; 
allow initrc t ping t: process transition; 

 



 32 

Role assignments are declared in user statements: 

 

Figure 9.   The user u is authorized for the role sysadm_r, from [28] 

Role transitions are determined by allow statements: 

 

Figure 10.   A process running in the sysadm_r role can transition to the student_r role, 
from [28] 

And lastly, authorizing roles for particular domains is accomplished using role 

statements:  

 

Figure 11.   Role sysadm_r is authorized to enter the ifconfig_t domain, from [28] 

3. Multi-Level Security 

In addition to TE and RBAC, SE Linux also supports MLS. Security contexts can 

be given a level or range that corresponds to its security level. These levels should form a 

lattice [29]. SE Linux utilizes constraints to enable the enforcement of properties such as 

no read-up and no write-down. 

C. SE LINUX POLICIES 

SE Linux policies are typically compiled into binary policy files from a number of 

different source files. Originally, policies were monolithic, meaning the entire policy was 

contained within a single file. However, policies quickly grew to the point where they 

contained tens of thousands of lines and thus were very difficult to work with. The 

increasingly complex nature of SE Linux policies made modularization a necessity [28]. 

Now, there are four basic types of sources files used to describe SE Linux policies: 

• Standard source files define things like domains, types, file contexts, and 
macros. 

user u roles { sysadm_r }; 

allow sysadm_r student_r; 

role sysadm_r types ifconfig_t; 



 33 

• Configuration files are typically modified by administrators to define users 
and roles.   

• TE files define the policy for a particular domain.   

• File context files are used for the initial labeling of objects.   

Many user defined abbreviations and definitions are used to simplify and make 

the configuration files more readable. These are typically defined in terms of “macros.” 

When creating the binary policy files, all of these files are combined and run through the 

Linux Gnu m4 macro processor to generate a policy.conf file [61]. The m4 macro 

processor is simply there to interpret and expand the macros in the policy files. The 

policy.conf file is then compiled into a binary policy.VERSION file. 

D. SE LINUX POLICY TOOLS 

As described above, SE Linux policies for systems grow in complexity very 

quickly, making it difficult for security administrators to create, use, and understand the 

security posture of a system described by these files. A number of tools have been 

developed to assist in analyzing SE Linux Policies [30–32]. In our research we used two 

tools: 

Apol – Apol is one of the tools included in the SETools suite provided by Tresys 

Technology [32]. The suite contains tools for SE policy creation, management, 

and analysis. Apol provides a graphical interface for analyzing SE Linux policy 

files. It provides the ability to browse and search through components of the 

policy including types, attributes, roles, etc. It also allows for information flow 

analysis, domain transition analysis, relabeling analysis, and type relationship 

analysis. Figure 12 is a screenshot of Apol’s transitive flow analysis feature. 

Qisaq - Qisaq is a tool that was provided to us by the I4221 group at NSA for 

evaluation. Essentially, Qisaq is a Python interface to SETools. Qisaq was 

developed in house and is not currently available for public distribution. Because 

it has a Python programming language interface, it is easy to create scripts for 

analyses. 

 



 34 

 

 

 

 

 

 
 

Figure 12.   Apol Screenshot 

  



 35 

V. SE LINUX IN ANDROID (SE ANDROID) 

A. INTRODUCTION 

Security Enhanced Android is under development by the NSA [12]. It was first 

released back in January of 2012. The goal of SE Android is to increase the security of 

Android by enforcing separation guarantees between applications. Since SE Android is 

still a work in progress, it has not been evaluated or approved for official use. While SE 

Android is intended to be a mainstream enhancement to Android with limited user 

interaction, we thought it would be interesting to see how it could be used to help secure 

a specific application architecture. 

B. FEATURES 

SE Android improves Android security in a number of ways. It confines 

privileged daemons, implements strong separation between applications, and provides for 

a centralized security policy that can be formally analyzed [12]. SE Android does more 

than just integrate SE Linux into Android. It also provides some extensions to the 

Android middleware to enhance MAC security.   

Install-time MAC enables the checking of the permissions granted to installed 

applications against a policy. In other words, it can protect naïve users from installing 

applications with dangerous permissions by forcing a check against a MAC permission 

policy. 

The following two mechanisms were not implemented in the version of SE 

Android used in this thesis [12]. The first is a tag propagation mechanism that tracks 

permissions between communicating application. This mechanism is like that provided 

by TaintDroid4. Initially, the set of tags for each application is based on its granted 

permissions. Upon IPC with another application, each application receives the union of 

the individual sets of tags from all the apps involved in the IPC. If that union violates 

policy rules, then the communication is blocked. This mechanism is an effective way to 

                                                 
4 See the Related Works section of Chapter II. 



 36 

prevent the application collusion attacks talked about earlier. The second unimplemented 

mechanism supports permission revocation. This allows the revocation of permissions 

from installed applications using the SE Manager application. 

C. REFERENCE POLICY  

SE policies for SE Android are found under the external/sepolicy 

directory in the SE Android build source files. These files can be downloaded directly 

from [33]. This section will highlight the capabilities of the reference policy that came 

packaged with the SE Android distribution. The version of the policy described here was 

downloaded as part of the SE Android modifications for Android 4.0.4. According to 

Smalley in [34], the “goals for the SE Android policy are to confine the privileged 

daemons in Android, ensure that the Android middleware components cannot be 

bypassed, and ensure that applications are truly isolated from one another at the kernel 

layer.”   

It is important to note that the build and policy we will be using is from July 2012. 

Since SE Android is a work in progress, the policy is continually changing as problems 

are discovered and new features are added.   

1. Domain Rules 

The basic domain rules are found in the domain.te file. This file contains the 

AVRs which all domains need to function. These access rules are all associated with the 

attribute domain.   

The AVRs include intra-domain accesses that simply allow a domain to access its 

own elements like file descriptors, directories, etc. Device accesses are also included. 

Figure 13 displays the defined device accesses for every domain.    The accesses granted 

to the domain attribute are kept to a bare minimum. For instance, the rule for 

socket_device only allows for searching of current sockets on /dev/socket and 

not creation of or reading from sockets. 



 37 

 

Figure 13.   AVRs specifying domain access rules for system devices, from [33] 

2.  Application Domains 

The file defining AVRs for applications is found in app.te. These rules apply to 

applications that lack a predefined platform UID (system, radio, etc.). Originally, it was 

divided into three sections with rules for the following:  appdomain, trusted_app, 

and untrusted_app.   

The trusted_app domain is no longer in use in current versions of SE 

Android. It has been replaced in favor of more distinct trusted domains. It has been 

separated into four separate domains each with their own set of AVRs. They are the 

platform_app, media_app, shared_app, and release_app domains that 

correspond to the AOSP5 build keys [36]. 

All applications are members of the appdomain. It provides the base set of 

rules that all applications must have in order to function. There are a few rules regarding 

its interaction with zygote. For instance, appdomain can use open file descriptors 

that were inherited from zygote. There is also a pair of rules that allow members of the 

appdomain to create file and directory permissions to enable sandboxing of their own 

                                                 
5 Android Open Source Project maintains the source code for Android and its various versions. 

allow domain device:dir search; 
allow domain devpts:dir search; 
allow domain device:file read; 
allow domain socket_device:dir search; 
allow domain null_device:chr_file rw_file_perms; 
allow domain zero_device:chr_file r_file_perms; 
allow domain ashmem_device:chr_file rw_file_perms; 
allow domain binder_device:chr_file rw_file_perms; 
allow domain ptmx_device:chr_file rw_file_perms; 
allow domain powervr_device:chr_file rw_file_perms; 
allow domain log_device:dir search; 
allow domain log_device:chr_file w_file_perms; 
allow domain nv_device:chr_file rw_file_perms; 
allow domain alarm_device:chr_file r_file_perms; 
allow domain urandom_device:chr_file r_file_perms; 



 38 

files. Lastly, the appdomain uses a set of macros that describe binder accesses to allow 

for binder IPC use. These macros will be discussed in more detail in a later section, they 

allow the appdomain to perform binder IPC calls to members of the 

binderservicedomain and trusted_app domain. 

 

Figure 14.   AVRs for appdomain, from [33] 

Since all applications are members of the appdomain, the policy divides 

applications into two categories: trusted and untrusted. Untrusted applications, naturally, 

have fewer permissions. Access is restricted to the network, Bluetooth, SD Card, as well 

as native applications. These are controlled by Booleans that are currently managed by 

the SE Manager application. Untrusted applications fall under the same rules as the 

appdomain regarding the use of binder. 

The platform_app, media_app, shared_app and release_app 

domains were all originally united under the trusted_app domain. This was changed 

when install-time MAC was introduced to allow for more granularity in the permissions 

of the different system applications. All of these applications are also 

mlstrustedsubjects. This term will be discussed in the MLS section below.   

allow appdomain zygote:fd use; 
allow appdomain zygote_tmpfs:file read; 
allow appdomain zygote:process sigchld; 
allow appdomain system:fifo_file rw_file_perms; 
allow appdomain app_data_file:dir create_dir_perms; 
allow appdomain app_data_file:notdevfile_class_set  

create_file_perms; 
allow appdomain system_data_file:dir r_dir_perms; 
binder_use(appdomain) 
binder_call(appdomain, binderservicedomain) 
binder_transfer(appdomain, binderservicedomain) 
binder_call(appdomain, trusted_app) 
binder_transfer(appdomain, trusted_app) 



 39 

3. Seapp_contexts 

The policy contains a file called seapp_contexts, which is unique to the SE 

Linux implementation in Android. The seapp_contexts file is used to label, or add 

security contexts to application processes and their package directories. In order to label 

an application process, a domain must be specified. Similarly, to label an application 

directory a type must be specified. The seapp_contexts file is read by 

libselinux/android.c which labels entities based on a set of precedence rules. 

The rules are as follows: 

(1) isSystemServer=true 

(2) specified user before unspecified user  

(3) fixed user string before user prefix string with a wildcard (*)  

(4) longer user prefix over shorter prefix  

(5) specified seinfo before unspecified seinfo  

(6) specified name before unspecified name  

This first check is whether the process is the System Server. If so, it will be 

labeled with the system domain. Note that there is only one System Server. The second 

check serves to determine if the application runs under a predefined platform user:  

system, nfc, radio, etc. The third and fourth checks simply deal with different user 

strings, with fixed strings coming before prefix strings (app_*) and longer prefixes 

coming before shorter ones. The fifth rule checks for an seinfo string that is used to look 

up the security context of an application process. The last rule checks whether a package 

name has been specified. This allows for specific application labeling. 



 40 

 

Figure 15.   seapp_contexts statements, from [33] 

Figure 15 shows the statements from an early version of the seapp_contexts 

file. The first statement is simply assigning the System Server to the system domain. The 

second statement will map application processes under the system user id to the system 

domain and their application directories to system_data_file. Similarly, 

applications under the nfc and radio user id are given their own process and directory 

labels. The next rule for untrusted_apps is the catchall statement. Any application 

that does not match any of the other statements falls under the untrusted_app 

domain. The next statement is for trusted_apps and the last is specific for the 

application com.android.browser.  

The seinfo string was rather unclear as to its purpose in earlier builds of SE 

Android. This is because it was hardcoded with only a systemApp value, which 

specified applications in the system partition. So, in Figure 15, any application in the 

system partition was labeled under the trusted_app domain with the exception of 

com.android.browser due to name precedence. This has since been updated with 

the introduction of install-time MAC and is explained in the next section. 

4. Install-time MAC 

Install-time MAC is a feature unique to SE Android. It allows for specification of 

MAC on the Android permissions that applications request at install time. The policy 

configuration for this feature is found in the mac_permissions.xml file. With it, 

MAC rules can be placed on the different permissions to either allow or deny a requested 

isSystemServer=true domain=system 
user=system domain=system_app type=system_data_file 
user=nfc domain=nfc type=nfc_data_file 
user=radio domain=radio type=radio_data_file 
user=app_* domain=untrusted_app type=app_data_file  

levelFromUid=true 
user=app_* seinfo=systemApp domain=trusted_app  

levelFromUid=true 
user=app_* seinfo=systemApp name=com.android.browser  

domain=browser_app levelFromUid=true 



 41 

permission. This allows for the Android permission security mechanism to be controlled 

by a central policy rather than individual users. Dangerous permissions can be explicitly 

denied so that naïve users are less likely to compromise their device. Figure 16 shows 

how the mac_permissions.xml file is organized. 

 

Figure 16.   mac_permissions.xml, from [33] 

<signer signature="308204a8308…" > 
    <allow-all /> 
    <seinfo value="platform" /> 
    </signer> 
 
<signer signature="308204a83082039…” > 
  <seinfo value="release" /> 
    <deny-permission name="android.permission.BRICK"/> 
    <deny-permission name="android.permission.READ_LOGS"/> 
    … 
    <package name="com.android.browser" > 
      <allow-permission name="android.permission. 

  ACCESS_COARSE_LOCATION”/> 
      <allow-permission name="android.permission. 

  ACCESS_DOWNLOAD_MANAGER"/> 
      <allow-permission name="android.permission. 

  ACCESS_FINE_LOCATION"/> 
 … 

    </package> 
</signer> 
 
<default> 
    <seinfo value="default"/> 
    <deny-permission name="android.permission. 

ACCESS_COARSE_LOCATION"/> 
    <deny-permission name="android.permission. 

ACCESS_FINE_LOCATION"/> 
    <deny-permission name="android.permission. 

AUTHENTICATE_ACCOUNTS"/> 
    <deny-permission name="android.permission. 

CALL_PHONE"/> 
    <deny-permission name="android.permission.CAMERA"/> 
    <deny-permission name="android.permission.READ_LOGS"/> 
    <deny-permission name="android.permission. 

WRITE_EXTERNAL_STORAGE"/> 
</default> 



 42 

In Figure16, there are different sets of permissions for three different types of 

applications. The <signer> element determines what applications receive its 

permission set. Specifically, they represent the keys used to identify the authors of an 

application. The first signer corresponds to platform applications and the second signer 

corresponds to release applications. Generally, third party applications have their own 

unique key that must be added to this file to enforce MAC on permissions specific to that 

application. However, keys that are not specified in the mac_permissions.xml file 

fall under the default group. 

Each <signer> element and the <default> element can have several child 

elements. The <seinfo> element corresponds to the seinfo string found in the 

seapp_contexts file. This will associate the application(s) specified by the 

<signer> element to the corresponding labeling rules in seap_contexts. This 

allows for controllable application specific labeling.   

The <allow-permission> and <deny-permission> tags allow for 

white-listing and black-listing of android permissions. For instance, <deny-

permissions name=“android.permission.READ_LOGS”/> will deny the 

parent <signer> application the READ_LOGS permission. There is also an <allow-

all> tag if an application should not be denied any permissions.   

Lastly, the <package> tag can define the same rules for specific packages. The 

rules for the <package> element override those of its parent <signer> element. The 

<package> tag can also exist outside of a <signer> parent element in which case 

they can also have their own <seinfo> tag.   

5. Important System Applications 

In this section we will describe the policies for some of the important processes in 

Android. The functionality of some of the processes have been modified from their SE 

Linux versions for compatibility with SE Android. 



 43 

a. General System Apps 

The system.te file contains AVRs for the system_server as well 

as other applications that run under the system UID. The system_server is more 

privileged than the other system applications because, as noted above, it is responsible for 

managing native services. As such, it has permissions you would expect for service 

management:  scheduling and killing processes, communicating with daemons, managing 

data and cache files, and a few other managerial operations. 

The other applications running under the system UID are not as privileged 

as the system_server. These applications, which include the UI and settings 

applications, are given the basic set of permissions associated with applications. 

Additionally, they can perform binder functions for services and applications referenced 

in the  appdomain. The settings application was originally responsible for managing 

the SE Linux mode (enforcing or permissive) and SE Linux Booleans. In current versions 

of SE Android, these are now managed by a separate system application called SE 

Manager. 

b. Init 

Init is an important daemon as discussed in the Android framework 

section. It is responsible for the initialization of Android. The init domain, along with 

the kernel and su domains, makes use of the unconfined_domain macro, which 

associates with it the type attributes mlstrustedsubject and 

unconfineddomain. The mlstrustedsubject exempts the domain from MLS 

constraints, and unconfineddomain allows it to do anything. 

Also, since init is responsible for starting up the various daemons, it 

must allow for those daemons to transition from init’s domain to their respective 

domains. The macro init_daemon_domain(domain) sets the “permissions” in 

te_macros file that allow those transition to happen. 



 44 

c. Zygote 

Zygote is the process from which all other processes are spawned. 

Zygote has been modified in SE Android to allow it to set security contexts for the 

applications it spawns. It also maps the DAC credentials of its children to the security 

context [34]. As such, it must have permissions enabling it to perform the proper 

functions when forking new processes. It must also be able to transition into new 

domains. Zygote can transition into either the system domain or the appdomain 

domain. 

 

Figure 17.   Zygote dyntransition permissions, from [33]   

d. Service Manager 

The service manager, as discussed earlier in the binder section, handles 

binder requests and transfers references. The service manager does not need to pass its 

own reference as it is static and known by all, and it only ever receives requests. 

Therefore, the service manager’s rule set is simple.   

 

Figure 18.   Service manager IPC rules, from [33] 

e. Media Server 

Permissions for the media server are found in mediaserver.te. The 

media server is responsible for managing and indexing images, videos, and music files. It 

requires access to multimedia devices including: SD Card, camera, video, and audio 

devices. It is also a member of binderservicedomain, which marks it as being a 

binder service and allowing binder IPC to system services. 

allow zygote system:process dyntransition; 
allow zygote appdomain:process dyntransition; 

allow servicemanager self:binder set_context_mgr; 
allow servicemanager domain:binder; 



 45 

f. Installd 

The installer daemon, like zygote, has been modified for SE Android. 

As the name implies, installd is responsible for installing applications. It has been 

modified to label the application data directories that it creates as part of the install 

process. It reads from the seapp_contexts configuration for labeling purposes.   

6. Macros 

This section will briefly cover some of the macros used in policy definitions. 

These macros provide shortcuts to assigning domains attributes or AVRs. The ones 

discussed here are those used for application policies, not those that are used for system 

applications. Most of these macros deal with control of IPC mechanisms. 

The first macro we describe is the app_domain(domain) macro. This does 

two things. First, when it is expanded, it assigns the type attribute appdomain to the 

input argument domain. As mentioned earlier, the appdomain is associated with the 

base set of permissions required by all applications. The second part of the macro is 

actually another macro: tmpfs_domain(domain).   

The tmpfs_domain macro, when expanded, defines a unique file type for the 

domain to use when creating tmpfs (temporary file storage), shmem (shared memory), 

and ashmem (anonymous shared memory) files. It describes how to provide further 

guarantees of isolation for application data. Figure 19 shows these two macros. Note that 

the $1 signifies the first input parameter. If written as a function it would look like 

app_domain($1). 

 

Figure 19.   app_domain and tmpfs_domain macros, from [33] 

define(`app_domain’, ` 
 typeattribute $1 appdomain; 
 tmpfs_domain($1) ‘) 
define(`tmpfs_domain’, ` 
 type $1_tmpfs, file_type; 
 type_transition $1 tmpfs:file $tempfs; 
 allow $1 $1_tmpfs:file {read execute execmod}; ‘) 



 46 

The net_domain(domain) macro associates the input domain with the type 

attribute netdomain. The AVRs for netdomain are found in the net.te file. These 

rules allow for the use of network sockets and connecting and binding to tcp and udp 

sockets. 

 

Figure 20.   netdomain AVRs, from [33] 

When expanded the next pair of macros set up the AVRs for access control for 

general socket usage. As seen in the last statement in Figure 22, the macro, 

unix_socket_connect( clientdomain, socket, serverdomain), 

allows for socket connections from a client domain to server domain via a socket. The 

other macro is 

 unix_socket_send(clientdomain, socket, serverdomain).   

This allows for the socket operation send to be performed from the client domain to the 

server domain via a socket. 

 

Figure 21.   Socket macros, from [33] 

The last set of macros set up the AVRs for the controlled use of the binder. The 

first of these is binder_use(domain), which sets up the domain to allow it to use 

allow netdomain self:{ tcp_socket udp_socket } *; 
allow netdomain node_type:{ tcp_socket udp_socket } 
node_bind; 
allow netdomain port_type:udp_socket name_bind; 
allow netdomain port_type:tcp_socket name_bind; 
allow netdomain self:netlink_route_socket {create bind 
read nlmsg_read}; 
unix_socket_connect(netdomain, dnsproxyd, netd) 
 

define(`unix_socket_connect', ` 
allow $1 $2_socket:sock_file write; 
allow $1 $3:unix_stream_socket connectto; ') 

define(`unix_socket_send', ` 
allow $1 $2_socket:sock_file write; 
allow $1 $3:unix_dgram_socket sendto; ') 

 



 47 

binder IPC. This entails allowing the domain to retrieve binder references from the 

service manager. Additionally, it allows sending and receiving binder references to and 

from itself. The transferring of binder references is accomplished by the macro 

binder_transfer( clientdomain, serverdomain). The 

binder_call(clientdomain, serverdomain) macro allows for the client 

domain to perform binder IPC calls to the server domain. This is accomplished in two 

rules: allowing the receipt and calling of the server’s binder reference and allowing the 

use of the servers file descriptors.   

 

Figure 22.   Binder macros, from [33] 

These are the macros of most interest for writing policies for specific applications. 

There are many other macros found in the global_macros, te_macros, and 

mls_macros files. Some of the macros for MLS will be discussed in the next section. 

7. MLS 

There are two files relating to MLS in the policy: mls and mls_macros. These 

files provide the architecture that allows for MLS policies to be used. Currently, there is 

only one sensitivity level defined: s0. As mentioned earlier, SE Android improves 

application separation by using MLS categories. Every application is labeled with its own 

category: c0 to cN-1.   

The mls and mls_macros files provide for easy deployment of MLS policies. 

They provide for placing constraints on: processes, sockets, directories and files, and IPC. 

These constraints follow the Bell-LaPadula model with the exception that 

define(`binder_use', ` 
 allow $1 servicemanager:binder call; 
 allow $1 self:binder { transfer receive }; 
 allow $1 ashmem_device:chr_file execute; ‘) 
define(`binder_call', ` 
 allow $1 $2:binder { receive call }; 
 allow $1 $2:fd use; ‘) 
define(`binder_transfer', ` 

allow $1 $2:binder transfer; ') 



 48 

mlstrustedsubjects are exempt from these constraints. There are 13 important 

system processes that are labeled mlstrustedsubjects: adbd, debuggerd, 

drmserver, init, installd, kernel, mediaserver, netd, su, 

surfaceflinger, system, vold, and zygote. 

D. SE MANAGER 

SE Manager is an application packaged with SE Android that allows for the 

configuring of SE Android enforcing modes:  SE Linux enforcing mode, and MAC 

enforcing mode. The SE Linux mode corresponds to the traditional SE Linux enforcing 

and permissive modes. Enforcing mode actively denies AVR violations. Permissive mode 

monitors for and reports violations but does not deny actions. The MAC enforcing mode 

is for the enforcing of the install-time MAC permission checks. The application also 

allows for the setting of the various Booleans included in the policy. These Booleans 

allow for conditional granting of access based on their value. For instance, the 

android_cts Boolean will grant the permissions needed for the Android 

Compatibility Test Suite to run when set. Lastly, the application allows for the viewing of 

SE Linux and MAC logs. 

E. SE ANDROID VS EXPLOITS 

In [10], Smalley outlines how various Android exploits would be prevented by SE 

Android. Most of these exploits are simply variations of the same vulnerabilities. In this 

section  we will briefly describe several of these case studies. 

1. RageAgainstTheCage 

RageAgainstTheCage, also known as “CVE-2010-EASY,” is an exploit that 

results in an adb (used for debugging) shell running as root [35]. It takes advantage of a 

vulnerability in the setuid(uid) function. The problem is that setuid does not drop 

privileges if the RLIMIT_NPROC resource limit is hit. The setuid(2) man page declares 

[36]:  “ERRORS - EAGAIN The uid does not match the current uid and uid brings 

process over its RLIMIT_NPROC resource limit.”  The RLIMIT_NPROC is “the 



 49 

maximum number of processes that can be created for the real user ID of the calling 

process” [37]. 

RageAgainstTheCage begins by iterating through the processes in the /proc 

directory, where the proc file system resides. That directory contains information about 

all the processes running in the system. It is searching for the /proc/pid/cmdline 

file belonging to adb. This exploit would be prevented by SE Android because adb’s 

/proc/pid directory has been labeled with the security context u:r:adbd:s0, 

which would render it unreadable by untrusted applications with the context 

u:r:untrusted_app:s0:cN. Furthermore, upon exec of a shell, the security 

context would change; so while the shell would indeed be running as root, it would be 

running in a restricted security context.  

The Zimperlich exploit does essentially the same thing but spawns an application 

component with escalated privileges by causing zygote’s setuid to fail [35]. It too 

would not work in SE Android. 

2. Exploid 

Exploid is a jail-breaking exploit that appeared in 2010. It utilized a vulnerability 

in Netlink as detailed in CVE-2009–1185 [38]. The problem is that udev, the device 

manager, did not verify whether Netlink messages came from kernel space or user space. 

This allowed local users to gain privileges by sending a Netlink message from user space. 

In Android, the vulnerability was inherited as much of udev’s functionality was ported 

over. 

Exploid works by using the Netlink vulnerability to perform an arbitrary write as 

root to an arbitrary file; in this case /proc/sys/kernel/hotplug. Hotplug gets 

invoked anytime a device is plugged in. The contents of hotplug are overwritten to point 

to the exploit code to be executed. In SE Android, this exploit would be stopped in two 

ways. First, the creation and use of Netlink sockets is denied by the policy. Secondly, the 

write to /proc/sys/kernel/hotplug would be denied because of the security 

context despite the writing process being root.  



 50 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 51 

VI. PROOF OF CONCEPT APPLICATIONS AND POLICY 

A. SCENARIO INTRODUCTION 

The scenario that our proof-of-concept is based on is a calendar application that 

can work with data from calendars of different categories.   

For this thesis, we built a system that will display data from two different 

calendars in non-interacting domains. The system provides a single display for the two 

calendars. There is a mechanism for managing one of the two calendars. The display will 

only show full information for the calendar that is currently being managed. 

We did not code up the complete application due to its complexity and our time 

constraints. The goal was to determine how to configure the security policy to allow for 

their secure interactions and operations. Instead the applications are merely partial 

implementations that reflect the kinds of operations that would be performed in such an 

application. The communication channels and data stores are complete so that the policy 

can be properly analyzed. 

Our testing environment is a 64-bit Fedora16 virtual machine that contains the 

Android ARM emulator running Android 4.0.4 (Ice Cream Sandwich) using NSA’s 

release of SE Android pulled in June 2012 from [39].   

B. ARCHITECTURE OF APPLICATIONS 

The application is actually a set of applications that work together. There are three 

different types of applications: the main application, the trusted controller, and the 

separate calendar applications. A diagram of the components and their communications 

channel is shown in Figure 25. The source code for these applications can be found in 

Appendix A. 

1. Main Application 

The main application, shown in Appendix A, Section 1, is the only application 

that is visible to the user and that the user can interact with. This main application 

displays the data from the two separate data stores with one set being redacted depending 



 52 

on which mode it is in. The main application does not communicate with these data stores 

directly. Instead it feeds requests through a trusted controller.   

There are two activities in the main application. The first, seen in Figure 23, 

allows for the selection of which mode it is in. This mode determines which data is 

displayed and which is redacted.   

 

Figure 23.   Selection Activity of the Main Application 

The second activity communicates with the trusted controller to perform actions 

on the calendar applications. It does so by binding to an IBinder interface exported by the 

trusted controller. An IBinder interface allows for an application to export functions as a 

service for other applications to use. In this implementation, the only operation available 

is a read table request which simply has the data sent to this application to display. 

Communications with the trusted controller is done over a binder interface to emulate 

how this would be done in a complete implementation. Lastly, the second activity 

implements a broadcast receiver to handle the data being sent to it by the two calendar 

applications. It would probably be better to use regular intents instead of broadcast 

intents, but broadcast intents were used to allow testing of the install-time MAC 



 53 

feature of SE Android. After receiving that data, the activity then displays it in a table 

format as seen in Figure 24.   

 

 
Figure 24.   Display Activity with view 0 selected (left) and view 1 selected (right) 

2. Trusted Controller 

The trusted controller is the main reason we did not fully develop this application 

as its complexity exceeds the scope of this thesis. For the purpose of this thesis, we 

assume that the trusted application is ‘secure’, that is that it is correctly implemented.    

We are assuming that it will only send the correct request to the calendar app that it was 

instructed to. The trusted controller receives requests from the main application and then 

communicates with the separate calendar applications. These requests are received via an 

IBinder interface. Only one function was exported to this interface. That was the 

readTables() function, which would ask the calendar applications to send query 

results to the main application. 

Communications with the calendar applications is also done via an IBinder 

interface connection. The reasoning behind this is that it is expected in normal usage of 



 54 

the full application to have the user perform multiple requests that would make an 

established binder connection more efficient.   

3. Calendar Applications 

There are two calendar applications in our implementation. For the purposes of 

this thesis, these two applications will communicate with content providers on the SE 

Android device to store their data. In the real world, it is more likely that this data will be 

housed in the cloud for availability on multiple devices. In our proof-of-concept each 

calendar application implements its own content provider. Within each content provider 

the applications store ‘appointment data’ in a database. This database consists of one 

table, dates, with the following columns: date_id, date, and comments. This table 

is meant to represent the type of data found in a simple calendar application. The date 

represents the date/time of the appointment and the comments describe the appointment. 

For this study, these tables have been prepopulated with data to simplify the applications, 

i.e., we are not implementing the calendar update function. Inserting more data into the 

content providers of each of the applications would take the same communication paths 

as reading does, and so it would not affect the SE Android policy. 

Like the trusted controller, these applications implement an IBinder interface. 

This interface implements one function that allows for queries against the content 

provider. The results of those queries are then packaged up in a broadcast intent and 

sent to the main application. The data sent to the main application is added as an extra 

data item to the intents using intent.putExtra(name, data). 



 55 

Main Application

Calendar App 1 Calendar App 2Trusted 
Controller

Data Store for 
Calendar App 1

Data Store for 
Calendar App 2

 

Figure 25.   Communication channels for the applications 

C. SECURITY GOALS/REQUIREMENTS 

There are several security goals for this proof-of-concept. Most goals relate to the 

prevention of the leaking of information from one calendar to another and from the 

calendars to other applications. The goals are as follows: 

• There is to be no information flow between the individual calendar 
applications.   

• The data stored in the content providers should be accessible only to the 
proper applications.   

• The data sent via broadcast intents should only be received by the 
main application.   

• Only the applications specified earlier within the proof-of-concept are 
allowed to bind to the exported services. 

One may notice that it appears possible for data to pass from one calendar 

application to the other through the allowed communications channels. For instance, the 

display application could receive data from one calendar application, and then send it to 

the trusted controller, which will then send it to the other calendar application. As noted 

earlier, this is not a complete implementation and we are trusting that the trusted 

controller would not allow that to happen. However, in the discussion section, we 

propose an alternate architecture to prevent this channel. 



 56 

D. ANDROID SECURITY 

Each application is protected by permissions declared in their 

AndroidManifest.xml file. Five custom permissions have been defined: one for access to 

the controller, two for access to each of the calendar apps, and two permissions to be used 

for the broadcast intents. The controller and calendar applications each define and 

place a permission on their services. The display application uses the controller 

application permission, and the controller application uses each of the calendar 

application permissions. The calendar applications place a permission requirement on the 

broadcast intents they send to the display application using 

sendBroadcast(intent, permission). This ensures that only applications 

with the proper permission can receive that intent. 

The content providers implemented by each of the calendar applications are 

protected by default. If no permissions are added to the manifest regarding access to the 

providers, then only the application implementing the providers can access it. 

1. Deficiencies 

The only place where the basic Android security features are weak is in the 

permissions. The problem lies in the fact that malicious developers can simply read the 

manifest of the application declaring the permission, and then use that permission in their 

own application. The user would then be asked whether to grant that permission to the 

malicious application on install. The android:description tag would be displayed 

and, if that tag was not defined or gives insufficient detail, a naïve user may grant it 

permission. 

There are two ways that SE Android can mitigate this problem. The first is by 

placing MAC on the communication channels between the applications themselves. This 

will prevent any outside application from communicating with applications it should not 

have access to. The second way is by placing MAC on the permissions themselves. Using 

the install-time MAC feature, the permissions can only be granted to certain applications.  



 57 

E. SE LINUX POLICY DEVELOPMENT 

The process of writing policies for new applications is fairly straightforward for 

SE Android. This is because there are already macros and domains defined which provide 

most of the permissions needed for applications to work. There are only a handful of files 

that need to be updated: seapp_contexts, optionally the 

mac_permissions.xml, and the separate TE file containing the policy.  

The policy for the proof-of-concept application was made by first labeling the 

applications via the seapp_contexts file. Then, with permissive mode enabled, the 

application was run looking for any logged SE Linux denials. Based on these denials, 

permissions were added to allow the application to function properly. This allowed for 

the POLP to be followed when adding AVRs to the policy. The contents of the files for 

the policy changes and additions can be found in Appendix B. We describe some of the 

details below. 

1. App.te 

Some changes were made in the app.te file. In earlier versions of SE Android, 

there were two types of applications defined in this file: untrusted and trusted. When the 

trusted applications were split into platform, shared, media, and release applications, the 

AVRs regarding the use of binder were altered. In that alteration, it became possible for 

untrusted applications to perform binder IPC to other untrusted applications. In fact any 

application in the appdomain could now perform binder IPC to any other application in 

the appdomain. As noted earlier, every application on the device is a member of the 

appdomain, so every application could now perform binder IPC to every other 

application. 

We reverted this change in the app.te file. This involved adding rules allowing 

the following: 

• The appdomain can perform binder IPC with each of the trusted 
application domains. 

• Each trusted application domain can perform binder IPC with every other 
trusted application domain. 



 58 

• Each trusted application domain can perform binder IPC with the 
appdomain 

Thus, the only thing now disallowed is for untrusted applications performing 

binder IPC with other untrusted applications. Without this change, it is impossible to 

place restrictions on what applications can use the binder channel. As shown in Figure 

26, if this change was not made, then communication between view0_app and 

view1_app would be allowed. 

 

Figure 26.   Apol analysis of information flow using the default app.te file 

2. Seapp_contexts 

The seapp_contexts file was updated to allow for the distinct labeling of the 

separate applications. Four statements were added; one for each of the applications.   

 

Figure 27.   Additions to seapp_contexts 

As Figure 27 shows, the name string in each statement refers to one of the 

application packages. Each application process will be labeled with its own distinct 

domain. The files are labeled with the same type, but will be separated by the category 

labeling done by levelFromUid. 

A quick check with adb shell ps –Z gives us the following security contexts for 

the processes: 

Information flows into view1_app from view1_app 
Objects classes for IN flows: 
 fd 
 allow appdomain appdomain : fd use ; 

 

user=app_* name=com.poc.displayapp domain=display_app  
type=app_data_file levelFromUid=true 

user=app_* name=com.poc.trustedcontroller  
domain=controller_app type=app_data_file  
levelFromUid=true 

user=app_* name=com.poc.view0 domain=view0_app  
type=app_data_file levelFromUid=true 

user=app_* name=com.poc.view1 domain=view1_app  
type=app data file 

 



 59 

 

Figure 28.   Process security contexts 

And similarly, adb ls –Z /data/data, for the file contexts: 

 

Figure 29.   File security contexts 

3. Poc_app.te 

The poc_app.te file contains the AVRs for the proof-of-concept applications. 

There are only a handful of rules needed. Each new application domain must be 

associated with the base domain as well as the appdomain. This is accomplished with 

the following two statements: 

 

Figure 30.   poc_app.te domain associations 

Additionally, a number of binder permissions are used to allow the applications to 

communicate with the other applications they need to communicate with. The display 

application must be able to perform binder IPC with the trusted controller. The trusted 

controller must perform binder IPC with each of the calendar applications. These rules 

can be accomplished using three binder macros: binder_use(domain), 

binder_call(clientdomain, servicedomain), and 

binder_transfer(clientdomain, servicedomain). 

u:r:display_app:s0:c37  com.poc.displayapp 
u:r:controller_app:s0:c36 com.poc.trustedcontroller 
u:r:view0_app:s0:c34  com.poc.view0 
u:r:view1_app:s0:c35  com.poc.view1 

 

u:object_r:app_data_file:s0:c37  com.poc.displayapp 
u:object_r:app_data_file:s0:c36  com.poc.trustedcontroller 
u:object_r:app_data_file:s0:c34  com.poc.view0 
u:object_r:app_data_file:s0:c35  com.poc.view1 
 

type display_app, domain; 
app_domain(display_app) 



 60 

4. Mac_permissions.xml 

Updating the mac_permissions.xml is entirely optional for developers. That 

being said, it is a good way to improve the security of applications. In our proof-of-

concept, the applications use custom permissions to restrict who can talk to whom. That 

doesn’t stop a potentially malicious application from simply reading the 

AndroidManifest.xml files and putting that permission in its own manifest. By 

updating the mac_permissions.xml file, those custom permissions can be further 

protected by only allowing certain applications to have those permissions. 

As discussed in the previous chapter, the mac_permissions.xml file can 

allow for packages to specify their own allow or deny permission rules. The proof-of-

concept application packages were added and their corresponding permissions marked 

allowed. Additionally, under the default scheme, all permissions used by the new 

packages were denied. 

F. SE LINUX POLICY ANALYSIS 

It turns out that traditional tools like Apol are not all that useful when analyzing 

policies for SE Android. This is primarily because of the strong separation that SE 

Android aims for. There is very little domain transitioning done, and when it does occur, 

it is usually some system process like zygote or installd that is doing a single, one 

way, transition into an application domain. Further, third party applications do not 

typically communicate with other third party applications so the sharing of files does not 

occur often. Nevertheless, we can verify that there are no information flows that violate 

our security goals. We used Apol and Qisaq to evaluate the policy. 

1. Apol 

We can verify that there is no information flows between the view0_app and 

view1_app domains by doing a transitive information flow analysis in Apol. It yields 

four flows which, when scrutinized, are not of a concern. The first flow is as follows: 



 61 

 

Figure 31.   Information flow from Apol for view1_app to view0_app 

All of those flows are disabled due to a SE Boolean. Unfortunately, Apol does not 

have the capability to show which Boolean it is without doing some digging. Looking 

through Apol’s policy rules and conditional expressions tab, it turns out that the Boolean 

governing these flows is the android_cts Boolean. This Boolean would only be 

enabled when the Android Compatibility Test Suite, which is used by developers to test 

their apps on various devices, is being used, so these AVRs should never be enabled in 

real-world use. The other three flows involve transitioning through the 

mlstrustedsubjects, debuggerd and zygote. Being 

mlstrustedsubjects, these are assumed to be trusted so those flows should not be 

allowed by these subjects. 

We can further verify that communication is allowed from the display_app 

domain to the controller_app domain, and similarly for the controller_app 

domain to the view0_app and view1_app domains: 

 

Figure 32.   AVRs allowing flow from display_app to controller_app and 
controller_app to view0_app and view1_app 

These allow for the corresponding applications to use file descriptors that are 

passed via the binder connections. This allows for the passing of data between the 

applications. 

Flow 1 requires 1 step(s). 
view1_app -> view0_app 
allow appdomain domain:file {ioctl read getattr lock  

open}; [Disabled] 
allow appdomain domain:dir {ioctl read getattr search  

open}; [Disabled] 
allow appdomain domain:lnk_file {ioctl read getattr  

lock open}; [Disabled] 
 

allow display_app controller_app : fd use; 
allow controller_app view0_app : fd use; 
allow controller_app view1_app : fd use; 



 62 

2. Qisaq 

Qisaq, as mentioned earlier, is a Python interface to SETools. Qisaq works by 

importing SE Linux policies and constructing directed graphs with the types being the 

nodes and the AVRs and domain transitions representing edges. For large policies, like 

the SE Linux reference policy, the conversion to graphs uses a large amount of both 

memory and time. Fortunately, the SE Android policy is small enough to be analyzed in a 

reasonable amount of time. 

Qisaq, like Apol, can detect direct information flows. Additionally, it will provide 

the constraints that restrict flow between two domains. The SE Android policy only 

contains MLS constraints, and as none of the proof-of-concept applications are 

mlstrustedsubjects nor do any dominate the others, these constraints do not apply. Direct 

information flow from view0_app to view1_app is as follows: 

 

Figure 33.   Qisaq information flow between view0_app and view1_app 

All of these flows are denied by a Boolean as mentioned earlier, but Qisaq does 

not yet account for them when doing the graph analysis. 

Qisaq can also look for indirect influences between two domains. It does so by 

looking for paths going through types that are not considered trusted mediators. To do 

this analysis, all mlstrustedsubjects were added to the set of trusted mediators. 

Then, Qisaq does a ‘breakout’ analysis looking for paths between two domains going 

through types not included in the set. Doing this analysis for view0_app and 

view1_app yields no paths outside the mediators. As noted in the Apol section, there 

Information can flow directly from view0_app to view1_app: 
view0_app can invoke class lnk_file read operations  

{getattr, read} on view1_app 
view0_app can invoke class dir read operations  

{getattr, read, search} on view1_app 
view0_app can invoke class file read operations  

{getattr, read} on view1_app 
view0_app can invoke class lnk_file unmapped  

operations {open} on view1_app 



 63 

were information flows from view0_app to view1_app through debuggerd and 

zygote. Both of these are mlstrustedsubjects and are included in the set of 

trusted mediators. 

G. DISCUSSION 

As mentioned earlier, using the current architecture it is possible for data to pass 

from view0_app to the view1_app through the allowed communication channels. 

We propose an alternate architecture to eliminate this.   

The proposal is to add a new application to work alongside each of the calendar 

applications. This new application will access the content provider implemented by the 

original calendar applications with only read permissions. We now have two applications 

interacting with the content provider: application A, the original calendar application, and 

application B, the new application. Application B would now be the one that the trusted 

controller interacts with when interacting in a restricted mode. In other words, if the 

mode selected was view0, then the trusted controller would interact with application B of 

view1. With application B only having read permission to the content provider, it would 

not be able to update tables with information obtained from view0. This new architecture 

is represented in Figure 34. 



 64 

Main Application

Calendar App 1A Calendar App 2A

Trusted 
ControllerData Store for 

Calendar App 1
Data Store for 

Calendar App 2

Mode 1 Mode 2

Calendar App 1A
Mode 2

Calendar App 2A
Mode 1

 

Figure 34.   New architecture. Only the two flows of the same mode occur at the same time. 

We can ensure that the trusted controller only connects to application A or B 

appropriately by using a new SE Boolean. By having the main application set the 

Boolean upon choosing a mode, we can ensure that the trusted controller can never write 

data to the data stores of view0 and view1 at the same time. The policy for the trusted 

controller would be adjusted accordingly: 

 

 

 

 

 

 

 

 



 65 

 

 

 

 

 

 

 

Figure 35.   Proposed policy change for new architecture 

  

bool view0 false; 
bool view1 false; 
type controller_app, domain; 
app_domain(controller_app) 
binder_use(controller_app) 
if (view0) { 
binder_call(controller_app, view0_appA) 
binder_transfer(controller_app, view0_appA) 
} 
if (view1) { 
binder_call(controller_app, view1_appA) 
binder_transfer(controller_app, view1_appA) 
} 
binder_call(controller_app, view0_appB) 
binder_transfer(controller_app, view0_appB) 
binder_call(controller_app, view1_appB) 
binder_transfer(controller_app, view1_appB) 

 



 66 

THIS PAGE INTENTIONALLY LEFT BLANK 

 
  



 67 

VII.  CONCLUSION 

A. FUTURE WORK 

This thesis contributes to the currently limited literature on SE Android. With SE 

Android still being in its infancy, there is much more work that can and should be done. 

This section mentions some possible future work to be done on SE Android that is not 

necessarily an extension of this thesis. 

The architecture proposed at the end of Chapter VI should be explored further. 

The reason this architecture was not implemented was due to some challenges in 

implementing the setting of the SE Boolean. Access to the Java library for 

android.os.SELinux is not readily available for importing into an IDE (Integrated 

Development Environment). We attempted to include the package needing access to it in 

the build path and rebuilding the image. However, we were unable to get the Boolean to 

properly set as needed by the architecture. Further exploration of the SE Manager 

application source code may reveal why we failed. 

The continued development of our proof-of-concept into a full-fledged calendar 

manager raises many questions. We must consider how the calendars will be updated and 

ensure that the data remains isolated between the calendars. The architecture proposed 

above helps to facilitate this. Additionally, one may want to consider how to secure the 

data in the calendars. Some form of authentication should be used to control access to 

each of the calendars. One way of doing this is to use  a login and password to protect the 

calendars from unauthorized access. Separate passwords could be used for each of the 

calendars. In adding this authentication, a display mode could be made available for 

unauthorized users having limited access to both calendars. Our initial thought is to not 

allow even this limited access as it provides potential adversaries with some information. 

However, in discussing some potential features below, that mode may be useful. One 

may also wish to consider encrypting the calendars’ data stored on the phone. This will 

help protect the data in the event of an adversary having physical access to the phone. 



 68 

Other calendar features also raise some questions on how to maintain the security 

goals. For instance, many calendars have an alarm feature. One should consider how this 

would work in our implementation. The alarm needs to have some access to the data to 

be able to notify the user. Is it sufficient to have only the limited access mode?  In this 

case it would allow the alarm to function without having the need for the user to be 

authenticated with one of the calendars. This is an interesting issue that should be 

explored further. 

As mentioned in Chapter VI, our proof-of-concept stores its data locally. In the 

real world, it is more likely for this data to be stored remotely (in the cloud) so that it can 

be accessed from multiple devices. Instead of the data coming from content providers 

managed by the application, the data now comes over a network connection from a 

storage location not directly managed. This may have an impact on the architecture and 

whether the security goals can still be reached. How can the proof of concept be changed 

to maintain its security goals?  Is it as simple as replacing the functions in the separate 

calendar applications that access the content providers with functions that access the 

cloud storage?  That would allow for the general architecture to remain intact, but maybe 

not the proposed modified architecture. Does the way the calendar is stored in the cloud 

allow for a read only mode?  Should this data be stored locally in the calendars or can it 

simply be sent to the display and discarded?  Many questions arise when considering the 

use of the cloud. 

We mentioned in Chapter VI that we are assuming that the trusted controller 

behaves properly. This particular element of the proof-of-concept will need to be 

formally verified and analyzed if it were to be used in the full implementation. Requests 

to the trusted controller must be handled properly so as to not allow data to flow between 

the separate calendars applications.   

Apart from questions regarding the calendar application, there are questions 

related to the use of SE Android. As Smalley mentions in [10], SE Android has not been 

specifically evaluated or approved for use. A considerable amount of work needs to be 

done on SE Android before this can happen. One example is that an in depth analysis of 

altered Android code that facilitates SE Android should be performed; particularly for 



 69 

processes such as zygote to verify that the labeling of forked processes is done 

correctly.   

A more formal analysis of the finalized SE Android policy would also need to be 

done. As of the writing of this thesis the policy is still a work in progress. It may be some 

time before a finalized version of the policy is available for complete analysis. 

B. SUMMARY 

Chapter V described the mechanisms that SE Android implements to improve 

Android security. The features mentioned were the traditional SE Linux MAC, install-

time MAC, tag propagation, and permission revocation. It went into further detail on the 

organization of the SE Android policy and the unique additions that differentiate it from 

traditional SE Linux.   

The proof-of-concept application in Chapter VI demonstrates how to edit the SE 

Android policy files to enforce security goals for custom applications. Creating policies 

for new applications is fairly straightforward. Labeling of new application packages can 

be done in the seapp_contexts file. SE Android provides domains and macros to 

make it easy to obtain the base set of permissions required for applications to operate. 

MAC can also be applied to the Android permissions; allowing or denying only specified 

application packages access to certain permissions. 

In Chapter VI, we also identify a potential weakness in the default SE Android 

policy. The default policy allows for any third party application to perform binder calls to 

any other third party application. We modify the app.te file to enable restrictions to be 

placed on the use of binder channels. 

While SE Android is meant to be a security extension transparent to application 

developers and users, this thesis demonstrates how it can be customized for use on a 

specific set of applications to improve security.  

  



 70 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 71 

APPENDIX A. PROOF OF CONCEPT CODE 

The Java classes and Android manifests for the applications developed for the 

proof-of-concept application. 

A. PACKAGE COM.PROC.DISPLAYAPP 

1. MainActivity.java 

package com.poc.displayapp; 
 
import android.os.Bundle; 
import android.app.Activity; 
import android.view.View; 
import android.view.View.OnClickListener; 
import android.widget.RadioGroup; 
import android.widget.Button; 
import android.content.Intent; 
import android.util.Log; 
 
public class MainActivity extends Activity { 
 private static String TAG = “main.activity”; 
 private RadioGroup viewGroup; 
 private Button button1; 
 private int view = -1; 
 
    @Override 
    public void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.activity_main); 
     viewGroup = (RadioGroup) findViewById(R.id.radioGroup1); 
     button1 = (Button) findViewById(R.id.button1); 
        requestView(); 
    } 
         
    public void requestView() { 
   button1.setOnClickListener(new OnClickListener() { 
      @Override 
      public void onClick(View v) { 
       switch (viewGroup.getCheckedRadioButtonId()) { 
        case R.id.radio0: 
         view = 0; 
         break; 
        case R.id.radio1: 



 72 

         view = 1; 
         break; 
       } 
       Intent i = new Intent(getApplicationContext(), 
DisplayActivity.class); 
       i.putExtra(“view,” view); 
       System.out.println(“mview: “ + view); 
       Log.d(TAG, “Starting display”); 
       startActivity(i); 
      } 
     }); 
    } 
} 

2. DisplayActivity.java 

package com.poc.displayapp; 
 
import com.poc.aidl.ItcService; 
import java.util.ArrayList; 
 
import android.os.Bundle; 
import android.os.RemoteException; 
import android.app.Activity; 
import android.util.Log; 
import android.view.View; 
import android.widget.Button; 
import android.widget.TableLayout; 
import android.widget.TableRow; 
import android.widget.TableRow.LayoutParams; 
import android.widget.TextView; 
import android.content.BroadcastReceiver; 
import android.content.ComponentName; 
import android.content.Context; 
import android.content.Intent; 
import android.content.IntentFilter; 
import android.content.ServiceConnection; 
import android.graphics.Color; 
import android.os.IBinder; 
 
public class DisplayActivity extends Activity { 
 private Button b; 
 private BroadcastReceiver receiver; 
 private IntentFilter intentFilter; 
 ItcService mService; 
 boolean mBounded; 



 73 

  
 private int vmode = -1; 
  
 private ServiceConnection mConnection = new ServiceConnection() { 
         
  @Override 
     public void onServiceDisconnected(ComponentName name) { 
      mBounded = false; 
      mService = null; 
     } 
     @Override 
     public void onServiceConnected(ComponentName name, IBinder service) { 
      mService = ItcService.Stub.asInterface(service); 
      mBounded = true; 
     } 
    }; 
      
 @Override 
    public void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.activity_display); 
        b = (Button)findViewById(R.id.button1); 
         
        b.setOnClickListener(new View.OnClickListener() { 
         public void onClick(View v) { 
          sendRequest(vmode); 
         } 
        }); 
         
        receiver = new BroadcastReceiver() { 
         @Override 
         public void onReceive(Context context, Intent intent) { 
          updateTable(intent); 
         } 
        }; 
 } 
  
 @Override 
 public void onStart() { 
  super.onStart(); 
 
        intentFilter = new IntentFilter(“com.poc.displayapp.vDisplay”); 
        this.registerReceiver(this.receiver, intentFilter); 
         
        Intent sIntent = getIntent(); 



 74 

        vmode = sIntent.getIntExtra(“view,” -1); 
         
        Intent serviceIntent = new Intent(); 
        serviceIntent.setClassName(“com.poc.trustedcontroller,” 
“com.poc.trustedcontroller.MainService”); 
        boolean ok = bindService(serviceIntent, mConnection, 
Context.BIND_AUTO_CREATE); 
        Log.v(“bound ok? ,” String.valueOf(ok));  
         
    }  
     
    @Override 
    protected void onResume() { 
     super.onResume(); 
     this.registerReceiver(this.receiver, intentFilter); 
    } 
     
    @Override 
    public void onStop() { 
     super.onStop(); 
     if (mBounded) { 
      unbindService(mConnection); 
      mBounded = false; 
     } 
    } 
     
    @Override 
    protected void onPause() { 
     this.unregisterReceiver(receiver); 
     if (mBounded) { 
      unbindService(mConnection); 
      mBounded = false; 
     } 
     super.onPause(); 
    } 
         
 private void sendRequest(int view) { 
  Intent request = new Intent(“com.poc.trustedcontroller.MainService”); 
  request.putExtra(“view,” view); 
  try { 
   mService.readTables(request); 
  } catch (RemoteException e) { 
   Log.e(“RemoteException,” e.toString()); 
  } 
 } 



 75 

  
    public void updateTable(Intent i) { 
      
     int origin = i.getIntExtra(“source,” -1); 
        ArrayList<String> dates = i.getStringArrayListExtra(“dates”); 
        ArrayList<String> appointments = i.getStringArrayListExtra(“appointments”); 
        TableLayout tl = new TableLayout(this); 
 
        if (origin == 0) { 
         tl = (TableLayout)findViewById(R.id.tableLayout1); 
        } 
        else if (origin == 1) { 
         tl = (TableLayout)findViewById(R.id.tableLayout2); 
        } 
        updateRows(tl, dates, appointments); 
    } 
     
    @SuppressWarnings(“deprecation”) 
 public void updateRows(TableLayout tlayout, ArrayList<String> dates,  
      ArrayList<String> appointments) { 
     System.out.println(“size “ + dates.size()); 
     for (int j=0; j < dates.size(); j++) { 
         TableRow tr = new TableRow(this); 
      TextView date = new TextView(this); 
      TextView data = new TextView(this); 
         tr.setLayoutParams(new LayoutParams( 
           LayoutParams.FILL_PARENT, 
            LayoutParams.WRAP_CONTENT)); 
         tr.setBackgroundColor(Color.GRAY); 
         tr.setId(100+j); 
         date.setId(200+j); 
         data.setId(300+j); 
         date.setText(dates.get(j)); 
       data.setText(appointments.get(j)); 
         tr.addView(date); 
         tr.addView(data); 
         tlayout.addView(tr, new TableLayout.LayoutParams( 
           LayoutParams.FILL_PARENT, 
           LayoutParams.WRAP_CONTENT)); 
     } 
    } 
} 
 



 76 

3. AndroidManifest.xml 

<manifest xmlns:android=“http://schemas.android.com/apk/res/android” 
    package=“com.poc.displayapp” 
    android:versionCode=“1” 
    android:versionName=“1.0” > 
 
    <uses-sdk 
        android:minSdkVersion=“8” 
        android:targetSdkVersion=“15” /> 
     
 <uses-permission android:name=“com.poc.trustedcontroller.tcpermission” /> 
 <uses-permission android:name=“com.poc.view0.v0receive” /> 
 <uses-permission android:name=“com.poc.view1.v1receive” /> 
  
    <application 
        android:icon=“@drawable/ic_launcher” 
        android:label=“@string/app_name” 
        android:theme=“@style/AppTheme” > 
        <activity 
            android:name=.”MainActivity” 
            android:label=“@string/title_activity_main” > 
            <intent-filter> 
                <action android:name=“android.intent.action.MAIN” /> 
                <category android:name=“android.intent.category.LAUNCHER” /> 
            </intent-filter> 
        </activity> 
         
        <activity 
            android:name=.”DisplayActivity” 
            android:label=“@string/title_activity_display” > 
            <intent-filter> 
                <action android:name=“com.poc.displayapp.vDisplay” /> 
            </intent-filter> 
        </activity> 
    </application> 
</manifest> 
  



 77 

B. PACKAGE COM.POC.TRUSTEDCONTROLLER 

1. MainService.java 

package com.poc.trustedcontroller; 
 
import com.poc.aidl.ItcService; 
import com.poc.aidl.ItcService.Stub; 
import com.poc.v0Service.Iv0Service; 
import com.poc.v1Service.Iv1Service; 
import java.util.ArrayList; 
import android.app.Service; 
import android.os.IBinder; 
import android.os.RemoteException; 
import android.content.ComponentName; 
import android.content.Context; 
import android.content.Intent; 
import android.content.ServiceConnection; 
import android.util.Log; 
 
public class MainService extends Service { 
 private static String TAG = “tc.service”; 
 static final int VIEW0 = 0; 
 static final int VIEW1 = 1; 
 private static final String action0 = “com.poc.view0.View0Service”; 
 private static final String action1 = “com.poc.view1.View1Service”; 
 Iv0Service v0Service; 
 Iv1Service v1Service; 
 boolean mBounded0; 
 boolean mBounded1; 
  
 private ServiceConnection mConnection0 = new ServiceConnection() { 
   
  @Override 
  public void onServiceDisconnected(ComponentName name) { 
   mBounded0 = false; 
   v0Service = null; 
  } 
   
  @Override 
  public void onServiceConnected(ComponentName name, IBinder service)  

{ 
   v0Service = Iv0Service.Stub.asInterface(service); 
   mBounded0 = true; 
  } 
 }; 



 78 

  
 private ServiceConnection mConnection1 = new ServiceConnection() { 
   
  @Override 
  public void onServiceDisconnected(ComponentName name) { 
   mBounded1 = false; 
   v1Service = null; 
  } 
   
  @Override 
  public void onServiceConnected(ComponentName name, IBinder service)  

{ 
   v1Service = Iv1Service.Stub.asInterface(service); 
   mBounded1 = true; 
  } 
 }; 
   
 @SuppressWarnings(“deprecation”) 
 @Override 
 public void onStart(Intent intent, int startId) { 
  super.onStart(intent, startId); 
 } 
 
 @Override 
 public void onCreate() { 
  super.onCreate(); 
  Log.d(TAG, “TCService created”); 
 
  Intent serviceIntent1 = new Intent(); 
  serviceIntent1.setClassName(“com.poc.view0,” 
“com.poc.view0.View0Service”); 
  boolean ok1 = bindService(serviceIntent1, mConnection0, 
Context.BIND_AUTO_CREATE); 
  Log.v(“bound ok1? ,” String.valueOf(ok1)); 
  Intent serviceIntent2 = new Intent(); 
   
  serviceIntent2.setClassName(“com.poc.view1,” 
“com.poc.view1.View1Service”); 
  boolean ok2 = bindService(serviceIntent2, mConnection1, 
Context.BIND_AUTO_CREATE); 
  Log.v(“bound ok2? ,” String.valueOf(ok2)); 
   
 } 
  
 @Override 



 79 

 public IBinder onBind(Intent intent) { 
  return mBinder; 
 }  
  
 private final ItcService.Stub mBinder = new Stub() { 
   
 public void insertTable(Intent intent) { 
  int view = intent.getIntExtra(“view,” -1); 
  ArrayList<String> columns = intent.getStringArrayListExtra(“columns”); 
  ArrayList<String> data = intent.getStringArrayListExtra(“data”); 
  Intent i = new Intent(); 
  if (view == 0) { 
   i.setAction(action0); 
   i.putExtra(“view,” view); 
  } else if (view == 1) { 
   i.setAction(action1); 
   i.putExtra(“view,” view); 
  } 
  startService(i); 
  } 
    
 public void readTables(Intent intent) { 
  int view = intent.getIntExtra(“view,” -1); 
  Intent i = new Intent(action0); 
  i.putExtra(“view,” view); 
  Intent j = new Intent(action1); 
  j.putExtra(“view,” view); 
  try { 
   v0Service.queryTables(i); 
   v1Service.queryTables(j); 
  } catch (RemoteException e) { 
   Log.e(“RemoteException,” e.toString()); 
  } 
 } 
 }; 
 
 @Override 
 public void onDestroy() { 
  if (mBounded0) { 
   unbindService(mConnection0); 
   mBounded0 = false; 
  } 
  if (mBounded1) { 
   unbindService(mConnection1); 
   mBounded1 = false; 



 80 

  } 
  stopService(new Intent(action0)); 
  stopService(new Intent(action1)); 
  super.onDestroy(); 
   
 } 
} 

2. TcService.java 

package com.poc.trustedcontroller; 
 
import android.content.Intent; 
 
public interface TcService { 
 void readTables(Intent intent); 
 void updateTable(Intent intent); 
} 

3. Android.Manifest.xml 

<manifest xmlns:android=“http://schemas.android.com/apk/res/android” 
    package=“com.poc.trustedcontroller” 
    android:versionCode=“1” 
    android:versionName=“1.0” > 
    <uses-sdk 
        android:minSdkVersion=“8” 
        android:targetSdkVersion=“15” /> 
   <permission  
       android:name=“com.poc.trustedcontroller.tcpermission” 
       android:label=“tcpermission” 
       android:protectionLevel=“dangerous” /> 
 
   <uses-permission android:name=“com.poc.view0.v0permission” /> 
   <uses-permission android:name=“com.poc.view1.v1permission” /> 
  
    <application 
        android:icon=“@drawable/ic_launcher” 
        android:label=“@string/app_name” 
        android:theme=“@style/AppTheme” > 
        <service 
            android:permission=“com.poc.trustedcontroller.tcpermission” 
 android:enabled=“true” 
            android:name=“MainService” > 
            <intent-filter> 
                <action android:name=“com.poc.trustedcontroller.MainService” /> 



 81 

            </intent-filter> 
        </service> 
    </application> 
</manifest> 

C. PACKAGE COM.POC.VIEW0 

The files for com.poc.view1 are identical to com.poc.view0 sans the name 

changes, so they will not be shown. 

1. View0Service.java 

package com.poc.view0; 
 
import java.util.ArrayList; 
import com.poc.v0Service.Iv0Service; 
import com.poc.v0Service.Iv0Service.Stub; 
import android.app.Service; 
import android.content.Intent; 
import android.database.Cursor; 
import android.net.Uri; 
import android.os.IBinder; 
import com.poc.view0.view0provider; 
 
public class View0Service extends Service { 
  
 @SuppressWarnings(“deprecation”) 
 @Override 
 public void onStart(Intent intent, int startId) { 
  super.onStart(intent, startId); 
 } 
  
 @Override 
 public void onCreate() { 
  super.onCreate(); 
 } 
  
 @Override 
 public IBinder onBind(Intent intent) { 
  return mBinder; 
 } 
  
 private final Iv0Service.Stub mBinder = new Stub() { 
 
  public void queryTables(Intent intent) { 



 82 

   int view = intent.getIntExtra(“view,” -1); 
   Uri curi = view0provider.CONTENT_URI; 
   ArrayList<String> dates = new ArrayList<String>(); 
   ArrayList<String> appointments = new ArrayList<String>(); 
    
   if (view == 0) { 
    String[] columns = { 
      DatesTable.COLUMN_DATE, 
      DatesTable.COLUMN_COMMENT 
    }; 
    Cursor c = getContentResolver().query(curi, columns, null, 
null, null); 
  
    if (c.moveToFirst()) { 
     do { 
      String d = 
c.getString(c.getColumnIndex(DatesTable.COLUMN_DATE)); 
      String a = 
c.getString(c.getColumnIndex(DatesTable.COLUMN_COMMENT)); 
      dates.add(d); 
      appointments.add(a); 
     } while (c.moveToNext()); 
    } 
    c.close(); 
   } else { 
    String[] columns = { 
      DatesTable.COLUMN_DATE 
    }; 
    Cursor c = getContentResolver().query(curi, columns, null, 
null, null); 
    if (c.moveToFirst()) { 
     do { 
      String d = 
c.getString(c.getColumnIndex(DatesTable.COLUMN_DATE)); 
      String a = “redacted”; 
      dates.add(d); 
      appointments.add(a); 
     } while (c.moveToNext()); 
    } 
    c.close(); 
   } 
   String action = “com.poc.displayapp.vDisplay”; 
   String permission = “com.poc.view0.v0receive”; 
   Intent i = new Intent(action); 
   i.putExtra(“dates,” dates); 



 83 

   i.putExtra(“appointments,” appointments); 
   i.putExtra(“source,” 0); 
   sendBroadcast(i, permission); 
  } 
 }; 
} 

2. view0provider.java 

package com.poc.view0; 
 
import java.util.Arrays; 
import java.util.HashSet; 
import android.content.ContentProvider; 
import android.content.ContentResolver; 
import android.content.ContentValues; 
import android.content.UriMatcher; 
import android.database.Cursor; 
import android.database.sqlite.SQLiteDatabase; 
import android.database.sqlite.SQLiteQueryBuilder; 
import android.net.Uri; 
import android.text.TextUtils; 
import com.poc.view0.DBHelper; 
 
public class view0provider extends ContentProvider { 
 
 private DBHelper database; 
 private static final int DATES = 1; 
 private static final int DATES_ID = 2; 
 private static final String AUTHORITY = “com.poc.view0”; 
 private static final String BASE_PATH = “dates”; 
 public static final Uri CONTENT_URI = Uri.parse(“content://” + AUTHORITY 
+ “/” + BASE_PATH); 
 public static final String CONTENT_TYPE = 
ContentResolver.CURSOR_DIR_BASE_TYPE + “/dates”; 
 public static final String CONTENT_ITEM_TYPE = 
ContentResolver.CURSOR_ITEM_BASE_TYPE + “/date”; 
  
 private static final UriMatcher sURIMatcher = new 
UriMatcher(UriMatcher.NO_MATCH); 
 static { 
  sURIMatcher.addURI(AUTHORITY, BASE_PATH, DATES); 
  sURIMatcher.addURI(AUTHORITY, BASE_PATH + “/#,” DATES_ID); 
 } 
  
 @Override 



 84 

 public boolean onCreate() { 
  database = new DBHelper(getContext()); 
  return true; 
 } 
  
 @Override 
 public Cursor query(Uri uri, String[] projection, String selection, 
   String[] selectionArgs, String sortOrder) { 
  SQLiteQueryBuilder qb = new SQLiteQueryBuilder(); 
  checkColumns(projection); 
  qb.setTables(DatesTable.TABLE_DATES); 
  int uriType = sURIMatcher.match(uri); 
  switch (uriType) { 
  case DATES: 
   break; 
  case DATES_ID: 
   qb.appendWhere(DatesTable.COLUMN_ID + “=“ + 
uri.getLastPathSegment()); 
   break; 
  default: 
   throw new IllegalArgumentException(“Unknown URI: “ + uri); 
  } 
  SQLiteDatabase db = database.getWritableDatabase(); 
  Cursor c = qb.query(db, projection, selection, selectionArgs, null, null, 
sortOrder); 
  c.setNotificationUri(getContext().getContentResolver(), uri); 
  return c; 
 } 
  
 @Override 
 public int delete(Uri uri, String arg1, String[] arg2) { 
  int uriType = sURIMatcher.match(uri); 
  SQLiteDatabase db = database.getWritableDatabase(); 
  int rowsDeleted = 0; 
  switch (uriType) { 
  case DATES: 
   rowsDeleted = db.delete(DatesTable.TABLE_DATES, arg1, arg2); 
   break; 
  case DATES_ID: 
   String id = uri.getLastPathSegment(); 
   if (TextUtils.isEmpty(arg1)) { 
    rowsDeleted = db.delete(DatesTable.TABLE_DATES, 
DatesTable.COLUMN_ID + “=“ + id, null); 
   } else { 



 85 

    rowsDeleted = db.delete(DatesTable.TABLE_DATES, 
DatesTable.COLUMN_ID + “=“ + id + “ and “ + arg1, arg2); 
   } 
   break; 
  default: 
   throw new IllegalArgumentException(“Unkown URI: “ + uri); 
  } 
  getContext().getContentResolver().notifyChange(uri, null); 
  return rowsDeleted; 
 } 
 
 @Override 
 public String getType(Uri uri) { 
  return null; 
 } 
 
 @Override 
 public Uri insert(Uri uri, ContentValues values) { 
  int uriType = sURIMatcher.match(uri); 
  SQLiteDatabase db = database.getWritableDatabase(); 
  long id = 0; 
  switch (uriType) { 
  case DATES: 
   id = db.insert(DatesTable.TABLE_DATES, null, values); 
   break; 
  default: 
   throw new IllegalArgumentException(“Unkown URI: “ + uri); 
  } 
  getContext().getContentResolver().notifyChange(uri, null); 
  return Uri.parse(BASE_PATH + “/” + id); 
 } 
 
 @Override 
 public int update(Uri uri, ContentValues values, String selection, 
   String[] selectionArgs) { 
  int uriType = sURIMatcher.match(uri); 
  SQLiteDatabase db = database.getWritableDatabase(); 
  int rowsUpdated = 0; 
  switch (uriType) { 
  case DATES: 
   rowsUpdated = db.update(DatesTable.TABLE_DATES, values, 
selection, selectionArgs); 
   break; 
  case DATES_ID: 
   String id = uri.getLastPathSegment(); 



 86 

   if (TextUtils.isEmpty(selection)) { 
    rowsUpdated = db.update(DatesTable.TABLE_DATES, 
values, DatesTable.COLUMN_ID + “=“ + id, null); 
   } else { 
    rowsUpdated = db.update(DatesTable.TABLE_DATES, 
values, DatesTable.COLUMN_ID + “=“ + id + “ and “ + selection, selectionArgs); 
   } 
   break; 
  default: 
   throw new IllegalArgumentException(“Unknown URI: “ + uri); 
  } 
  getContext().getContentResolver().notifyChange(uri, null); 
  return rowsUpdated; 
 } 
  
 private void checkColumns(String[] projection) { 
  String[] available = { DatesTable.COLUMN_ID, 
DatesTable.COLUMN_DATE, DatesTable.COLUMN_COMMENT }; 
  if (projection != null) { 
   HashSet<String> requestedColumns = new 
HashSet<String>(Arrays.asList(projection)); 
   HashSet<String> availableColumns = new 
HashSet<String>(Arrays.asList(available)); 
   if (!availableColumns.containsAll(requestedColumns)) { 
    throw new IllegalArgumentException(“Unknown columns 
in projection”); 
   } 
  } 
 } 
} 

3. DBHelper.java 

package com.poc.view0; 
 
import android.content.Context; 
import android.database.sqlite.SQLiteDatabase; 
import android.database.sqlite.SQLiteOpenHelper; 
 
public class DBHelper extends SQLiteOpenHelper { 
 
 private static final String DATABASE_NAME = “dates.db”; 
 private static final int DATABASE_VERSION = 1; 
  
  
 public DBHelper(Context context) { 



 87 

  super(context, DATABASE_NAME, null, DATABASE_VERSION); 
 } 
  
 @Override 
 public void onCreate(SQLiteDatabase database) { 
  DatesTable.onCreate(database); 
 } 
  
 @Override 
 public void onUpgrade(SQLiteDatabase database, int oldVersion, int 
newVersion) { 
  DatesTable.onUpgrade(database, oldVersion, newVersion); 
 } 
 
} 

4. DatesTable.java 

package com.poc.view0; 
 
import android.database.sqlite.SQLiteDatabase; 
import android.util.Log; 
 
public class DatesTable { 
 
 public static final String TABLE_DATES = “dates”; 
 public static final String COLUMN_ID = “_id”; 
 public static final String COLUMN_DATE = “date”; 
 public static final String COLUMN_COMMENT = “comment”; 
 private static final String DATABASE_CREATE = “create table “ + 
TABLE_DATES + “(“ +  
   COLUMN_ID + “ integer primary key autoincrement, “ +  
   COLUMN_DATE + “ text not null, “ +  
   COLUMN_COMMENT + “ text);”; 
  
 private static final String INSERT1 = “insert into “ + TABLE_DATES + 
   “ (“ + COLUMN_DATE + ,” “ + COLUMN_COMMENT + “)” + 
   “ values (‘Sept1’, ‘Blah’);”; 
 private static final String INSERT2 = “insert into “ + TABLE_DATES + 
   “ (“ + COLUMN_DATE + ,” “ + COLUMN_COMMENT + “)” + 
   “ values (‘Sept2’, ‘Bleh’);”; 
 private static final String INSERT3 = “insert into “ + TABLE_DATES + 
   “ (“ + COLUMN_DATE + ,” “ + COLUMN_COMMENT + “)” + 
   “ values (‘Sept3’, ‘Bluh’);”; 
  
 public static void onCreate(SQLiteDatabase db) { 



 88 

  db.execSQL(DATABASE_CREATE); 
  db.execSQL(INSERT1); 
  db.execSQL(INSERT2); 
  db.execSQL(INSERT3); 
 } 
  
 public static void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) 
{ 
  Log.w(DBHelper.class.getName(), “Upgrading database from version “ + 
oldVersion + “ to “ + 
    newVersion + ,” which will destroy all old data”); 
  db.execSQL(“drop table if exists “ + TABLE_DATES); 
  onCreate(db); 
 } 
  
} 

5. AndroidManifest.xml 

<manifest xmlns:android=“http://schemas.android.com/apk/res/android” 
    package=“com.poc.view0” 
    android:versionCode=“1” 
    android:versionName=“1.0” > 
 
    <uses-sdk 
        android:minSdkVersion=“8” 
        android:targetSdkVersion=“15” /> 
 <permission 
     android:name=“com.poc.view0.v0permission” 
     android:label=“v0permission” 
     android:protectionLevel=“normal” /> 
 <permission 
     android:name=“com.poc.view0.v0receive” 
     android:label=“v0receive” 
     android:protectionLevel=“normal” /> 
  
    <application 
        android:icon=“@drawable/ic_launcher” 
        android:label=“@string/app_name” 
        android:theme=“@style/AppTheme” > 
        <service 
            android:permission=“com.poc.view0.v0permission” 
            android:enabled=“true” 
            android:name=.”View0Service” > 
            <intent-filter> 
                <action android:name=“com.poc.view0.View0Service” /> 



 89 

            </intent-filter> 
        </service> 
        <provider  
            android:name=.”view0provider”  
            android:authorities=“com.poc.view0” > 
        </provider>  
    </application> 
</manifest>  



 90 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 91 

APPENDIX B. SE POLICY 

 The added or modified policy files used for in conjunction with the proof-

of-concept applications: 

A. SEAPP_CONTEXTS 

isSystemServer=true domain=system 
user=system domain=system_app type=system_data_file 
user=nfc domain=nfc type=nfc_data_file 
user=radio domain=radio type=radio_data_file 
user=app_* domain=untrusted_app type=app_data_file levelFromUid=true 
user=app_* seinfo=platform domain=platform_app type=platform_app_data_file 
user=app_* seinfo=shared domain=shared_app type=platform_app_data_file 
user=app_* seinfo=media domain=media_app type=platform_app_data_file 
user=app_* seinfo=release domain=release_app type=platform_app_data_file 
user=app_* seinfo=release name=com.android.browser domain=browser_app  

type=platform_app_data_file 
user=app_* name=com.poc.displayapp domain=display_app type=app_data_file 
 levelFromUid=true 
user=app_* name=com.poc.trustedcontroller domain=controller_app type=app_data_file 
 levelFromUid=true 
user=app_* name=com.poc.view0 domain=view0_app type=app_data_file  

levelFromUid=true 
 

B. POC_APP.TE 

# 
# com.poc.displayapp 
# 
type display_app, domain; 
app_domain(display_app) 
binder_use(display_app) 
binder_call(display_app, controller_app) 
binder_transfer(display_app, controller_app) 
 
# 
# com.poc.trustedcontroller 
# 
type controller_app, domain; 
app_domain(controller_app) 
binder_use(controller_app) 
binder_call(controller_app, view0_app) 
binder_transfer(controller_app, view0_app) 



 92 

binder_call(controller_app, view1_app) 
binder_transfer(controller_app, view1_app) 
 
# 
# com.poc.view0 
# 
type view0_app, domain; 
app_domain(view0_app) 
 
# 
# com.poc.view1 
# 
type view1_app, domain; 
app_domain(view1_app) 
 

C. MODIFICATION TO TE_MACROS 

+define(`binder_allows’, ` 
+binder_call($1, $2) 
+binder_transfer($1, $2) 
+binder_call($2, $1) 
+binder_transfer($2, $1) 
+’) 

D. MODIFICATIONS TO APP.TE 

-binder_call(appdomain, appdomain) 
-binder_transfer(appdomain, appdomain) 
 
+binder_call(appdomain, platform_app) 
+binder_transfer(appdomain, platfrom_app) 
+binder_call(appdomain, media_app) 
+binder_transfer(appdomain, media_app) 
+binder_call(appdomain, shared_app) 
+binder_transfer(appdomain, shared_app) 
+binder_call(appdomain, release_app) 
+binder_transfer(appdomain, release_app) 
+binder_call(appdomain, shared_app) 
+binder_transfer(appdomain, shared_app) 
+binder_allows(platform_app, media_app) 
+binder_allows(platform_app, shared_app) 
+binder_allows(platform_app, release_app) 
+binder_allows(media_app, shared_app) 
+binder_allows(media_app, release_app) 
+binder_allows(shared_app, release_app) 



 93 

E. MODIFICATIONS TO MAC_PERMISSIONS.XML 

+<package name=“com.poc.displayapp” > 
+ <allow-permission name=“com.poc.trustedcontroller.tcpermission” /> 
+ <allow-permission name=“com.poc.view0.v0receive” /> 
+ <allow-permission name=“com.poc.view1.v1receive” /> 
+</package> 
 
+<package name=“com.poc.trustedcontroller” > 
+ <allow-permission name=“com.poc.view0.v0permission” /> 
+ <allow-permission name=“com.poc.view1.v1permission” /> 
+</package> 
 
Under the <default> tag: 
+ <deny-permission name=“com.poc.trustedcontroller.tcpermission” /> 
+ <deny-permission name=“com.poc.view0.v0permission” /> 
+ <deny-permission name=“com.poc.view1.v1permission” /> 
+ <deny-permission name=“com.poc.view0.v0receive” /> 
+ <deny-permission name=“com.poc.view1.v1receive” /> 
  



 94 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 95 

LIST OF REFERENCES 

[1] A. Smith, “46% of American adults are smartphone owners,” Pew Research 
Center, 1 March 2012. 

[2] “May 2012 U.S. Mobile Subscriber Market Share,” comScore, 2 July, 2012. 

[3] “The true face of the Android threat,” Trend Micro, [online], Available: 
http://www.trendmicro.co.uk/newsroom/pr/the-true-face-of-the-android-threat/.  
(Accessed: 20 July 2012). 

[4] J. P. Anderson, “Computer Security Technology Planning Study,” Deputy for 
Command and Management Systems HQ Electronic Systems Division, L.G. 
Hanscom Field, Bedford, MA, October 1972. 

[5] D. F. Ferraiolo and D. R. Kuhn, “Role-Based Access Control,” Proc. 15th 
National Computer Security Conf., Gaithersburg, MD, 1992, pp. 554–563. 

[6] D. F. Ferraiolo, et al., Role-Based Access Control, Norwood, MA: Artech House, 
2003. 

[7] R. S. Sandhu, “Rationale for the RBAC96 family of access control models,” Proc. 
1st ACM Workshop on Role-based access control, Gaithersburg, MD, 1995. 

[8] Handbook of Information Security Management, cccure.org, [online], Available: 
http://www.cccure.org/Documents/HISM/ewtoc.html. (Accessed: 20 August 
2012). 

[9] D. E. Bell and L. J. LaPadula, “Secure computer systems: Mathematical 
foundations,” Electronic Systems Division, Air Force Systems Command, 
Hanscom Air Force Base, Bedford, MA, ESD-TR-73–278, Vol. III, April 1974. 

[10] R. Spencer, et al., “The Flask Security Architecture: System Support for Diverse 
Security Policies,” Proc. 8th USENIX Security Symp., Washington, D.C., August 
23–26, 1999. 

[11] R. Whitwam, “Circumventing Google’s Bouncer, Android’s anti-malware 
system,” extremetech, [online], Available: 
http://www.extremetech.com/computing/130424-circumventing-googles-bouncer-
androids-anti-malware-system. (Accessed: 10 June 2012). 

[12] SEAndroid, SELinux Wiki, [online] 2012, Available: 
http://selinuxproject.org/page/SEAndroid. (Accessed: 1 September 2012). 

[13] S. Smalley. (2011, September). The Case for SE Android [Online]. Available: 
http://selinuxproject.org/~jmorris/lss2011_slides/caseforseandroid.pdf. 



 96 

[14] A. Shabtai, et al. (2010 May–June). “Securing Android-Powered Mobile Devices 
Using SE Linux,” Security & Privacy, IEEE, vol. 8, no. 3, pp.36–44. 

[15] S. Bugiel, et al.  “Practical and Lightweight Domain Isolation on Android,” Proc. 
1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices. 
Chicago, IL, 2011, pp. 51–62. 

[16] W. Enck, et al., “TaintDroid: An information-flow tracking system for realtime 
privacy monitoring on smartphones,” Proc. 9th USENIX Security Symp., 2011. 

[17] S. Bugiel, et al., “A new Android evolution to mitigate privilege escalation 
attacks,” Technische Universitat Darmstadt, Germany, TR-2011–04, 2011. 

[18] Android Developers Guide, developer.android.com, [online], Available: 
http://developer.android.com. (Accessed: 20 August 2012). 

[19] Android Booting, elinux.org, [online], Available: http://elinux.org/ 

Android_Booting. (Accessed: 1 September 2012). 

[20] Google Android SDK, dmxzone, [online], Available: http://dmxzone.com/ 

go/14339/google-android-sdk-released/. (Accessed: 20 August 2012). 

[21] IEEE Standard for Information Technology - Portable Operating System 
Interface (POSIX(R)), 1003.1–2008. 

[22] S. Ante, “Banks rush to fix security flaws in wireless apps,” Wall Street Journal 
Online, [online], Available: http://online.wsj.com/article/ 

[23] Android Riskware, f-secure, [online], Available: http://www.f-
secure.com/weblog/archives/archive-092011.html.  (Accessed: 20 August 2012). 

[24] A. Felt, et al. “Android Permissions Demystified,” Proc. 18th ACM Conf. on 
Computer and Communications Security, Chicago, IL, 2011, pp. 627–638. 

[25] SQLite, sqlite.org, [online], Available: http://www.sqlite.org. (Accessed: 1 
September 2012). 

[26] C. Marforio, et al.  “Application Collusion Attack on the Permission-Based 
Security Model and its Implications for Modern Smartphone Systems,” ETH 
Zurich, System Security Group, TR-724, 2011. 

[27] M. Miller, et al.  “Capability Myths Demolished,” John Hopkins University, 
Systems Research Laboratory, Department of Computer Science, 2003. 

[28] B. McCarty, SELinux: NSA’s Open Source Security Enhanced Linux, Sebastopol, 
CA: O’Reilly Media, Inc., 2005. 



 97 

[29] D. E. Denning, “A Lattice Model of Secure Information Flow,” Communications 
of the ACM, vol. 19, pp. 236–243, May 1976. 

[30] S. Marouf and M. Shehab.  “SEGrapher: Visualization-based SE Linux Policy 
Analysis,” 4th Symposium on Configuration Analytics and Automation, Arlington, 
VA, 2011, pp. 1–8. 

[31] W. Xu, et al. “Visualization Based Policy Analysis: Case Study in SE Linux,” 
Proc. 13th ACM Symp. on Access Control Models and Technologies, Estes Park, 
CO, 2008, pp. 165–174 

[32] SETools - Policy Analysis Tools for SELinux, oss.tresys.com, [online], Available: 
http://oss.tresys.com/projects/setools. (Accessed: 20 August 2012). 

[33] External/sepolicy, bitbucket, [online], Available: 
https://bitbucket.org/seandroid/external-Sepolicy/src. (Accessed: 20 August 
2012). 

[34] Selinux, Mailing list archives, [online], Available: http://marc.info/?l=selinux. 
(Accessed: 1 September 2012). 

[35] J. Oberheide, “Don’t root robots,” UofM SUMIT_11, Ann Arbor, MI, 2011. 

[36] Setuid(2), Linux Programmer’s Manual, [online], Available: 
http://www.kernel.org/doc/man-pages/online/pages/man2/setuid.2.html. 
(Accessed: 20 August 2012). 

[37] Getrlimit(2), Linux Programmer’s Manual, [online], Available: 
http://www.kernel.org/doc/man-pages/online/pages/man2/getrlimit.2.html. 
(Accessed: 20 August 2012). 

[38] CVE-2009–1185, National Vulnerability Database, [online], Available: 
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009–1185. (Accessed: 20 
August 2012). 

[39] Seandroid, bitbucket, [online], Available: https://bitbucket.org/seandroid/. 
(Accessed: June 2012). 

[40] S. Bugiel, et al., “Towards Taming Privilege-Escalation Attacks on Android,” 
Proc. 19th Annual Network & Distributed System Security Symp., 2012. 

[41] J. Burns,. “Mobile Application Security on Android, Context on Android 
Security.” Black Hat, June 30 2009. 

[42] E. Chin, et al. “Analyzing Inter-Application Communication in Android,” Proc. 
9th Int. Conf. on Mobile Systems, Applications, and Services, Bethesda, MD, 
2011, pp. 239–252. 



 98 

[43] L. Davi, et al. “Privilege Escalation Attacks on Android,” Proc. 13th Int. Conf. on 
Information Security, Boca Raton, FL, 2010, pp. 346–360. 

[44] W. Enck, et al.  (2009 January) “Understanding Android Security,” Security & 
Privacy IEEE, vol. 7, pp. 50–57. 

 [45] “First Steps with Security-Enhanced Linux (SE Linux): Hardening the Apache 
Web Server,” IBM Corporation. 2009. 

[46] A. Herzog and J. Guttman, “Achieving Security Goals with Security-Enhanced 
Linux.”  MITRE Corporation. February 5, 2002. 

[47] L. F. Marin, “SE Linux Policy Management Framework for HIS,” M.S thesis, 
Queensland University of Technology: QUT Digital Repository, 2008. 

[48] M. Nauman, et al.  “Apex: Extending Android permission model and enforcement 
with user-defined runtime constraints,” Proc. 5th ACM Symp on Information, 
Computer and Communications Security, Beijing, China, 2010, pp. 328–332. 

[49] C. Orthacker, et al. “Android Security Permissions – Can we trust them?” 
University of Technology Graz, Institute for Applied Information Processing and 
Communications, Graz, Austria. 

[50] T. Rosa, “Android Binder Security Note: On Passing Binder Through Another 
Binder,” unpublished. 

[51] T. Schreiber, “Android Binder: Android Interprocess Communication,” Seminar 
thesis, Ruhr-Universität Bochum, October 5, 2011. 

 [52] S. Smalley, “Configuring the SE Linux Policy,” NSA, January 2003. 

 [53] X. Zhang, et al., “SEIP: simple and efficient integrity protection for open mobile 
platforms,” 12th International Conf. on Information and Communications 
Security, Barcelona, Spain, 2010. 

[54] L. Badger, et al., “Practical Domain and Type Enforcement for UNIX,” Proc.of 
the 1995 IEEE Symp. On Security and Privacy, Washington, D.C., pp. 66. 

[55] Fedora, fedoraproject.org, [online], Available: http://fedoraproject.org/. 
(Accessed: September 2012). 

[56] Ubuntu, ubuntu.com, [online], Available: http://www.ubuntu.com/. (Accessed: 
September 2012). 

[57] Red Hat, redhat.com, [online], Available: http://www.redhat.com/. (Accessed: 
September 2012). 



 99 

[58] Android, android.com, [online], Available: http://www.android.com/. (Accessed: 
September 2012). 

[59] “Copyright Law of the United States and Related Laws Contained in Title 17 of 
the United States Code,” Title 17 U.S. Code, Sec. 1201.  2011 ed., 250–259. Print. 

[60] J. Newsome and D. Song, “Dynamic Taint Analysis for Automatic Detection, 
Analysis, and Signature Generation of Exploits on Commodity Software,” Proc. 
Of the Network and Distributed System Security Symposium, San Diego, CA, 
2005. 

[61] GNU M4, gnu.org, [online], Available: http://www.gnu.org/software/m4/. 
(Accessed: October 2012). 

[62] Open Binder, angryredplanet.com, [online], Available: 
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/index.html/. 
(Accessed: October 2012). 

[63] N. J. Percoco and S. Schulte, “Adventures in BouncerLand,” Black Hat USA 
2012, [online], Available: http://media.blackhat.com/bh-us-
12/Briefings/Percoco/BH_U.S._12_Percoco_Adventures_in_Bouncerland_WP.pd
f. (Accessed:  

November 2012). 

[64] Chromium OS, chromium.org, [online], Available: 
http://www.chromium.org/chromium-os (Accessed: November 2012). 

[65] EnGarde Secure Linux, engardelinux.org, [online], Available: 
http://www.engardelinux.org/ (Accessed: October 2012). 

 

  



 100 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 101 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 
 
3. George Dinolt 
 Naval Postgraduate School 
 Monterey, California 
 
4. Karen Burke 
 Naval Postgraduate School 
 Monterey, California 
 
5. Stephen Smalley 
 National Security Agency 
 Ft. Meade, Maryland 
 
6. Matt Benke 
 NSA, I4221 
 Ft. Meade, Maryland 
 
7. John Loucaides 
 NSA, I4221 
 Ft. Meade, Maryland 
 
8. John Mildner 
 SPAWAR Atlantic 
 Charleston, South Carolina 
 
9. Jennifer Guild 
 SPAWAR Atlantic 
 Charleston, South Carolina 


