
Calhoun: The NPS Institutional Archive
DSpace Repository

NPS Scholarship Theses

2014-09

Trustworthy system development through
high-level synthesis

Patterson, Isaac
Monterey, California: Naval Postgraduate School

https://hdl.handle.net/10945/43974

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

TRUSTWORTHY SYSTEM DEVELOPMENT THROUGH
HIGH-LEVEL SYNTHESIS

by

Isaac Patterson

September 2014

Thesis Advisor: Theodore Huffmire
Second Reader: Mark Gondree

Approved for public release; distribution is unlimited



THIS PAGE INTENTIONALLY LEFT BLANK



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

09-26-2014
3. REPORT TYPE AND DATES COVERED

Master’s Thesis 01-01-2013 to 09-26-2014
4. TITLE AND SUBTITLE

TRUSTWORTHY SYSTEM DEVELOPMENT THROUGH HIGH-LEVEL SYNTHE-
SIS

5. FUNDING NUMBERS

6. AUTHOR(S)

Isaac Patterson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Major processor manufacturers have embraced the high-level synthesis (HLS) design philosophy. HLS offers the potential to explore
the design space of electronic circuits and systems more efficiently than traditional methods. In this thesis, we investigate the ap-
plication of HLS to hardware-oriented security and trust by developing a model of a simple 16-bit Central Processing Unit in the
SystemC modeling language. We enhanced our processor with a simple security mechanism that enforces a memory integrity policy.
The integrity policy allows a region of the program labeled as trustworthy to modify any address in data memory, but another region
of the program labeled as untrustworthy is restricted to only being able to modify a specific region of data memory. Our timing results
show that adding the integrity policy enforcement mechanism has a negligible effect on overall system performance.

14. SUBJECT TERMS

High-Level Syntheis, SystemC, Trustworthy System Development, Hardware-Oriented Security and Trust, Ma-
licious Hardware, Electronic Design Automation, Electronic System-Level Design, Military Electronics, Sup-
ply Chain Security

15. NUMBER OF
PAGES 69

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

i



THIS PAGE INTENTIONALLY LEFT BLANK

ii



Approved for public release; distribution is unlimited

TRUSTWORTHY SYSTEM DEVELOPMENT THROUGH HIGH-LEVEL
SYNTHESIS

Isaac Patterson
Lieutenant, United States Navy

B.S., Brigham Young University, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2014

Author: Isaac Patterson

Approved by: Theodore Huffmire
Thesis Advisor

Mark Gondree
Second Reader

Peter Denning
Chair, Department of Computer Science

iii



THIS PAGE INTENTIONALLY LEFT BLANK

iv



ABSTRACT

Major processor manufacturers have embraced the high-level synthesis (HLS) design phi-
losophy. HLS offers the potential to explore the design space of electronic circuits and
systems more efficiently than traditional methods. In this thesis, we investigate the appli-
cation of HLS to hardware-oriented security and trust by developing a model of a simple
16-bit Central Processing Unit in the SystemC modeling language. We enhanced our pro-
cessor with a simple security mechanism that enforces a memory integrity policy. The in-
tegrity policy allows a region of the program labeled as trustworthy to modify any address
in data memory, but another region of the program labeled as untrustworthy is restricted
to only being able to modify a specific region of data memory. Our timing results show
that adding the integrity policy enforcement mechanism has a negligible effect on overall
system performance.

v



THIS PAGE INTENTIONALLY LEFT BLANK

vi



Table of Contents

1 Introduction and Motivation 1

2 Related Work 3

3 Design Flow 7
3.1 “In the beginning, there was NAND...” . . . . . . . . . . . . . . . . 8

3.2 Next came ... AND . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Many more logic gates are now possible . . . . . . . . . . . . . . . 11

3.4 Have you ever dealt with a NOT? . . . . . . . . . . . . . . . . . . 12

3.5 The XOR gate . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6 The Multiplexor (a.k.a "Mux") . . . . . . . . . . . . . . . . . . . 13

3.7 D-Mux that, please . . . . . . . . . . . . . . . . . . . . . . . 14

3.8 Handling larger input arrays . . . . . . . . . . . . . . . . . . . . 15

3.9 Continuing the construction of larger logic gates . . . . . . . . . . . . 17

3.10 Once you Mux, it’s easy to D-Mux . . . . . . . . . . . . . . . . . 18

3.11 Time for some simple addition: Introducing the Half-Adder and Full-Adder . 20

3.12 Preforming addition on input buses . . . . . . . . . . . . . . . . . 21

3.13 Two more arithmetic circuits must be constructed prior to the ALU . . . . 24

3.14 Time to build the ALU . . . . . . . . . . . . . . . . . . . . . . 26

3.15 Constructing more hardware: a single-bit and 16-bit register . . . . . . . 27

3.16 Let’s store some memory . . . . . . . . . . . . . . . . . . . . . 28

3.17 Making more and more memory . . . . . . . . . . . . . . . . . . 30

3.18 The Program Counter . . . . . . . . . . . . . . . . . . . . . . 31

3.19 Now it’s time to jump . . . . . . . . . . . . . . . . . . . . . . 31

3.20 Finally, the CPU . . . . . . . . . . . . . . . . . . . . . . . . 32

3.21 And now the computer . . . . . . . . . . . . . . . . . . . . . . 35

4 Experimental Setup and Results 37
4.1 Creating the Integrity Checker . . . . . . . . . . . . . . . . . . . 39

vii



4.2 Incorporating the Integrity Checker in the HACK computer design. . . . . 40

4.3 The Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Impact on system performance . . . . . . . . . . . . . . . . . . . 43

5 Conclusion and Future Work 45

References 47

Initial Distribution List 49

viii



List of Figures

Figure 3.1 The "NAND" gate is a fundamental building block for digital logic
designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 3.2 The AND gate utilizes two NAND gates to produce its output. . . 10

Figure 3.3 The OR gate employs three NAND gates to produce output F. . . 11

Figure 3.4 The NOT gate merely requires one NAND gate. . . . . . . . . . 12

Figure 3.5 The XOR gate requires four NAND gates. . . . . . . . . . . . . 13

Figure 3.6 The Mux consists of two AND gates, one NOT gate, and one OR
gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 3.7 The D-Mux consist of two AND gates and one NOT gate. . . . . 14

Figure 3.8 Sixteen NOT gates are placed together to handle a 16-bit input bus. 15

Figure 3.9 The NOT_16 gate handles a 16-bit bus input, negates the value of
each simultaneously, and yields output F/16. . . . . . . . . . . . 15

Figure 3.10 The AND_16 gate handles 16-bit bus inputs, "AND-ing" each of the
input bits simultaneously . . . . . . . . . . . . . . . . . . . . . 16

Figure 3.11 The OR_16 gate handles 16-bit bus inputs simultaneously and pro-
duces the output F/16. . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 3.12 The Mux_16 gate handles two 16-bit bus inputs simultaneously to
select a final output of F/16. . . . . . . . . . . . . . . . . . . . . 16

Figure 3.13 The OR_8 gate produces a "true" bit output if any of the eight input
bits are true. If all eight boolean inputs are "false" or zero values,
the output of the OR_8 will be zero. . . . . . . . . . . . . . . . . 17

Figure 3.14 The Mux4way16 selects between four 16-bit input buses and pro-
duces one 16-bit output bus. . . . . . . . . . . . . . . . . . . . . 18

Figure 3.15 The Mux8way16 selects its final outcome choice O/16 from among
eight 16-bit buses. . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.16 The D-Mux4way directs an incoming bit to one of four outputs. . 19

ix



Figure 3.17 The D-Mux8way directs an incoming bit to one of eight outputs. 20

Figure 3.18 The HalfAdder . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 3.19 The FullAdder . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 3.20 The ADD_16 gate adds two 16-bit values together. . . . . . . . . 22

Figure 3.21 The INC_16 circuit increments an inputted value, IN, by one. . . 23

Figure 3.22 The Controlled_Zero16 gate can either zero out the entire inputted
value or output the original input unaltered. . . . . . . . . . . . . 23

Figure 3.23 The Controlled_Not16 will either flip each bit of the input bus or
output the inputted value unaltered. . . . . . . . . . . . . . . . . 24

Figure 3.24 The AND_or_ADD16 circuit . . . . . . . . . . . . . . . . . . . 24

Figure 3.25 The Check_16 circuit . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.26 The Hack ALU . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 3.27 The internal composition of a single-bit register. . . . . . . . . . 27

Figure 3.28 A 16-bit register is capable of holding the 16-bit input values HACK
uses to operate. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.29 RAM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 3.30 RAM64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 3.31 RAM_512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.32 RAM4K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.33 The "Program Counter" . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.34 JumpDetermination . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 3.35 The C-Instruction’s four fields. . . . . . . . . . . . . . . . . . . 33

Figure 3.36 A high–level diagram of the CPU showing both inputs and outputs. 34

Figure 3.37 A low–level diagram of the CPU shows the required internal logical
circuits. Each circled c refers to control logic. . . . . . . . . . . 34

x



Figure 3.38 The HACK computer consists of three main parts: instruction mem-
ory, the CPU, and data memory. . . . . . . . . . . . . . . . . . . 36

Figure 4.1 The Integrity Checker. . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 4.2 The HACK computer with the "INTEGRITY CHECKER" installed. 41

xi



THIS PAGE INTENTIONALLY LEFT BLANK

xii



List of Tables

Table 3.1 The truth table for the AND function of discrete math. . . . . . . 7

Table 3.2 The NOT function’s truth table. . . . . . . . . . . . . . . . . . . . 8

Table 3.3 The NAND gate’s truth table. . . . . . . . . . . . . . . . . . . . . 8

Table 4.1 Memory values after running the "test" program in the HACK ma-
chine without installing the integrity checker. . . . . . . . . . . . 42

Table 4.2 Memory values after running the "test" program with the checker in-
stalled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 4.3 Timing results of running test program without inclusion of the in-
tegrity checker. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 4.4 Timing results of running test program with the inclusion of the in-
tegrity checker. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xiii



THIS PAGE INTENTIONALLY LEFT BLANK

xiv



List of Acronyms and Abbreviations

HLS high-level synthesis
NRE nonrecurring engineering costs
NPS Naval Postgraduate School
MSB most significant bit
LSB least significant bit
RAM random access memory
ROM read-only memory
DOD Department of Defense
FBI Federal Bureau of Investigation
HOST hardware-oriented security and trust

xv



THIS PAGE INTENTIONALLY LEFT BLANK

xvi



Executive Summary

Major processor manufacturers have embraced the high-level synthesis (HLS) design phi-
losophy. For example, Xilinx has incorporated HLS into its Vivado suite of Electronic
Design Automation (EDA) tools. HLS offers the potential to explore the design space of
electronic circuits and systems more efficiently than traditional methods. The HLS design
process begins with a functional model that is iteratively refined to progressively finer lev-
els of detail, eventually resulting in a cycle-accurate model of the system. In this thesis
we investigate the application of HLS to hardware-oriented security and trust (HOST) by
developing a model of a simple 16-bit CPU in the SystemC modeling language. Using Sys-
temC, designers can express both hardware and software constructs in C++; therefore, the
hardware and software of an embedded system can be simulated in the same environment,
rather than using separate hardware and software simulators. Only a C++ compiler and the
SystemC library are needed to design and simulate a circuit.

Our processor is based on the design from the “Nand to Tetris” course that teaches computer
science concepts across all levels of system abstraction by constructing a general-purpose
computer system from the ground up, starting with digital logic gates and then progressing
to a 16-bit CPU architecture, assembler, computer, and high-level language programming.
To demonstrate the applicability of the HLS design approach to hardware-oriented security
and trust, we enhanced our processor with a simple security mechanism that enforces a
memory integrity policy. The integrity policy allows a region of the program labeled as
trustworthy to modify any address in memory, but another region labeled as untrustworthy
is restricted to only being able to modify a specific region of memory. Our timing results
show that adding the integrity policy enforcement mechanism has a negligible effect on
overall system performance. HLS has the potential to help designers of security enhance-
ments as well as designers of the systems themselves, and a SystemC approach has the
potential to make hardware design more accessible to computer scientists. Future work
will involve exploring a wider variety of programs, policies, policy enforcement mecha-
nisms, and processors, as well as increasing the memory size, as cycle-accurate modeling
of a large number of memory cells requires a very large RAM overhead, which is a known
challenge with SystemC modeling.

xvii



THIS PAGE INTENTIONALLY LEFT BLANK

xviii



CHAPTER 1:
Introduction and Motivation

Trustworthy system development is a major concern for the Department of Defense, which
operates a large variety of complex systems that must be resilient to a wide array of de-
velopmental and operational attacks. Developing trustworthy systems is expensive due to
the high non-recurring engineering (NRE) costs of developing hardware and software, and
the small customer base over which to amortize that high NRE cost. In addition, system
designers are increasingly concerned with the security of the entire supply chain, including
hardware [1], [2] and design tools [3]. Compromised hardware has the potential to under-
mine policy enforcement mechanisms implemented in software. Addressing the security
problem of the supply chain of electronics is very challenging due to the large number
of vendors of electronic components and intellectual property (IP). Building hardware in
a trusted foundry is one approach to addressing these issues, but building custom hard-
ware in this way is costly. In addition to the fabrication costs, which increase according to
Rock’s law in super linear fashion, the engineering costs are also very high [4], [5]. Even
using reconfigurable hardware, such as field-programmable gate arrays (FPGAs), does not
necessarily reduce the design cost although it may reduce the fabrication cost.

The goal of this thesis is to reduce the cost and time for developing trustworthy hardware
by leveraging high-level synthesis (HLS) to efficiently explore the design space in order to
determine which design point optimally balances the tradeoffs of concern for the customer.
HLS allows for the development of functional models at a high level of abstraction that can
be quickly implemented in software [6]. Further refinement of a functional model results
in a transactional model, and further refinement of a transactional model results in a timing
model. Finally, the cycle-accurate model is the lowest level of abstraction and the finest
level of granularity.

Development and simulation of a complete cycle-accurate model is too expensive for all
points in the design space. Therefore, the HLS methodology relies on quickly building
coarse-grained models (e.g., the functional models) to quickly determine important metrics
such as power and performance at a coarse level of granularity. By allowing the designer to

1



evaluate tradeoffs efficiently at a coarse level of granularity, HLS enables the design process
to be more efficient than traditional methods. The designer can make important decisions
at this stage before embarking on the tedious efforts and expensive costs of refining the
coarse-grained design down to a cycle-accurate, fine-grained model. The beauty of this
approach is that once the optimal point within the design space is determined, the high-
level model can immediately be utilized, and the process of refinement can begin.

A major language for system modeling is SystemC, which is based on the C++ program-
ming language. SystemC is very simple and consists of a C++ library that can be readily
downloaded for free. SystemC allows a designer to express a functional model in a mod-
ified C++ language. In addition to expressing software, SystemC provides the advantage
of being able to design hardware in this language. This is an improvement over traditional
techniques in which software is designed in a traditional programming language, and hard-
ware is designed in a traditional hardware description language, or HDL. The problem with
the traditional approach is that the hardware is simulated in a hardware simulator, while the
software is simulated in a software simulation environment. Having separate simulation
environments for hardware and software is inefficient and inhibits the ability to co-design
the hardware and software.

We are not the first to apply HLS to hardware trust. Bathen and Dutt developed PoliMakE,
which uses HLS to explore policies for multi-core processors [7]. PoilMakE is built on top
of their SystemC simulation engine. SystemC is also used in PHiLOSoftware, which helps
engineers design trustworthy systems based on multi-core processors [8].

Concerns about information security for modern computers have existed nearly since their
inception. With the widespread use of modern computers, the need to provide information
security became more evident [9]. Saltzer and Schroeder focus on safeguarding information
for systems with multiple users on the same system [9]. As malicious software emerged,
including computer viruses, worms, and Trojans, patches and firewalls were developed as
countermeasures. While malicious software poses a tremendous challenge, recognition
of the problem of malicious hardware has emerged, as the integrated circuit supply chain
is world-wide. The potential for hardware breaches has increased as global consumption
relies more heavily on outsourced equipment [2]. This thesis will assess and demonstrate
how high-level synthesis (HLS) can facilitate the design of policy enforcement circuitry.

2



CHAPTER 2:
Related Work

The fields of computer security and computer hacking have evolved over time. Just as
programmers work to protect system security, skilled and motivated hackers will attempt
to exploit weaknesses in the protection mechanisms.

Multiple publications touch on the matter of safeguarding computer systems. One of the
most seminal of these works is J. H. Saltzer and Michael D. Schroeder’s “The Protection of
Information in Computer Systems,” written in 1975 [9]. The authors of this work discuss
how the invention of the Von Neumann general-purpose architecture drastically reduced
the production cost of modern computers, which allowed wide spread use of the machines.
Saltzer and Schroeder wrote their work with the “key concern” of safeguarding information
against multiple users on the same system. As computer users and designers get savvier in
their attempts to prevent software security breaches, malicious hackers must find new areas
to attack, where advanced security has not yet been implemented. A more recent pub-
lication entitled “Trustworthy Hardware: Identifying and Classifying Hardware Trojans”
addresses the possibility of security threats introduced at the hardware level of modern
computing. The potential for hardware breaches has increased as global consumption re-
lies more heavily on outsourced equipment [2].

Karri et al. survey the emerging discipline of hardware oriented security and trust [2]. In
a world in which hackers develop sophisticated exploits, they devise novel ways to bypass
security mechanisms. Hardware vulnerabilities represent a means for such an exploit to
occur. Karri et al. present a taxonomy of malicious circuitry for classifying malicious
inclusions and countermeasures.

The Department of Defense (DOD), like the rest of the information technology world,
finds itself reliant on global outsourcing for the manufacturing of digital infrastructure.
Therefore, the DOD is interested in mitigating supply chain threats by using enhanced
government services, encouraging improved commercial practices, and requiring supply
chain risk management [10]. While the NSA has established dozens of trusted foundries,

3



manufacturing all military electronics in trusted foundries may not be feasible. Design
and manufacture of all hardware and software intellectual property in house is expensive,
time consuming, and might not yield a defect-free result [2]. The vulnerability exists for
untrusted foundries to maliciously modify a circuit without user knowledge.

A three-year investigation conducted by the Federal Bureau of Investigation (FBI), from
2004-2006, discovered “counterfeit Cisco routers in U.S. defense, finance, and university
networks” [11]. Even more alarming than the actual discovery of the compromised hard-
ware was the fact that many of the routers came directly from “untrustworthy sources in
foreign countries.” While the investigation did not detect malicious hardware injections
and concluded that the infiltrator’s motivations appeared merely fiscal, the investigation
“vividly illustrate[d] the vulnerability” users face when purchasing unverified hardware [2,
p. 39].

Karri et al. suggest the creation of a “hardware Trojan taxonomy” to address the possi-
ble introduction of malicious circuitry made in “untrusted factories” [2]. They state, “To
be trustworthy, hardware must exhibit only the functionality for which it was designed,
nothing more and nothing less; conceal any information about the computation performed
through any side channels such as power and delay; and be transparent only to the designer
while remaining opaque to others, who should know nothing about its design and internal
states” [2]. They also provide a more detailed definition of a hardware Trojan as “a mali-
cious and deliberately stealthy modification made to an electronic device such as an IC. It
can change the chip’s functionality and thereby undermine trust in the systems using that
trojaned chip” [2].

The hardware Trojan taxonomy created by Karri et al. is based on five different categories:
the insertion phase, abstraction level, activation mechanism, effects, and location [2]. The
insertion phase covers all possible points at which a hacker could maliciously alter hard-
ware and remain undetected throughout the testing cycle. The activation mechanism phase
deals with potential points at which a hardware Trojan could be activated. For example,
the hardware Trojan could be either “always on” or “triggered” by an external event. The
effects category addresses four generalized results the Trojan could create; it could “change
the functionality, downgrade performance, leak information, [or] den[y] service” [2]. With

4



the hardware Trojan taxonomy established, the real work–identifying and preventing hard-
ware Trojan implementation–can begin.

A follow-on article entitled “Trustworthy Hardware: Trojan Detection and Design-for-
Trust Challenges” delves even further into installing safeguards against potential malicious
hardware elements [1]. The reliance of globalization and outsourcing of the semiconductor
industry is again cited for creating the increased vulnerability of hardware Trojans [1]. To
offset this challenge, the authors suggest “either the developer must make the IC design and
fabrication process trustworthy or the client must verify the IC for trustworthiness” [1].

The trust element of chip manufacturing is a primary concern for both the Department of
Defense and the general consumer market as a whole. In addition to trustworthiness of de-
sign, cost, performance, and functionality are important considerations in creating a “win-
ning design.” Kurt Keutzer states, “The overall goal of electronic embedded system design
is to balance production cost with development time and cost in view of performance and
functionality considerations. Manufacturing cost depends mainly on the hardware (HW)
components of the product” [4].

Our work explores the potential benefits of HLS for trustworthy system development. Ma-
jor chip manufacturers such as Xilinx and Intel have adopted HLS in their design practices,
and we argue that HLS can also facilitate the design of policy enforcement mechanisms.
To validate our hypothesis, we construct a general-purpose computer in the SystemC lan-
guage and enhance it with a simple memory integrity policy enforcement mechanism. We
then evaluate system performance both with and without the security enhancement. While
our work falls within the scope of hardware-oriented security and trust, we do not claim to
directly address the problem of malicious hardware inclusions in our work.

5



THIS PAGE INTENTIONALLY LEFT BLANK

6



CHAPTER 3:
Design Flow

In our efforts to demonstrate the capability of utilizing HLS in the design of pol-
icy enforcement circuity, we chose to follow the coursework of Nisan and Schocken
[12]. The Nisan and Schocken text is complemented with online material found at
http://www.nand2tetris.org [12]. The course is often simply referred to as "nand2tetris."
The premise of their work is to help both individuals with and without computer science
backgrounds to comprehend the process of building a modern computing machine, as well
as to implement software to run on the machine. Our project focuses on the first portion of
their text and coursework—the construction of the modern computer.

The Nisan and Schocken course [12] incrementally builds upon logic gates to construct
a 16-bit modern computer—named HACK. Modern computers are built with transistors
that physically implement simple Boolean functions, called logic gates. One of the most
fundamental logic gates, described in more detail in the section below, is the NAND gate.
Logically, the NAND gate performs two functions. First, it takes two inputs and performs
the AND function on them. The truth table produced from this function is shown as Table
3.1. The next logic operation is the NOT function, which yields the inversion of the original
input. The truth table for the NOT function is provided in Table 3.2. Combining both of
these functions together produces the results shown in Table 3.3. As explained below,
NAND gates are universal building blocks for combinational circuitry.

a b out
0 0 0
0 1 0
1 0 0
1 1 1

Table 3.1: The truth table for the AND function of discrete math.

The HACK computer is capable of performing simple 16-bit operations. Ultimately, there
are 28 functions the ALU can compute (a complete list of the 28 computations is found
on page 67 of Nisan and Shocken’s book). This chapter follows the development of each

7



IN OUT
0 1
1 0

Table 3.2: The NOT function’s truth table.

A B (AB)’
0 0 1
0 1 1
1 0 1
1 1 0

Table 3.3: The NAND gate’s truth table.

logic gate in the manner described by Nisan and Shocken, and describes how it relates
to the overall development of the HACK computer. By the end of this chapter, all logic
gates needed to construct the HACK machine have been created and connected to yield the
HACK machine in SystemC.

3.1 “In the beginning, there was NAND...”
Because of their universality, NAND gates are fundamental building blocks of all combi-
national circuits. Electrical engineers can easily build NAND gates out of only a handful
of transistors. All other logical gates can be constructed using NAND gates.

We created the NAND gate in SystemC by declaring two boolean inputs A and B. The
NAND gate logically "ands" the two boolean inputs then negates that result, which pro-
duces the output. In the SystemC code used for this project, F represents the final boolean
output of the NAND gate.

To properly construct and run the NAND gate in SystemC, the boolean inputs A and B

are logically "anded" together, and then their result is "notted" via the function‘do_nand2.’

Figure 3.1 illustrates the composition of the NAND gate.

8



NAND gate

A

B
F

Figure 3.1: The "NAND" gate is a fundamental building block for digital logic designs.

The following is the actual SystemC code for the NAND gate:

SC_MODULE(nand2) // declare nand2 sc_module

{

sc_in<bool> A, B; // input signal ports

sc_out<bool> F; // output signal ports

void do_nand2() // a C++ function

{

F.write( !(A.read() && B.read()) );

}

SC_CTOR(nand2) // constructor for nand2

{

SC_METHOD(do_nand2); // register do_nand2 with kernel

sensitive << A << B; // sensitivity list

}

};

3.2 Next came ... AND
All additional logic gates required to build a digital computer can be derived from NAND
gates. An AND gate in SystemC consists of two NAND gates wired together. The AND
gate handles two boolean inputs A and B, uses one internal boolean signal S1, and produces
a boolean output F. The SC_CTOR sets up the digital layout of the logic device by feeding
A and B into the first NAND gate, n1. The output of n1, S1, is then fed as both the A and

9



B inputs to the second NAND gate, n2. This procedure yields a final output F for the AND
gate. Figure 3.2 illustrates the composition of the AND gate:

The AND gate

n1 n2
A
B

S1 F

Figure 3.2: The AND gate utilizes two NAND gates to produce its output.

Here is the SystemC code for an AND gate:

SC_MODULE(_and2)

{

sc_in<bool> A, B;

sc_out<bool> F;

nand2 n1, n2;

sc_signal<bool> S1;

SC_CTOR(_and2) : n1("N1"), n2("N2")

{

n1.A(A);

n1.B(B);

n1.F(S1);

n2.A(S1);

n2.B(S1);

n2.F(F);

}

};

10



3.3 Many more logic gates are now possible
We construct an OR gate in SystemC by utilizing three NAND gates, n1, n2, and n3. The
logical design created utilizing the SC_CTOR accepts two boolean inputs, A and B, gen-
erates two internal signals, S1 and S2, and produces a final boolean output, F. The first
NAND gate n1 uses A for both its inputs and outputs S1. The second NAND gate n2 uses
B for both its inputs and produces signal S2. The third NAND gate n3 accepts S1 and S2 as
inputs, yielding F as the final output. Figure 3.3 illustrates the composition of the OR gate.

The OR gate

n2

n1

n3

B

A
S1

S2
F

Figure 3.3: The OR gate employs three NAND gates to produce output F.

Here is the SystemC code for the OR gate:

SC_MODULE(_or2)

{

sc_in<bool> A, B;

sc_out<bool> F;

nand2 n1, n2, n3;

sc_signal<bool> S1, S2;

SC_CTOR(_or2) : n1("N1"), n2("N2"), n3("N3")

{

n1.A(A);

n1.B(A);

n1.F(S1);

11



n2.A(B);

n2.B(B);

n2.F(S2);

n3.A(S1);

n3.B(S2);

n3.F(F);

}

};

3.4 Have you ever dealt with a NOT?
Constructing a NOT gate in SystemC merely requires one internal NAND gate, n. IN

becomes both inputs to the NAND gate n. The output from n yields the final output F.
Figure 3.4 illustrates the composition of the NOT gate.

The NOT gate

nIN F

Figure 3.4: The NOT gate merely requires one NAND gate.

Here is the SystemC code for the NOT gate:

SC_MODULE(_not1)

{

sc_in<bool> IN;

sc_out<bool> OUT;

nand2 n;

SC_CTOR(_not1) : n("N")

12



{

n.A(IN);

n.B(IN);

n.F(OUT);

}

};

3.5 The XOR gate
Creating an XOR gate in SystemC requires four NAND gates, n1, n2, n3, and n4. We
create the logical circuit by connecting two boolean inputs (A and B) to the NAND gates
as shown in Figure 3.5. In addition to the two boolean inputs, the XOR circuit uses three
internal boolean signals and produces the final boolean output (F).

The XOR gate

n1

n2

n3

n4

A

B

S1

S1

S2
S3

F

Figure 3.5: The XOR gate requires four NAND gates.

3.6 The Multiplexor (a.k.a "Mux")
To build a multiplexor (aka Mux) in SystemC, we utilize the logic gates described above.
The Mux requires two AND gates, one NOT gate, one OR gate, and three input booleans
(A, B, and SEL). It uses three internal signals, S1, S2, and NOTSEL, to produce a final
output F. Figure 3.6 illustrates the composition of a Mux.

13



n
and1

and2

or

SEL

A

B

S1

S2
F

Figure 3.6: The Mux consists of two AND gates, one NOT gate, and one OR gate

3.7 D-Mux that, please
A demultiplexer, or D-Mux, performs the inverse function of the multiplexor. Rather than
selecting between two inputs, the D-Mux "is an output selector which has a single input
and directs it to one of N outputs" [13].

Constructing a D-Mux requires the use of two AND gates, a1 and a2, and one NOT gate,
n. The SC_CTOR wires the logic design as follows: external boolean input IN is wired as
one of the inputs required for both a1 and a2. An additional external value, SEL is wired
directly to AND gate a2 as its second required input. SEL is also run through the NOT gate
n where its result, NOTSEL, is used as the second input for AND gate a1. The output of a1

is A. The output of a2 is B. Depending on the value of the SEL bit, the initial input value
IN will be passed through as output A or output B. Figure 3.7 illustrates the composition of
a demultiplexer.

n
a1

a2

SEL

IN

A

B

Figure 3.7: The D-Mux consist of two AND gates and one NOT gate.

14



3.8 Handling larger input arrays
Each of the previously described elementary logic gates in our digital design handles single-
bit inputs, but for the machine we are building, 16-bit buses must be dealt with. By com-
bining multiple single-bit gates, the 16-bit input buses can be processed. In the case of
processing a 16-bit value through the NOT gates, we combine sixteen NOT gates to form a
NOT_16 gate. The composition of the NOT_16 circuit is illustrated in Figure 3.8.

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12

n13

n14

n15

n16

The "NOT_16" gate

IN[0] F[0]

IN[1] F[1]

IN[2] F[2]

IN[3] F[3]

IN[4] F[4]

IN[5] F[5]

IN[6] F[6]

IN[7] F[7]

IN[8] F[8]

IN[9] F[9]

IN[10] F[10]

IN[11] F[11]

IN[12] F[12]

IN[13] F[13]

IN[14] F[14]

IN[15] F[15]

Figure 3.8: Sixteen NOT gates are placed together to handle a 16-bit input bus.

A simpler visual display is provided in Figure 3.9. In this diagram, the sixteen bits are all
fed into the NOT_16 gate simultaneously, producing a 16-bit output, F/16.

NOT_16IN/16 F/16

Figure 3.9: The NOT_16 gate handles a 16-bit bus input, negates the value of each simultane-
ously, and yields output F/16.

15



To complete a fully functioning simple modern computer, we continued to build additional
logic chips as specified by Nisan and Schocken. The computer they designed is called
the HACK machine, and we largely follow their designed machine—only creating it in
SystemC instead of HDL. Just as we did with the NOT_16 gate, we combine other smaller
logic gates to form logic circuits that can handle 16-bit bus inputs and produce 16-bit bus
outputs. This effort quickly produced the following three logic gates: the AND_16 gate,
the OR_16 gate, and a Mux_16 gate. They are illustrated in Figures 3.10, 3.11 and 3.12.

AND_16
B/16

A/16
F/16

Figure 3.10: The AND_16 gate handles 16-bit bus inputs, "AND-ing" each of the input bits
simultaneously

OR_16
B/16

A/16
F/16

Figure 3.11: The OR_16 gate handles 16-bit bus inputs simultaneously and produces the output
F/16.

Mux_16

A/16

B/16

F/16

SEL

Figure 3.12: The Mux_16 gate handles two 16-bit bus inputs simultaneously to select a final
output of F/16.

An additional logic circuit named the OR_8 gate utilizes seven regular OR gates to select
between eight boolean inputs, A, B, C, D, E, F, G, and H. The internal OR gates are or1,
or2, or3, and or4. Their outputs are wired to or5 and or6. Finally, the outputs of or5 and
or6 are input into or7, which yields the final output F. The logical implication of this circuit

16



is as follows: if any of the inputs is true, the output of the OR_8 will be true. The only time
the OR_8 gate will produce a false or zero output is when all input booleans are also false.
Figure 3.13 illustrates the internal composition of the OR_8 gate.

or1

or2

or3

or4

or5

or6

or7

A
B
C
D
E
F
G
H

F

Figure 3.13: The OR_8 gate produces a "true" bit output if any of the eight input bits are true.
If all eight boolean inputs are "false" or zero values, the output of the OR_8 will be zero.

3.9 Continuing the construction of larger logic gates
The next logic gate we designed in SystemC was the Mux4way16 gate. The Mux4way16

logic gate performs the function of selecting between four 16-bit bus inputs - A/16, B/16,
C/16, and D/16. Also required in this effort are two select bits, SEL0 and SEL1. These
select bits allow a selection to be made between the four options, which yields the final
output F_16. Internally, two additional 16-bit buses, S/16 and T/16, are required. Figure
3.14 illustrates the internal composition of the Mux4way16 gate.

Progressing sequentially in our design, the next logical step was creating a Mux8way16

gate. Just as the name suggests, the Mux8way16 gate selects a final output bus from eight
16-bit input buses. The construction of the Mux8way16 in SystemC requires eight input
buses, named A/16, B/16, C/16, D/16, E/16, F/16, G/16, and H/16, and three select bits
(SEL0, SEL1, and SEL2). Two Mux4way16 gates, m0 and m1, and one Mux_16 gate, m2,
are utilized internally to produce the desired outcome. The composition of the Mux8way16

is illustrated in Figure 3.15.

17



The Mux4way16 gate

A/16

B/16

S/16

SEL0

C/16

D/16
T/16

F/16

SEL1

Figure 3.14: The Mux4way16 selects between four 16-bit input buses and produces one 16-bit
output bus.

3.10 Once you Mux, it’s easy to D-Mux

Just as we expanded the multiplexors to handle more inputs, demultiplexors can also be
expanded to handle more outputs. A demultiplexer performs the inverse function of the
multiplexor, taking a single input, IN, and directing it to one of N outputs. Figure 3.16
demonstrates a 4-bit D-Mux. Our SystemC implementation utilizes three D-Mux gates, d1,
d2, and d3, and two select bits, SEL0 and SEL1, to construct the D-Mux4way. Two internal
booleans, S and T, are also used. The four final outputs are labeled A, B, C and D. The
composition of the D-Mux4way is illustrated in Figure 3.16.

To extend the capabilities of the demultiplexer to handle eight outputs, we created the
Dmux8way gate. The Dmux8way consists of one D-Mux2way gate, d1, and two D-

Mux4way gates, d2 and d3. Three input selectors, SEL0, SEL1 and SEL2, are also required.
The eight outputs are labeled A, B, C, D, E, F, G, and H. Figure 3.17 shows the logical
construction of an 8-way demultiplexer.

18



A/16
B/16
C/16
D/16

S/16

E/16
F/16
G/16
H/16

T/16

O/16

SEL0
SEL1 SEL2

Figure 3.15: The Mux8way16 selects its final outcome choice O/16 from among eight 16-bit
buses.

d1

d2

d3

IN

SEL1

S

T

SEL0

A

B

C

D

Figure 3.16: The D-Mux4way directs an incoming bit to one of four outputs.

19



d1

d2

d3

IN

SEL2

S

T

A
B
C
D

SEL1
SEL0

E
F
G
H

Figure 3.17: The D-Mux8way directs an incoming bit to one of eight outputs.

3.11 Time for some simple addition: Introducing the
Half-Adder and Full-Adder

As we move forward with the construction of the HACK machine using SystemC, per-
forming arithmetic operations is necessary. For the simplest arithmetic, addition, we are
able to implement this capability in two steps: constructing a HalfAdder, followed by the
construction of a FullAdder.

XOR

AND

A
B SUM

CARRY

Figure 3.18: The HalfAdder

To make the HalfAdder in SystemC, two boolean inputs, A and B, are required, and the
operation yields two boolean outputs, SUM and CARRY. Internal composition of the Half-

20



Adder gate requires one XOR gate and one AND gate. Their composition is shown in Figure
3.18.

Now that the HalfAdder has been constructed, assembling the FullAdder becomes possible.
The FullAdder is built by assembling together two HalfAdders (ha1 and ha2) and an OR

gate (or) and then routing in three boolean inputs (A, B and CIN), utilizing three internal
boolean signals (S, T, and U), and ultimately producing two boolean outputs - SUM and
COUT. The diagram in Figure 3.19 illustrates the assembly of the FullAdder.

ha1

ha2

XORA
B S

CIN

T
COUT

U

SUM

Figure 3.19: The FullAdder

3.12 Preforming addition on input buses
Now equipped with the ability to preform addition, our next goal consisted of performing
addition on 16-bit values. Much like we did with previous implementations of logic chips
for larger buses, the construction of the ADD_16 gate contains sixteen FullAdders in order
to process the operands.

The parts of the ADD_16 gate are arranged as follows using SystemC: two 16-bit input
buses, A/16 and B/16, the operands to be added together. Each of the individual FullAdder
gates - fa0, fa1, fa2, fa3, fa4, fa5, fa6, fa7, fa8, fa9, fa10, fa11, fa12, fa13, fa14, and fa15

- generates an internal carry-out signal (c-out[n]), which is passed to the next sequential
FullAdder gate. The last carry-out bit is discarded. The SUM is output from each internal
FullAdder then placed on a bus. Figure 3.20 illustrates the composition of the ADD_16
circuit.

Continuing our efforts to enhance the HACK machine’s ability to perform arithmetic op-
erations, implementing an incrementor was the next logical step. Our incrementor, named

21



fa0
ZeroA[1]

B[0]
(SUM) F[0]

fa1

c-out[0]

A[1]
B[1]

(SUM) F[1]

fa2

c-out[1]

A[2]
B[2]

(SUM) F[2]

fa3

c-out[2]

A[3]
B[3]

(SUM) F[3]

fa4

c-out[3]

A[4]
B[4]

(SUM) F[4]

fa5

c-out[4]

A[5]
B[5]

(SUM) F[5]

fa6

c-out[5]

A[6]
B[6]

(SUM) F[6]

fa7

c-out[6]

A[7]
B[7]

(SUM) F[7]

fa8

c-out[7]

A[8]
B[8]

(SUM) F[8]

fa9

c-out[8]

A[9]
B[9]

(SUM) F[9]

fa10

c-out[9]

A[10]
B[10]

(SUM) F[10]

fa11

c-out[10]

A[11]
B[11]

(SUM) F[11]

fa12

c-out[11]

A[12]
B[12]

(SUM) F[12]

fa13

c-out[12]

A[13]
B[13]

(SUM) F[13]

fa14

c-out[13]

A[14]
B[14]

(SUM) F[14]

fa15

c-out[14]

A[15]
B[15]

(SUM) F[15]
c-out[15]

Figure 3.20: The ADD_16 gate adds two 16-bit values together.

INC_16, is designed to handle an arbitrary 16-bit boolean value and increase (or incre-
ment) it by one. Designing the INC_16 gate in SystemC requires one ADD_16 gate. An
abstraction of the implementation of INC_16 is shown in Figure 3.21.

Another logic gate needed for the HACK machine is the Controlled_Zero16. The Con-

trolled_Zero16 circuit accepts any 16-bit input, IN/16, and proceeds, when instructed by
the select bit C, to zero all bits of the bus, producing an output bus, OUT/16, of all zeros.
If the C select bit is not asserted, the inputted value will be outputted as OUT/16 without
any alteration to the value. To build the Controlled_Zero16 circuit in SystemC, one AND16

gate, one Mux16 gate, and one NOT/16 are utilized. Two internal boolean buses, S/16 and

22



ADD_16
IN/16

ONE/16
OUT/16

Figure 3.21: The INC_16 circuit increments an inputted value, IN, by one.

T/16, are also used. The logical layout of the Controlled_Zero16 circuit is illustrated in
Figure 3.22.

n1

a1

IN/16 S/16

T/16

OUT/16

(SEL) C

Figure 3.22: The Controlled_Zero16 gate can either zero out the entire inputted value or output
the original input unaltered.

The next digital logic circuit we designed in SystemC is the Controlled_Not gate. Very
similar to the Controlled_Zero16 circuit, the Controlled_Not gate negates (or "flips") each
of the 16-bit values it receives. The Controlled_Not circuit is constructed with one Mux16

and one Not16 gate. The 16-bit input bus IN is spliced in two directions - one running
through the NOT16 gate, n1, before being fed into the Mux16, and the other being fed
directly into the Mux16. The select bit C choses which value to output as OUT/16, either
the original inputted value or its negated/complemented value. The construction of the
Controlled_Not16 logical circuit is illustrated in Figure 3.23.

23



n1IN/16
S/16

OUT/16

(SEL) C

The Controlled_Not16

Figure 3.23: The Controlled_Not16 will either flip each bit of the input bus or output the
inputted value unaltered.

3.13 Two more arithmetic circuits must be constructed
prior to the ALU

As we near the ability to construct an ALU for our HACK machine, only two more arith-
metic circuits are needed. The first of these two is called the AND_or_ADD16 circuit. The
AND_or_ADD16 circuit requires one AND16 gate, one ADD16 gate, and one Mux16 gate.
Inputs, A/16 and B/16 are wired to both the AND16 gate and the ADD16 gate. The out-
puts from the AND16 and the ADD16 are then inputted into the Mux16. The select bit C

determines which of the two inputted values is selected for the output OUT/16. If the C bit
is zero ("0"), the output of the AND16 gate is passed through as the output. Otherwise, if
the C is a one ("1"), the output of the ADD16 is passed through as the final result, OUT/16.
Figure 3.24 illustrates the logical arrangement of the AND_or_ADD16 circuit.

AND16

ADD16

Mux16

A/16

B/16

S/16

T/16

OUT/16

(SEL) C

Figure 3.24: The AND_or_ADD16 circuit

24



The last logic circuit required before implementing the ALU is the check_16. The check_16

produces a 16-bit boolean output bus, as well as two single-bit boolean output signals, ZR

and NG. To construct the check_16 circuit in SystemC, fifteen OR gates, sixteen AND gates,
and one NOT gate are used (alternatively, two Or8way gates, one two-way OR gate and one
NOT gate can also be used). The internal wiring is illustrated in Figure 3.25.

IN[0] OUT[0]

IN[1] OUT[1]

IN[2] OUT[2]

IN[3] OUT[3]

IN[4] OUT[4]

IN[5] OUT[5]

IN[6] OUT[6]

IN[7] OUT[7]

IN[8] OUT[8]

IN[9] OUT[9]

IN[10] OUT[10]

IN[11] OUT[11]

IN[12] OUT[12]

IN[13] OUT[13]

IN[14] OUT[14]

IN[15] OUT[15]

o1

o2

o3

o4

o5

o6

o7

o8

o9

o10

o11

o12

o13

o14

o15

not ZR
NG

Figure 3.25: The Check_16 circuit

25



3.14 Time to build the ALU
We now have all digital logic tools required to build the HACK’s ALU (Arithmetic Logic
Unit). While "The centerpiece of the computer’s architecture is the CPU... the centerpiece
of the CPU is the ALU, or Arithmetic-Logic Unit" [12].

The ALU executes all the arithmetic and logical operations performed by a computer. De-
pending on what operations a computer designer wants his/her machine to calculate, the
exact operations of the ALU may vary from one computer design to another. In our case,
we are designing the HACK machine as specified by Nisan and Schocken. Nisan and
Schocken state, "The Hack ALU computes a fixed set of functions out = fi(x, y) where x

and y are the chip’s two 16-bit inputs, out is the chip’s 16-bit output, and fi is an arithmetic
or logical function selected from a fixed repertoire of eighteen possible functions. We in-
struct the ALU which function to compute by setting six input bits, called control bits, to
selected binary values" [12].

cz1

cz2

cn1

cn2

aa cn3 check

X/16

Y/16

Zx

Zy

Nx

Ny

F
No

OUT/16

NG
ZR

Figure 3.26: The Hack ALU

26



To construct the ALU in SystemC, two boolean input buses X/16 and Y/16 as well as six
input signals (ZX, ZY, NY, NY, F, and NO) were used to produce the output bus OUT/16

and two output signals ZR and NG. The digital logic circuits utilized included two Con-

troled_zero16s (named cz1 and cz2), three Controlled_not16 chips (named cn1, cn2 and
cn3), an AndORadd16 unit (referred to as aa) and a check16 circuit (simply named check).
Figure 3.26 provides a visual representation of the ALU’s logical construction.

3.15 Constructing more hardware: a single-bit and 16-bit
register

Next, we designed a single bit register and then built a larger, 16-bit register. To construct
the single-bit register in SystemC, a single boolean input IN was fed in, and boolean input
signals LOAD and CLOCK were also fed in. The MUX logic gate, as well as a digital

flip–flop (commonly referred to as a "dff") were also used. Two internal signals S and T

were used, and the output signal was OUT. See Figure 3.28 for a visual representation of
the single-bit register compilation.

m
ux dff

IN
OUT

CLOCKLOAD

A single-bit register

Figure 3.27: The internal composition of a single-bit register.

With the single–bit register constructed, we were able to combine sixteen together. The
16–bit register (also simply referred to as register) consists of 16 single–bit registers (b0-

b15), a 16-bit input bus, a LOAD bit, and a CLOCK bit. Its full logical layout is shown in
Figure 3.28.

27



bit-register, b0

bit-register, b1

bit-register, b2

bit-register, b3

bit-register, b4

bit-register, b5

bit-register, b6

bit-register, b7

bit-register, b8

bit-register, b9

bit-register, b10

bit-register, b11

bit-register, b12

bit-register, b13

bit-register, b14

bit-register, b15

CLOCKLOAD

IN[0]

IN[1]

IN[2]

IN[3]

IN[4]

IN[5]

IN[6]

IN[7]

IN[8]

IN[9]

IN[10]

IN[11]

IN[12]

IN[13]

IN[14]

IN[15]

OUT[0]

OUT[1]

OUT[2]

OUT[3]

OUT[4]

OUT[5]

OUT[6]

OUT[7]

OUT[8]

OUT[9]

OUT[10]

OUT[11]

OUT[12]

OUT[13]

OUT[14]

OUT[15]

Figure 3.28: A 16-bit register is capable of holding the 16-bit input values HACK uses to operate.

3.16 Let’s store some memory
Having constructed the 16-bit register, we now can construct the random access memory
(RAM). The RAM8 unit allows us to address eight words of memory. Once we have chosen
what address we want, we can either read information from the location or write informa-
tion to the location. We use recursive ascent to build larger memories. The following
demonstrate the recursive ascent approach.

To construct the RAM8, eight 16-bit registers, a D-mux_8, and a Mux8way16 were utilized.
Additionally, three boolean signals (LOAD, CLOCK, and ADDR) were needed. The circuit
is shown in Figure 3.29.

To build the RAM64, eight RAM8’s, a D-mux_8, and a Mux8way16 are utilized. A boolean
input array IN/16 is routed into the RAM64 circuit together with a LOAD and CLOCK bit.
The circuit is shown in Figure 3.30.

28



dm
ux

8

reg0

reg1

reg2

reg3

reg4

reg5

reg6

reg7

m
ux8w

ay16

LOAD

Sel0Sel1Sel2

s0
s1

s2
s3

s4
s5

s6
s7

IN/16

A/16

B/16

C/16

D/16

E/16

F/16
G/16
H/16

OUT/16

Figure 3.29: RAM8

dm
ux

8

RAM8, r0

RAM8, r1

RAM8, r2

RAM8, r3

RAM8, r4

RAM8, r5

RAM8, r6

RAM8, r7

m
ux8w

ay16

LOAD

ADDR3
ADDR4

ADDR5

s0
s1

s2
s3

s4
s5

s6
s7

IN/16

A/16

B/16

C/16

D/16

E/16

F/16
G/16
H/16

ADDRs 0, 1, & 2 - run to each RAM8 circuit (r0-r7)

OUT/16

Figure 3.30: RAM64

29



3.17 Making more and more memory

With the RAM64 now implemented, the next step was to continue to increase memory
size. We did so, building the RAM512 and ultimately the RAM4K. While building the
RAM4K we found the memory resources of our own computer to be extremely strained
while running the simulation, ultimately being forced to use a machine with 16–GBytes of
RAM (the simulation of the RAM4K used 9–GBytes). Figures 3.31 and 3.32 illustrate the
RAM512 and RAM4K. Because the memory requirement became so intense, we elected
to stop constructing larger memory sizes.

dm
ux

8

RAM64 r0

RAM64, r1

RAM64, r2

RAM64, r3

RAM64, r4

RAM64, r5

RAM64, r6

RAM64, r7

m
ux8w

ay16

LOAD

ADDR6
ADDR7

ADDR8

s0
s1

s2
s3

s4
s5

s6
s7

IN/16

A/16

B/16

C/16

D/16

E/16

F/16
G/16
H/16

ADDRs 0, 1, 2, 3, 4 & 5 - run to each RAM64 circuit

CLOCK

OUT/16

Figure 3.31: RAM_512

30



dm
ux

8

RAM_512, r0

RAM_512, r1

RAM_512, r2

RAM_512, r3

RAM_512, r4

RAM_512, r5

RAM_512, r6

RAM_512, r7

m
ux8w

ay16

LOAD

ADDR9
ADDR10

ADDR11

s0
s1

s2
s3

s4
s5

s6
s7

IN/16

A/16

B/16

C/16

D/16

E/16

F/16
G/16
H/16

ADDRs 0–8 directly run to each RAM_512 circuit

CLOCK

OUT/16

Figure 3.32: RAM4K

3.18 The Program Counter
Now that we have constructed memory, our next task as we work towards building the
HACK machine is to create a program counter. The program counter accepts as input a
boolean bus IN/16 and boolean signals LOAD, INC, RESET, and CLOCK and produces a
16-bit boolean output OUT/16. The program counter utilizes a mux16, controlled_zero16,
one 16-bit register, and a INC_16. There are four internal boolean buses and two internal
boolean signals inside the program counter. The logic design of the program counter is
shown in Figure 3.33.

3.19 Now it’s time to jump
An integral part of any CPU is having the ability to jump while running a program. Thus,
we next built the JumpDetermination circuit. There are three bits in each 16-bit instruction

31



reg1

m
ux16 cz16

inc16

trueSig

CLOCKLOAD

IN/16
muxOut/16

RESET

OUT/16

zeroOut16

INC

regOut/16

incOut16

Figure 3.33: The "Program Counter"

that specify whether or not to jump. These three bits are named J1bit, J2bit, and the J3bit.
You must also know if the instruction is a C-instruction; thus, we have the isCinstruction

bit. The NG bit (informing us if the number is negative) and ZR bit are also needed.

The JumpDetermination requires a total of 25 AND gates, seven NOT gates, and seven OR

gates. The logic design is illustrated in Figure 3.34.

3.20 Finally, the CPU
We are finally ready to build the central processing unit, or CPU. The HACK computer, a
von Newmann machine, stores data and instructions in memory. The machine language is
called the HACK machine language. A comprehensive explanation of the HACK machine
language is provided in Chapter 4 of The Elements of Computing Systems [12]. If the MSB
is set to zero (0), the bits are interpreted as an address or data. If the MSB is set to one, the
bits are interpreted as an instruction [12].

Instructions allow the CPU to know what operations the user wants performed - logical,
arithmetic, etc. There are four main fields of HACK instructions (known as C-instructions).
Figure 3.35 shows the fields. Seven bits (a, c1, c2, c3, c4, c5, and c6) instruct the ALU
what operation to preform. The destination bits (d1, d2, and d3) inform the CPU where to

32



G
J1bit
J2bit
J3bit

GE

L

LE

E

NE

JMP

NG
ZR

NG

ZR

or

NG
ZR

NG

ZR

or

ZR

ZR

OR_7

isCinstruction

OUT

NG
ZR
IsC

Figure 3.34: JumpDetermination

send the ALU’s output, and the jump bits (j1, j2, and j3) determine whether a "jump" is
needed.

binary: 1 X X a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

comp dest jumpisC

Figure 3.35: The C-Instruction’s four fields.

The CPU evaluates the MSB, checking to see wether the bits represent a C-instruction or
A-instruction. The CPU fetches (i.e., reads) a word from the instruction memory, decodes
it, and executes the specified instruction [12].

33



Two figures illustrate the function of the CPU and its internal components. Figure 3.36
shows the inputs and outputs of the CPU at a high level of abstraction. Figure 3.37 shows
the internal components of the CPU and the logical connections needed.

CPU

inM/16

instruction/16

reset/1

outM/16

writeM/1

addressM/15

pc/15

Figure 3.36: A high–level diagram of the CPU showing both inputs and outputs.

m
ux

m
ux

D-register

A-register

Program Counter

A
L

U

instruction/16

inM

c

c

c
outM

c

pc

writeM

addressM
reset

Figure 3.37: A low–level diagram of the CPU shows the required internal logical circuits. Each
circled c refers to control logic.

34



3.21 And now the computer
To accommodate SystemC constraints, we diverted from Nisan and Schocken in the follow-
ing respects. First, the size of the memory (both instruction memory and data memory) was
limited to 64 addresses (aka RAM64). When simulating HACK in SystemC with memory
sizes larger than RAM64, simulation required much more than 4-Gbytes. However, the
RAM64 size was sufficient to demonstrate small programs. The second deviation from the
Nand2Tetris model was the lack of a pre-built ROM (Read-Only Memory). To address this
problem, we used a RAM64 logic circuit as instruction memory.

The HACK computer has three main components: an instruction-memory, the CPU, and
data-memory. The first program we tested on the HACK computer was an addition pro-
gram. This simple program adds the numbers two and three together. If all logic gates have
been assembled and wired together correctly, the output will be five. This program requires
six instructions; they are the following:

//@2

0000000000000010

//D=A

1110110000010000

//@3

0000000000000011

//D=D+A

1110000010010000

//@0

0000000000000000

//M=D

1110001100001000

To make this program work, we assemble the computer as depicted in Figure 3.38, then to
load the program into instruction memory, we load each instruction one-by-one, making
sure that the SET bit is enabled and the GET bit disabled during the loading process. Next
we run the program for a predetermined, fixed number of clock cycles, with SET and GET
disabled. Finally, we read the contents of the data memory at address zero. This requires

35



one additional clock cycle with the GET bit enabled and the SET bit disabled. At the
completion of the simulation, the contents inside address zero equal five, exactly what we
expected.

Ram 64: Instruction Memory Ram 64: Data Memory

C
PU

m
0

m
1

m
2

IN

mux0out

SET

ADDR

Instruction

RESET

outM

addressM

pc

inM

writeM

load-dmemzero

GET

OUT

Figure 3.38: The HACK computer consists of three main parts: instruction memory, the CPU,
and data memory.

36



CHAPTER 4:
Experimental Setup and Results

Our thesis project both constructs a simple modern computer utilizing SystemC and facil-
itates the design and integration of policy enforcement circuitry. Having constructed the
HACK computer described in the previous chapter and verified that it can correctly run a
simple program, our next step was to run a more complex program and verify that the com-
puter yielded a correct output. We chose to run the multiply program provided by Nisan
and Schocken [12]. The instructions of the multiply program are provided below:

// This is the multiply program - it is a simple test program for multiplying

// two numbers. We will initialize the instruction memory with this program.

// M[0] should contain the value 30 at the end of the program.

// @5

0000000000000101

// D=A

1110110000010000

// @R1

0000000000000001

// M=D

1110001100001000

// @6

0000000000000110

// D=A

1110110000010000

// @R2

0000000000000010

// M=D

1110001100001000

// @R0

0000000000000000

// M=0

37



1110101010001000

// @i

0000000000010000

// M=0

1110101010001000

// (LOOP)

// @R1

0000000000000001

// D=M

1111110000010000

// @i

0000000000010000

// D=D-M

1111010011010000

// @END

0000000000011010

// D;JLE

1110001100000110

// @R2

0000000000000010

// D=M

1111110000010000

// @R0

0000000000000000

// M=M+D

1111000010001000

// @i

0000000000010000

// M=M+1

1111110111001000

// @LOOP

0000000000001100

// 0;JMP

1110101010000111

38



// (END)

// @END

0000000000011010

// 0;JMP

1110101010000111

The multiply program consists of 28 instructions; thus, the program length is set at 28.
Unlike the simple addition program in Chapter 3, the multiply program also contained
"looping" via conditional jumps. Because of this feature, we had to increase the max value
to allow enough cycle-iterations to complete the program. We chose to set max to a value
of 128. At the conclusion of the 128 clock cycles, the value of M[0] was thirty, exactly
what was expected.

With the outputs of both programs (addition and multiply) yielding correct results, our
confidence in the creation of the HACK machine was sufficient to move to the second
portion of our project—the design of policy enforcement circuitry. To demonstrate built-in
policy enforcement capabilities, we designed an integrity checker.

4.1 Creating the Integrity Checker
The integrity checker protects the HACK machine’s data memory against unauthorized
modifications. Our simple demonstration assumes that the first four lines of instruction
code come from an "untrusted" source; thus, we want to prevent the instructions from
writing to unauthorized memory locations. We chose to allow untrusted code to write to
the first sixteen data memory addresses, but to deny the untrusted code from writing to any
other addresses.

We constructed the integrity checker using four OR-gates, five AND-gates, and six NOT-
gates. The program counter’s second, third, fourth, and fifth bits are fed in to check if the
instruction resides in the secure or insecure portion of the code. If the integrity checker

(i.e., "checker") detects the value in the program counter to be less than four, it will deny
writes to data addresses greater than or equal to sixteen. If any of the values of pc2, pc3,
pc4, or pc5 is one, this indicates that the instruction comes from the trusted portion of the

39



code; thus, the program is allowed to write to any location in data memory. Figure 4.1
illustrates the logical layout of the integrity checker described above.

o1

o2

o3

o4a1

a2

a3

a4

a5

pc2
pc3

pc4
pc5

pc2
pc3

pc4
pc5

A4
A5

allow

Figure 4.1: The Integrity Checker.

4.2 Incorporating the Integrity Checker in the HACK
computer design

Integrating the integrity checker into the HACK computer design is straightforward, merely
affecting the "writeM" bit, which proceeds from the CPU and is fed into mux2. The mux2
gate accommodates the GET bit. The output of the mux2 gate is then "anded" with the
output of the checker. If the writeM bit is enabled and the allow-bit proceeding from the
checker is also enabled, the output of the CPU, outM, will be written into data-memory at
the specified address. Conversely, if the integrity checker detects that an instruction in the
untrusted portion of the code is trying to write to a prohibited address, the allow-bit will be
disabled, and writing to data-memory will be denied.

40



Ram 64: Instruction Memory Ram 64: Data Memory

C
PU

m
0

m
1

m
2

IN

mux0out

SET

ADDR

Instruction

RESET

outM

addressM

pc

inM

writeM

zero

GET

GET

OUT

checker

a1 load-dmem

pc/6

addrM/6

Figure 4.2: The HACK computer with the "INTEGRITY CHECKER" installed.

4.3 The Test
To demonstrate that the integrity checker correctly prevents writes to unauthorized loca-
tions, we created and ran the following test program:

//(UNTRUSTED)

//@R0

0000000000000000

//M=1

1110111111001000

//@16

0000000000010000

//M=1

1110111111001000

//(TRUSTED)

//@7

41



0000000000000111

//D=A

1110110000010000

//@R0

0000000000000000

//M=D

1110001100001000

//@16

0000000000010000

//M=D

1110001100001000

//(END)

//@END

0000000000001010

//0; JMP

1110101010000111

As previously discussed, the first four instructions are considered untrusted. The next eight
instructions are considered trusted. To validate the functionality of the checker, we first
ran the test code in the HACK machine without installing the integrity checker. After
two clock-cycles, the program should write the value of one (1) into M[0] (data-memory
address zero). After four clock-cycles, the program will write a value of one (1) into M[16].
After eight clock-cycles, the program will write a value of seven (7) into M[0], and after
ten clock-cycles the value of seven will also be written into M[16]. Running the program
yielded the expected results, as shown in Table 4.1. For this program, we set max to twenty-
four.

Memory Address Clock-cycles Data-Values
M[0] 2 1
M[16] 4 1
M[0] 8 7
M[16] 10 7

Table 4.1: Memory values after running the "test" program in the HACK machine without
installing the integrity checker.

42



We next ran the "test" program on the HACK computer with the integrity checker installed.
Untrusted code can still write to M[0-15] of data-memory, but not to data-memory locations
greater than or equal to sixteen. As shown in Table 4.2, M[0] has a value of one after two
clock-cycles, M[16] remains uninitialized after four clock-cycles, and the values of M[0]
and M[16] will be set to seven by the trusted instructions as before.

Memory Address Clock-cycles Data-Values
M[0] 2 1
M[16] 4 uninitialized
M[0] 8 7
M[16] 10 7

Table 4.2: Memory values after running the "test" program with the checker installed.

4.4 Impact on system performance
To measure the impact of the integrity checker on system performance, we run the test
program both with and without the integrity checker installed. We measure simulation
time using the UNIX ’time’ command. The timing results are listed in Tables 4.3 and 4.4,
with max set to a value of twenty-four. Installing the integrity checker has minimal impact
on system performance (Averages with checker installed – Real: 2.608, User: 2.276, and
System: 0.285, versus averages without checker installed – Real: 2.601, User: 2.275, and
System: 0.284).

Tests run without security mechanism Test One Test Two Test Three Test Four
Real 2.616 2.603 2.602 2.581
User 2.279 2.278 2.263 2.280
System 0.286 0.277 0.289 0.283

Table 4.3: Timing results of running test program without inclusion of the integrity checker.

Tests run with security mechanism Test One Test Two Test Three Test Four
Real 2.608 2.609 2.620 2.598
User 2.273 2.275 2.290 2.269
System 0.289 0.285 0.286 0.282

Table 4.4: Timing results of running test program with the inclusion of the integrity checker.

43



THIS PAGE INTENTIONALLY LEFT BLANK

44



CHAPTER 5:
Conclusion and Future Work

The growth in system complexity enabled by Moore’s Law poses major challenges for de-
signers to ensure correct operation, security, fault tolerance, and other key properties. Since
electronic design automation (EDA) tools (e.g., logic synthesis) first appeared decades ago,
the complexity of both hardware and software has risen dramatically. To tackle this prob-
lem, high-level synthesis (HLS) is a design methodology being embraced by major chip
manufacturers, including Xilinx, which incorporates HLS into its Vivado design software
suite. Though Vivado does not use SystemC, it uses another C–like language to express
both hardware and software. HLS is related to electronic system-level (ESL) design, which
allows a chip designer to express an algorithm in a high-level language, and the design tools
automatically translate the high-level specification into a cycle-accurate system. Since de-
signers wishing to build a secure system must be able to fully comprehend the system and
have mastery over the design tools that practitioners are using, HLS has the potential to
facilitate trustworthy system development by helping designers efficiently express hard-
ware and software components for computation, communication, security, reliability, etc.
Also, since modeling languages like SystemC allow designers to express both hardware
and software, they facilitate co-simulation of hardware and software in the same simula-
tion environment, which offers the potential of greater efficiency than traditional methods.

To explore the application of HLS to trustworthy system development, this thesis applied
a HLS design approach to a simple 16-bit computer, implementing it in the popular Sys-
temC modeling language. With only a C++ compiler and the SystemC library, we were
able to design and simulate the CPU, instruction memory, and data memory. Compiling
the C++ code and linking with the SystemC library generates an executable, and running
the executable performs a simulation of the hardware. While simulating the computer’s
hardware, we were able to run programs in the machine language of the CPU on the sim-
ulated hardware. We had to reduce the size of our simulated computer’s memory due to
the well-known problem of fine-grained simulations requiring large amounts of memory
as system complexity increases. We integrated a simple memory integrity policy enforce-
ment mechanism, also designed in SystemC, into our design. Our simulation results show

45



that the mechanism correctly enforces the integrity policy and imposes minimal impact on
overall system performance.

We see many opportunities for future work. For example, it would be worthwhile to explore
more complex processor designs and more sophisticated security policy enforcement mech-
anisms. It would also be useful to learn more about the capabilities of production-grade,
tape-out tools like Vivado HLS (e.g., modeling a system with Vivado and prototyping it on
an inexpensive FPGA board, such as the Basys 2 board from Digilent). We would also like
to overcome the technical hurdles to more fully implement the 16-bit design, including a
display, keyboard, and larger memory. We would like to perform more optimizations on
our 16-bit design to make it more efficient and to compare its implementation in SystemC
against the same design expressed in traditional HDL. We would like to become more pro-
ficient in SystemC so that we can more efficiently and elegantly express circuits. We would
also like to express our design in other languages, environments, and tool flows. Finally,
the broader impact of our work aims to make it easier for Computer Scientists to leverage
custom hardware’s benefits.

46



References

[1] M. Tehranipoor, H. Salmani, X. Zhang, W. Xiaoxiao, R. Karri, J. Rajendran, and
K. Rosenfeld, “Trustworthy hardware: Trojan detection and design-for-trust
challenges,” Computer, vol. 44, no. 7, pp. 66–74, 2011.

[2] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy hardware:
Identifying and classifying hardware Trojans,” Computer, vol. 43, no. 10, pp. 39–46,
2010.

[3] K. Thompson, “Reflections on trusting trust,” Communications of the ACM, vol. 27,
no. 8, pp. 761–763, 1984.

[4] K. Keutzer, A. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli, “System-level
design: Orthogonalization of concerns and platform-based design,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 19, no. 12,
pp. 1523–1543, Dec 2000.

[5] O. Shacham, O. Azizi, M. Wachs, W. Qadeer, Z. Asgar, K. Kelley, J. Stevenson,
S. Richardson, M. Horowitz, B. Lee, A. Solomatnikov, and A. Firoozshahian,
“Rethinking digital design: Why design must change,” Micro, IEEE, vol. 30, no. 6,
pp. 9–24, 2010.

[6] P. Coussy and A. Morawiec, High-Level Synthesis. Heidelberg, Germany: Springer,
2010.

[7] L. A. D. Bathen and N. Dutt, “PoliMakE: A policy making engine for secure
embedded software execution on chip-multiprocessors,” in Proceedings of the 5th
Workshop on Embedded Systems Security. ACM, 2010, p. 2.

[8] L. A. D. Bathen and N. D. Dutt, PHiLOSoftware: A Low Power, High Performance,
Reliable, and Secure Virtualization Layer for On-Chip Software-Controlled
memories. PhD Dissertation, Department of Computer Science, University of
California, Irvine, Irvine, CA, 2012.

[9] J. Saltzer and M. Schroeder, “The protection of information in computer systems,”
Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–1308, Sept 1975.

[10] CNSS Secretariat, “Supply Chain Risk Management (SCRM),” CNSS Directive 505,
Fort Meade, MD, March 2012.

[11] J. Follett. (2008). Cisco channel at center of FBI raid on counterfeit gear. [Online].
Available: http://www.crn.com/news/networking/207602683/
cisco-channel-at-center-of-fbi-raid-on-counterfeit-gear.htm

47



[12] N. Nisan and S. Schocken, The Elements of Computing Systems: Building a Modern
Computer from First Principles. Cambridge, MA: MIT Press, 2005. [Online].
Available: http://www.nand2tetris.org

[13] C. C. Lin. (2003). What’s a multiplexer (and a demultiplexer)? [Online]. Available:
http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Overall/mux.html

48



Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

49


