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ABSTRACT

Extended Kalman filtering is used to provide estimates of the position and velocity

of a target based upon observations of the target's bearing and range. Non-stationary

noise is shown to degrade the performance of the filter and cause filter divergence. By

estimating the noise power from the variance of the filter's residual we adapt the filter

to compensate for varying noise power. We also introduce the method of correlated

maneuver gating to adapt the Kalman filter to target dynamics. By spatially and

temporally correlating the Mahalanobis Distance of the residual, the Kalman filter's

performance is increased while tracking tangentially accelerating targets. Monte Carlo

simulations are run for three different sets of target dynamics: stationary, moving

linearly, and accelerating tangentially. Results for the simulations show significant

performance advantages of using correlated maneuver gating in conjunction with noise

adaptation. These results should generalize to other applications of the extended Kalman

filter whose state and observation spaces enjoy a one-to-one mapping.
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I. INTRODUCTION

A. TARGET TRACKING

The detection, location, and tracking of targets plays a critical role in many

aspects of military operations as well as civilian aviation. The ability- to accurately track

and predict the movement of aircraft, for example, makes modern air-traffic-control

possible, and the importance of target tracking in military operations can not be

overstated, This report investigates a particularly powerful method of target tracking

'known as Kalman filtering.

Kalman filtering has been used with tremendous success in target tracking for

almost thirty years. Its strength lies in its firm mathematical foundation of statistical

optimality. We investigate the behavior of an extended Kalman filter in tracking a

target by means of bearing and range observations. This is the case for most civilian

and military radars.

B. OBJECTIVES OF THIS REPORT

This report treats the extended Kalman filter as a starting point, not a destination.

By combining statistics and heuristics, we introduce methods which can significantly

improve the performance of the extended Kalman filter. These methods are sufficiently

general to apply to a wide range of applications, not just radar target tracking. The

methods proposed serve to allow the Kalman filter to adapt to its environment in the

face of dynamic noise statistics and maneuvering targets.



We begin by showing that the Kalman filter is only optimal when it is given

correct a priori information about the noise sources affecting the system. The

performance of the filter degrades as the noise power varies from the a priori estimates.

We propose a method to improve the performance of the Kalman filter in the presence

of unpredicted or non-stationary noise processes. This method uses the residual (or

innovations) provided by the Kalman filter to estimate the statistical properties of the

noise. These parameters are then used adaptively in the Kalman equations.

We also show that the ability of a Kalman filter to track a tangentially accelerating

target is improved greatly by maneuver gating. Although maneuver gating has been

discussed before in the literature, we propose gating off of the Mahalanobis Distance of

the residual. This gating statistic is then processed for spatial and temporal correlation.

It is this correlated gating process which provides increased accuracy and divergence

rejection to the Kalman filter.

C. REPORT ORGANIZATION

This report is organized into six major sections. The first is this introduction,

which serves as a guide to approaching this report. Chapters II and III give a

mathematical derivation of the extended Kalman filter equations. Chapter IV models the

physical tracking system which is used as the basis for the simulations throughout this

report. Chapters V and VI describe the methods which we propose for improving the

performance of the extended Kalman filter. Chapters VII through IX show the

simulations and give our results and conclusions. The appendices give supportive

mathematical treatments and program code.

'It is recommended that the chapters be taken in the order they are presented. The

reader who is conversive with Kalman filtering, however, should skim Chapters II
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through IV and proceed quickly to Chapter V. Appendices A and B give mathematical

treatment to topics for which we were unable to find suitable derivations in the

literature. These appendices should prove useful for other researchers interested in this

area, but are not required to appreciate the results of this research. Finally, the program

code listed in Appendix C is purely for the benefit of others who are conducting work

in target tracking.
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II. KALMAN FILTER

The Kalman filter has been used extensively in the design of estimation systems

since it was first presented by Kalman and Bucy [Ref. 1-2] in 1960. Its rapid

acceptance and subsequent success are due, in part, to the Kalman filter's recursive

nature and provable optimality for certain systems. Also, the Kalman filter has the

desirable quality of maintaining the physical meaning of the system dynamics by

utilizing a state space representation.

The provable optimality mentioned aboe holds for systems which are linear and

time-invariant (LTI), and corrupted by additive white Gaussian noise (AWGN). This

chapter will develop the Kalman filter equations for just such a system. The

development will follow closely that given by Gelb in Chapter IV of Ref. 3 and starts by

defining the terms involved in the derivation. After that, we model the physical system

and the noise processes involved. Then the form of the filter will be argued, rather than

proved. Finally, after choosing criteria for optimality, the equations which optimize the

performance of this filter will be derived.

A. DEFINITION OF TERMS

All of the terms used in this chapter are defined in Table (2.1). These terms are

explained further when they are introduced in the derivation. Terms with a single time

subscript (i.e., Xk) refer to the value of the term at that time. Those terms with dual

subscripts (i.e., Pk+ilk) refer to the value of the term at the time of the first subscript

given observations through the second. Since no special annotation is used to denote a

matrix, the third column gives the dimension of each entry for its matrix form. The

dimensions are given first in the table.
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TABLE 2.1: DEFINITION OF TERMS

System order: n

Observation size: m

Identity matrix I n x n

System state: xk n xl

Transpose of x: XTk I x n

State transition matrix: n x n

State excitation noise: Wk  n x

Observation: zk m x

Observation matrix: H m x n

Observation noise: Vk m x I

State estimate: ik+lk n x 1

Estimate error: 3k+llk n x I

Expected value of the error: E[Xk+llk] n x I

Error covariance matrix: Pk+llk+1 n x n

Residual: rk+, m x

B. SYSTEM MODEL

In order to estimate the parameters of a system, it is necessary to have a good

model of that system. The state space model of our linear system is given in Equation

(2.1), and the measurements are described by Equation (2.2). This is a standard state

space matrix representation for a system of linear, discrete-difference equations.

I,

Xk+ I = OXk + Wk (2.1)

Zk+1 = Hxk+1 + vk+1 (2.2)

5



The physical state of the system (position, velocity, etc.) is described by Xk, and the

observed parameters (bearing, range, etc.) are contained in Zk.

This system is time-invariant because neither 0 nor H is dependent on the time

subscript k. The noise processes are assumed to be stationary, independent, zero-mean,

AWGN. Although this is only an idealization, it is often justified in real systems. The

statistical properties of the noise processes are given in Equations (2.3) through (2.7).

Elwk] - 0 (2.3)

FwJwT kI = Q~jk (2.4)

E[vk] - 0 (2.5)

E[vjv Tk] = RSjk (2.6)

E[wjVT kl = 0 (2.7)

The Kronecker delta function, 6, is defined by

. ( U ; k). (2.8)

The matrices Q and R in Equations (2.4) and (2.6) are the covariance matrices for

the noise processes. For this system, the noise covariance matrices are non-zero diagonal

matrices which denote the power present in the noise. This simple, linear model will be

generalized in Chapter 3.

C. LINEAR, RECURSIVE FORM

Before deriving the Kalman filter equations we will first determine the form of

the filter. The form we assume is that of a two-step, linear, recursive filter, as shown

in Equations (2.9) and (2.10). This form is both simple and efficient. The current

estimate is a linear combination of the previous estimate and the current observation.

6



Since the filter does not store the observations, it requires only a fixed amount of

memory to process an arbitrary number of observations.

xk+ Ik - Klklk (2.9)

Xk+llk+l n K2Xk+llk + KsZk+I (2.10)

Although this form is assumed for its simplicity, Ref. I demonstrates that it is optimal

for a linear system.

D. MEASURE OF OPTIMALITY

An optimal system is generally considered to be any system which minimizes a cost

function (or maximizes a performance function) subject to specific constraints. For our

system, we desire a filter which gives unbiased estimates that minimize a function of the

estimate error. Constants K, in Equation (2.9) and K2 in Equation (2.10) are chosen to

make the estimate unbiased. The constant K3 is chosen to minimize a cost function

related to the expected error.

An unbiased estimate is an estimate whose error has an expected value of zero.

This is an entirely reasonable desire for a filter which we intend to call optimal. The

estimate errors are given as

!k+l1k = Xk+1 - Xk4+lk (2.11)
and

3Xk+llk+l m Xk+1 - X+11k+1 (2.12)

and their expected values satisfy

EPxk+l1k+1] = E[3k+lik] - 0. (2. 13)

7



The value of KI can be determined by substituting Equations (2.1) and (2.9) into

Equation (2.11) and then adding another term to both sides to yield

-k+I1k - kk - Oh + Wk - Klklk Xklk (2.14)

By regrouping terms and takisi. the expected value of both sides, Equation (2.14) can be

written in a form which can make use of Equation (2.13).

E[1k+lIk] = E[1klk] + E[Wk] + (' - K1)'kjk (2.15)

Since the values of the expectations are zero by Equations (2.3) and (2.3), we get

K1 ,. (2.16)

So the new form of Equation (2.9) is

Xk+Ik hk" (2.17)

Proceeding in a similar fashion, we substitute Equations (2.1) and (2.10) into

Equation (2.12) to give

%+11k+1= Xk + wk - K2xk+llk- KsZk+l .  (2.18)

Now use Equation (2.2), regroup the terms, and take the expectation, using Equation

(2.13), to get the value for K2.

K2 = I - KH (2.19)

'Combining Equations (2.10), (2.17), and (2.19), the form for the Kalman filter

equations can be written as

8



Xk+llk =  Xk~k (2.20)
and

xk+lk+l (I - GH)kk+Ik + Gzk+ 1  (2.21)

where G replaces Ks as the Kalman gain matrix. Equation (2.21) can also be written in

the form

Xk+llk+l - Xk+'lk + G(Zk+l - Hkk+llk)" (2.22)

Equations (2.20) and (2.22) are known as the time-update and the observation-

update equations, respectively. In order to solve for the value of the Kalman gain

matrix, G, we must specify the error function to be minimized. A reasonable choice

would be a quadratic function of the error. So we will choose the value of G which

satisfies Equation (2.23).

G: min(Jk.E[ T k+lk1k+lk+1k+1]) (2.23)

Solving the above equation requires an analysis of the error covariance matrices. This is

handled in the next section.

E. PROJECTION OF ERROR COVARIANCE

The error covariance matrices are defined by Equations (2.24) and (2.25). These

matrices give a feeling for the expected magnitude of the estimation error. Strictly, they

are the covariance matrices for the errors, which are n-dimensional, zero-mean,

Gaussian random vectors.

~T
Pk+11k EfXk+11kx k+11k] (2.24)

Pk+1Ik+1 =Efk+llk+1%Tk+11k+1] (2.25)

9



Rewriting Equation (2.11) as

%k+lk " 'kk + Wk (2.26)

and putting it into Equation (2.24), we get

Pk+11k N T + Q (2.27)

Similarly, writing Equation (2.12) as

%k+11k+1 - ( GH)k+Ik " Gvk+1 (2.28)

and putting it into Equation (2.25), we get

T TPk+llk+1 = (I - GH)Pk+Ilk(I - GH) + GRGT . (2.29)

It is pleasing to note that the Kalman filter is able to carry along its own error

analysis by means of Equations (2.28) and (2.29). All that remains is to find the value

for the Kalman gain matrix, G. But to simplify the notation, we will first define the

residual, and its covariance.

F. RESIDUAL

The residual is the difference between the observation and the expected value of

the observation. This is given by

rk+ 1 - Zk+ 1 - Ezk+l]. (2.30)

Since the estimate is unbiased, we see that

F[Zk+l] EtHxk+l] + Fvk.. 1] (2.31a)

- H~k*Ilk. (2.31b)

10
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Putting Equation (2.31b) into Equation (2.30) and expanding Zk+1 with Equation (2.2),

we get the final form for the residual,

rk+1 = HXk ! - Hk+11k + Vk+1 (2.32a)

= H3k+llk + Vk+.l (2.32b)

Using this definition of the residual, the observation-update equation can be

written as

Xk+.Ilk+l ' k+1lk + Grk+l (2.33)

and the covariance of the residual is found to be

V[rk+l] - Et[rk+lr T k+ 1] (2.34a)

- HPk+11kH T + R. (2.34b)

Having this, we are ready to derive the value for the Kalman gain matrix.

G. KALMAN GAINS

Returning to Equation (2.23), we see that it can be written in terins of the error

covariance as

G: min (Jk+l = trace( Pk+llk+l)}. (2.35)

This is equivalent to minimizing the length of the estimation error vector. Doing so

requires that we take the partial derivative of Jk+1 with respect to G and set it equal to

zero. Solving the resulting equation will yield the optimal value of G.

Taking the partial derivative of Jk+j requires the use of the following matrix

relation, where A and B are matrices ar.d B is symmetric:

11



-[trace( ABAT)] = 2AB. (2.36)

Putting Equation (2.29) into Equation (2.35), applying the above relation, and

setting the result equal to zero gives

-2(1 - GH)Pk+IkHT + 2GR - 0. (2.37)

Solving for G,

G Pk+lIkHT(HPk+ ,kHT + R)1 (2.38a)

- Pk+lkH T[rk+l]-l. (2.38b)

It is important to note at this point that the value of G is a function of time. and will

henceforth use the time subscript k.

Before compiling a coherent set of Kalman filter equations, we will take the effort

to simplify Equation (2.29). By putting Equation (2.38b) into Equation (2.29), we can

get, after some manipulation,

Pkclfk+l 2 Pk+llk

PkllkH V[rk+l] HPk+Ik .  (2.39)

By expanding out the variance of the residual and using the matrix inversion lemma

[Ref. 4].

(A + BCD)-' - A-' -

A'B(C "1 + DA 'B)'DA"1, (2.40)

we can, with a modicum of persistence, rewrite Equation (2.29) as

Pk+llk.l = (I - GH)Pk-,11k. (2.41)

12



H. KALMAN FILTER EQUATIONS

We now have a set of recursive equations which not only calculates the time-

varying optimal gain matrix, but also provides a detailed error analysis of the estimate.

These equations are given in Table (2.2) below.

TABLE 2.2: KALMAN FILTER EQUATIONS

Estimate projection: Xk4+lk m O'klk (2.42)

Residual: rk. 1  Zk+1 - Hk+11k (2.43)

Error projection: Pk+llk ONOk T + Q (2.44)

.Residual covariance: V[rk+l] = HPkIllkHT + R (2.45)

Kalman gain: Gk+l = Pk+llkHTV[rk+l] "1  (2.46)
Estimate update: -kklk+l = k+uk + Gk+lrk (2.47)

Error update: Pk+llk+ = (I - Gk+lH)Pk~llk (2.48)

These equations satisfy our definition of optimal estimates (unbiased estimates

which minimize Jk+1) for a system described by Equations (2.1) through (2.7). Their

recursive nature makes them ideal for software implementation, and requires only that

they be given the following initial conditions;

initial estimate: x010, (2.49)

and error covariance: Polo. (2.50)

It is important to remember that the equations of Table (2.2) are only statistically

optimal when the system is linear, and perfect a priori knowledge of the noise exists.

The next chapter will consider the case for a non-linear system with perfect a priori

noise statistics.

13



III. EXTENDED KALMAN FILTER

Chapter II showed that the Kalman filter yields a statistically optimal estimate for

the states of a linear, time-invariant (LTI) system which is corrupted by additive, white,

Gaussian noise (AWGN). Unfortunately, many real systems of interest, such as the

system studied in this report, are not LTI. This chapter will consider the time-invariant

system which has a linear state-transition equation, but a non-linear observation

equation. When the Kalman equations are applied in this fashion to a non-linear system,

they are called the extended Kalman filter equations.

To derive the extended Kalman filter, we first define the state equations for the

non-linear system. Then we linearize the Kalman filter equations derived in Chapter II

to produce a reasonable estimate uf the state. Finally, we give one method for

improving the accuracy of the linearization, and hence the estimate.

A. SYSTEM MODEL

The state space representation for a system with a non-linear observation equation

is given in Equations (3.1) and (3.2). We see that the only difference between this

system and the LTI system of Equations (2.1) and (2.) is that the observation matrix. H.

is now a function of the state.

Xk+ 1 x OXk + w k  (3.1)

zk+- - H(xk+l) + vk+1 (3.2)

The noise processes, wk and vk, are AWGN with the same statistical parameters as given

in Equations (2.3) through (2.7).

Calculating the observation matrix requires an exact knowledge of the state of the

system. which we do not have. But we need the value of H in order to calculate the

14



estimate of the state. This circular dependence requires an approach which can separate

the calculations without creating excessive approximation errors. The approach we chose

is to expand the value of H in a power series about the current estimate, and then

maintain only the first order terms.

B. FIRST-ORDER APPROXIMATION

Power-series expansion can be applied to any function which possesses derivatives

of all orders in the region of expansion. The expansion of the function f(x) about the

point r is given as

fq 1rIn (3.3)
, x) ,, fn( x) l X ,(

n=O

where f'(x)(x=r) is the nth derivative of f with respect to x, evaluated at x - r. This

expansion is valid because the error between the summation and the actual value tends

to zero as N tends to infinity.

lim [f,(x) - f(x)] - 0. (3.4)

Performing this expansion on the observation matrix about the time-update for the

estimate and keeping only the first two terms gives

H(Xk+l) = H( k+llk) + K-H( k+11k)[xk+1 " xk+ljk] (3.5a)
kid

H( Rk+l1k) + H(x k + l lk) "Xk+1k' (3.5b)
&Tk+1I

With Equation (3.5b) we are now able to proceed with the Kalman filter analysis in a

fashion similar to Chapter 11.

15



1. Linearization

Our choice of point about which to linearize H is critical to the derivation of

the Kalman equations. The point we chose, the time-update of the estimate (also called

the estimate projection), is the estimate based on everything up to, but not including,

the current observation. This is the best choice for the linearization because it accounts

for all available information just prior to needing H for further calculations.

Methods for improving the accuracy of this linearization include keeping

second-order terms in the series expansion and iterating over the point of expansion.

The former, while mathematically sound, can prove difficult to implement due to the

need to calculate the second partial derivative of a matrix. For this reason, we chose to

implement an iterative approach which is discussed later in this chapter.

2. Observ'ation Matrix

Before we begin substituting the linearized observation matrix into the linear

Kalman equations, we will employ one more term for notational simplicity. By defining

H' a 1-1(410 (3.6)H( k+ Ilk)
0k+11k

we can write Equation (3.5b) as

Hl(Xk1) -- H(Rk+llk) + H'"k+llk (3.7)

where the time dependency for H' is understood to be k+ljk. This notation will allow us

to write the extended Kalman filter equations in a form similar to the ones derived in

Chapter II. An interesting (and important) consequence of Equation (3.7) can be found

by taking the expectation of both sides of it, as seen in Equation (3.8). This relation

will prove critical to the development of the extended Kalman filter equations.
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E[H( Xk+l ) ] H('k~llk) (3.8)

3. Linear, Recursive Form

For simplicity and efficiency we choose a linear, recursive set of equations

for our estimates, just as we did in Chapter II. In this case, however, we start with only

the estimate-update equation,

4k+1 R ak+llk + Gk+lZk+l (3.9)

and then solve for ak+lk by requiring that the estimate errors be unbiased. Defining the

estimate errors to be

%h+11k u Xk+1 X 'k ,lk (3.10)
and

Xk+llk*l W Xk+1 - Xk~llk+ (3.11)

and substituting Equations (3.2), (3.9), and (3.10) into Equation (3.11) yields

%k+llk+l TM %k+llk + ik+1lk

- akl.,1k - Gk+(H(xk+l) +vk-1). (3.12)

Taking the expectation of both sides of Equation (3.12) gives the value for akh11k as

ak+lk vXk+lk - Gk+IH('k+llk)' (3.13)

By defining the residual as the difference between the observation and the expected

value of the observation,
17
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rk+1 Zk+1 -E[Zk+ll

-Zk.I- H( 'k+1Ik) (3.14)

we can combine Equations (3.9), (3.13), and (3.14) to yield the standard extended

Kalman filter estimate-update equation,

ik+11k4.1 - ' ++Gk+lrk+l. (3.15)

4. Projection of Error Covariance

Having the form of the extended Kalman equations, we can now proceed in

a manner similar to that of Chapter 11. Using Equations (3.10) and (3.11), and the

definitions of error covariance

an k+1Ik ' Eflkllkxk+lk] (3. 16)

-kIk+ E[lk+1,k+13(T k.Ik+1], (3. 17)

we will derive the error- projection and error-update equations. Putting Equation (3.1)

into Equation (3.10) and using

Xk+lk m d 41k (3.18)

we can write Equation (3.10) as

1k.Ilk - Oklk + wk. (3.19)

Now using Equation (3.19) in (3.16) we get

Pk+1Ik ONO T~ + Q(3.20)
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Finding the equation for Pk+llk+1 will require the use of the vector gradient

of H, as given in Equation (3.6). Starting with Equation (3.11) and substituting into it

Equations (3.9) and (3.13) gives

Ik+1Ik+I 8 Xk+" Xk-Ik
- Gk+l[Zk+ - H(k+l)]. (3.21)

By using Equations (3.2) and (3.7), we can put the error into the form

k++Ik1 Xk+ - ik+lIk

- Gk+l[H(xk+l) + vk]

+ Gk+1H(Xk+lIk)

SXk+- Xk+llk

- Gk+lVk

- Gk+,[H(xk+l) - H(xk+llk)]

= 3k+llk - Gk+1Vk

- Gk+lH"%k+ljk

=[I - Gk+,H']3(k+1 k  - Gk+IVk. (3.22)

This gives us an equation for Pk+lIk+I

Pk llk~i - (1 - GH')Pk+llk(I - GH')T + G.GT (3.23)

which is identical in form to Equation (2.29), the covariance update for the linear

Kalman filter, with the substitution of H' for H.

5. Variance of the R%.sidual

The one final step required prior to deriving the Kalman gains is to get an

expression for the variance of the residual. much as we did in Chapter II. By
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substituting Equations (3.2) and (3.7) into the definition of the residual, Equation (3.14),

we get

rk+l , H(xk+l) + vk - H(Ek~Ilk)

- H'Xk+llk + Vk. (3.24)

The covariance of Equation (3.24) is

Vjrk+l] -E[rk+,r Tk+1] (3.25a)

= H'Pk+IlkH'T + R. (3.25b)

6. Kalman Gains

The similarity between the linear and non-linear error covariance equations

is both pleasing and fortunate. Since Equations (3.20) and (3.23) are similar in form to

Equations (2.27) and (2.29), we can use our results from Chapter II to derive the Kalman

gains for the non-linear system. Specifically, the value of Gk+I which satisfies the

following condition

G: min {Jk+ = trace(Pkllk.,-)) (3.26)G

is found by taking the partial derivative of Jk+1 with respect to Gk+l and setting it equal

to zero. Solving the resulting equation yields the optimal value of Gk.h

Gk+I = Pk+lIkH'T(H'Pk+llkH T + R)

= Pk+llkHTV[rk+l] -1 (3.27)
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C. ITERATED LINEARIZATION

As mentioned earlier in this chapter, one method for improving the accuracy of

the extended Kalman filter is to linearize the observation matrix iteratively about

successively improved estimates of the current state. This iterative technique will be

detailed in this section.

We will denote the ith estimate of Xk+1 prior to the observation at time k+l to be

Xi,k+11k  (3.28)

where we initialize the iteration by setting

X0)+Ilk - Xk+llk' (3.29)

We can now rewrite Equations (3.6) and (3.7) as

Hl Ta H X10(3.30)

and k+11k

-IIi(Xk+l) = H(Xikllk) + Hi'1ij+tlk (3.31)

where the errors are defined as

34k= Xk+1 - ,klik (3.32)
and

Xi*+llk+ = xk+ " Xik+k+l (3.33)

By combining Equations (3.13) and (3.30), and recalling that

E(Xk+l] = E[k+i;k], (3.34)

we get the equation for the iterated estimates,
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= xk+1,k + Gik+l[zk+l - H(xi +lk)

- H i'(4+l1k - Xij+ lk)]" (3.35)

Expressing this iterative procedure as an algorithm gives insight into its simplicity

and power. The algorithm is given in pseudo-code in Table (3.1).

TABLE 3.1: ITERATION ALGORITHM

calculate Pk+ilk

set 0,+1_k = k+1k

set i 0do calculate 
Hi'

calculate Gik+1lk
calculate X +lk+i
set x'+1.+1k = Xi+k+i
set i - i + 1

until (i > imax or
(Xi+lk+-k - Xi'+11k) <)

calculate Pk+llk+1

The criteria for stopping the iteration will usually be when either i (the iteration index)

has reached a preset limit or the difference between successive iterated estimates is

below a specified tolerance. With this algorithm, and the equations previously derived.

we will present the extended Kalman filter equations after a brief observation about

optimality.

D. CONIMENTS ON OPTIMALITY

We derived the extended Kalman filter equations by using the linear Kalman

equations of Chapter II as a guide. While we showed that the linear equations were

statistically optimal, we make no similar claims for the non-linear case. We cannot, in

fact, claim that the equations in Table (3.2) will converge to a reasonable solution. What
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we do state is that the approach used to derive these equations was based on the same

principles and procedures as was used for the linear Kalman equations. Based upon this

and previous experience, it is reasonable to assume that the equations given in Table

(3.2) will yield a good, though sub-optimal, estimate of the state.

E. EXTENDED KALMAN FILTER EQUATIONS

The complete set of iterated, first-order, extended Kalman filter equations are

given in Table (3.2). The iteration index, i, goes from zero to some preset limit. This

limit is set only to limit computational expense.

TABLE 3.2: ITERATED, FIRST-ORDER, EXTENDED KALMAN EQUATIONS

Error projection: Pk+1Ik - T + Q (3.36)

Estimate projection: xk+lIk = Axkk (3.37)

Iteration seed: XOk+I,k = Xk+lk (3.39)

Begin Iteration

Ob;ervation matrix: Hi' _-T H(ki.+llk)  (3.39)
Ck+11k

Residual: r,+, =Zk 1 - H(kik1l1k) (3.40)

Residual covariance: V[ri*+l ] = H.'Pk+l kHi'T + R (3.41)

Kalman gain: Gi+ ff Pk+llkHi'V[rik+l] "  (3.42)

Estimate update: XiA+llk+l = kik+1k + GA+Irk+l

- Hi'(kk+ltk "Xk,k+llk) (3.43)

End Iteration

Error update: Pk+llk+l = (I - Gk+lH') Pk+llk (3.44)
44
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IV. MODEL OF THE TRACKING SYSTEM

In this chapter we introduce the mathematical model of the tracking system which

we will use for the Monte Carlo simulations throughout the remainder of this report.

We start by presenting the physical relationship between the target and the observer. We

then show how this can be represented in the state space for use with the extended

Kalman filter equations derived in Chapter IV. Following that, the noise processes

involved are explained and the appropriate equations derived. Having a state space

description of the noisy tracking system, we then define the error function used as a test

statistic for performance of the Kalman filter. Finally, we explain the five scenarios

which were used for the Monte Carlo simulations.

A. PHYSICAL SYSTEM

The system used in this report consists of a single observer and a single target.

The coordinate system is a two-dimensional Cartesian coordinate system with the

observer at the origin and the target initially located in the first (upper right) quadrant

as shown in Figure (4.1). The x and y axes correspond to East and true North,

respectively. The target is free to move unrestricted throughout the coordinate space,

while the observer is stationary and remains at the origin.

The observation information recei\ed by the observer consists of bearing and

range measurements from the observer to the target. This is consistent with the

measurements supplied by most types of radar in use today. These measurements are

taken at equal time intervals of 10 seconds (T = 0.002778 hours). This simple system

will now be transformed into state space notation.
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Figure 4.1: Physical Layout of Target and Observer

B. STATE SPACE MODEL

The discrete-time, state space model of the system depicted by Figure (4.1) is

Xk+l 1 C k + Wk (4.1)

where the state vector, X, is defined to contain the minimum number of elements

necessary to describe the target in terms of its degrees of freedom, As such, X. consists

of the position and velocity of the target. (The capital letter, X, is used in this chapter

25



to denote the state to preclude confusion with the coordinate, x. The rest of this report

conforms with the standard practice of using a lower case x for the state, as coordinates

are not referenced outside of this chapter and the appendices.) The unknown (i.e.,

unpredictable) accelerations of the target are accounted for by the state excitation

vector, Wk.

Vx

xm[y (4.2)

The matrix 4 in Equation (4.1) is chosen to fit the target dynamics. The two types

of target dynamics which are normally assumed are stationary, and moving lineariy at

constant velocity. The appropriate 4's for these two cases are given in Equations (4.3)

and (4.4).

i 0 0 (4.3

Stationary 0 [ 0 0 (43

O001

010 0 (44

FI TOO

Moving Linearly. = 0 1 0 0 (4.4)

L00011

The constant, T, is the observation interval mentioned previously. Since we design for

the most general case, we use 02 for all of the simulations.
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Putting Equations (4.2) and (4.4) into Equation (4.1) gives the final state equation

for the simulated system. We will now present the observation matrix and derive the

first-order linearization required by Chapter III.

C. OBSERVATION MATRIX

The observation equation for our system consists of noise added to bearing and

range measurements. Since the bearing and range to the target are non-linear functions

of x and y, the observation equation is given as

Zk+I - H(Xk+l) + vk+1 (4.5)

where

Z R (4.6)

The bearing and range are defined by

bearing; 1= tan"-( ) (4.7)

and range: p = , x2 +,,. (4.8)

The extended Kalman filter equations derived in Chapter III require the vector

gradient of the observation matrix in the state space. This matrix is given as

H' = TH( (4.9)

&"Y (4.10)

where the partial derivatives are evaluated at the estimate.
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By putting Equations (4.7) and (4.8) into Equation (4.10) and doing the partial

differentiations we get the expressions for the elements of the H' matrix.

XP- 0 (4. Ila)

X 41b

a
=0 (4. 1lb)

x

X- 0 (4. 1Id)
y

1 +2 2 Y 41a

Y - X 4.12a)

a +_ Y ) ( L

x
;) ( 4.120)

6P 2 P

y (4.12d)

Using Equations (4.11) and (4.12) in Equation (4.10) gives

H, P?(4.13)
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which is required for the extended Kalman filter analysis. We will now discuss the noise

processes inherent in the system.

D. NOISE

The noise processes which are denoted by wk and Vk in Equations (4.1) and (4.5)

are assumed to be additive, white, Gaussian noise (AWGN) with the auto- and cross-

correlation properties described by Equations (2.3) through (2.7). The covariance matrix

for the observation noise is

[o. 0 (4.14)

where the values used for the variations are

2 0.0005 rad 2  (4.15)

and
p2 = 0.0005 km2.  (4.16)

We felt that these values were representative of actual radar accuracies and provided

nominal values about which to perform the sensitivity analysis detailed in Chapter V.

The analysis of the state excitation covariance matrix, Q, is considerably more

complex and is derived in Appendix A. The purpose of Q is to account for the

unknown accelerations of the target. The results of the derivation are that Q is given as

Q r a EIaXYI 1IT (4.17)

L E[a y E[aY2] J

where the matrix elements are
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E 2a)2] ( (J"g2 + vY2, 2  (4.18)

E[a 21 (V) 2  + vx2,e 2  (4.19)

and E[axa ,] - _[a] E

•~~ 
~~ )2 o, ,o

-' VV e2] (4.20)

and the state noise coefficient matrix is

T 0
F 0

r T 0(4.21)Tj

_0 T.

where T = 0.002778 hours.

The purpose of Equations (4.17) through (4.20) is to take the values of the

variances of linear and tangential acceleration and transform them into the Cartesian

coordinate system of the state space. The values for these variances were assumed to be

(linear) cy2= 0.001 (km/hr2) 2  (4.22)

(tangential) o92 0.001 (rad/hr2) 2  (4.23)

which are characteristic of a non-maneuvering target. These values were intentionally

chosen small so as to make the Kalman filter believe that the target was non-

maneuvering. The effects of this choice will be shown in Chapter VII. Having a model

for the noise processes in the system, we will now define a performance measure for the

estimates.
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E. DEFINITION OF ERROR FUNCTION

The choice of error (or performance) function is an arbitrary one. Its only

purpose is to provide us with some statistic to use as a measure of filter performance.

This statistic is then the value which determines the relative quality of the various filter

estimates. For this report we chose a weighted sum of the filter errors as the error

function.

Kmax (4.24)

-I kTlxk - 'k.k4

By taking a weighted sum of the estimate errors we can weight the final estimates

more heavily than the early estimates. The weighting factor, kT, is equal to the absolute

time since the initial observation. We feel that, although this is not the only possible

error function, it is certainly a reasonable one. With this error function we can now

measure the performance of the Kalman filter in the various scenarios described in the

next section.

F. SIMULATION SCENARIOS

For this report we chose to run the adaptive Kalman filter on five different

scenarios. Each scenario is described by the positions, velocities and accelerations of the

target and obser'er. The observer was chosen to be stationary at the origin of the

Cartesian coordinate system as shown previously in Figure (4.1). The target dynamics

are given in Table (4.1) and Figures (4.2) through (4.5) for each scenario. The tangential

accelerations are given in g units where a g is defined as

g = 9.8 m/sec2  (4.25)

and the observation interxal, T, is 0.002778 hours (10 seconds).
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TABLE 4.1: TARGET DYNAMICS BY SCENARIO

Scenario # xo  yo Vxo vY0  acctagential duration

(kIn) (km) (km/hr) (km/hr) (g's) (sec)

1 5 37 0 0 0 0
2 5 37 450 0 0 0
3 5 37 400 -280 0 0
4 5 37 600 50 0.8 40
5 5 37 450 -300 -0.8 50

Scenario #2
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Figure 4.2: Scenario #2
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Scenario #3
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Figure 4.3: Scenario #3
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Figure 4.4 Scenario #4
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Scenario #5
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Figure 4.5: Scenario #5

We are now ready to delve into the details of the adaptive methods which we

have proposcd. The noise adaptation is covered in Chapter V and the adaptive

maneuver gating is treated in Chapter VI. Following that, the simulations are presented

in Chapter VII and the results in Chapter VIII.
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V. NOISE ADAPTATION

This chapter begins by explaining the critical dependence of the Kalman filter's

performance on the quality of the a priori noise estimates. We will both argue and

demonstrate that the Kalman filter achieves its optimal performance when the a priori

measurement noise Vk is equal to the actual measurement noise. Having shown this, we

then present two methods for estimating the actual observation noise of the system.

Finally, we use this estimate of the actual observation noise to adapt the Kalman filter

to improve its performance.

A. NOISE SENSITIVITY

A rigorous derivation of the effects of incorrect a priori noise estimates on the

performance of the Kalman filter is well beyond the scope of this report. We have not,

in fact, been able to find such a derivation anywhere in the literature. As such, we will

present our case based upon reasonability arguments and support our statements with

sample simulations.

In order to proceed with this discussion, it is necessary to make a clear distinction

between the Kalman parameters which are calculated with incorrect (assumed) a priori

information and those which are calculated with correct u priori information. For our

purposes we shall use the following notation.

assumed: Pk+llk+l = (I - Gk+IH) Pk+llk (5.1)

correct: POk+llk+ = (I - Gok+IH) Pok+llk (5.2)

Our goal then, is not to minimize some function of Equation (5.1), but to minimize some

function of the difference between Equations (5.1) and (5.2). We will use the simplest
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of minimization functions, and just minimize the difference for any arbitrary value of
Pk-l~k by setting

Pk+1k - Pk+Ik m 0. (5.3)

Putting Equations (5.1) and (5.2) into Equation (5.3) we find that

Pk+llk+l - P k+llk+l " (Gk+1 - Gk+1)HPk+11k

W 0. (5.4)

The only way to solve Equation (5.4) for arbitrary Pk+llk is by setting

Gk+I = Gk+l. (5.5)

Equation (5.5) gives the expected (and pleasing) result that the optimal estimates

are achieved only if the Kalman gains are equal to the gains calculated from correct a

priori information. Though this result is not unexpected, it is often not appreciated in

physical implementations of Kalman filters.

The effect of incorrect a priori noise information is shown graphically in Figure

(5.1). This graph was produced by setting the a priori noise covariance equal to the

actual noise covariance scaled by the factor KR (noise covariance scale) and running the

simulations described by scenario three of Table (4.1).

Ra priori,- KR Ractuxi (5.6)

Although the exact shape of Figure (5.1) is dependent upon the nature of the system

being simulated, it is characteristic of the results we expect. Figure (5.1) shows clearly

that the best performance (lowest total error) was achieved when the a priori R was
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equal to the actual value of R (KR - 1). This result can best be explained by

consideration of the information carried by the observations.

Sensitivity of the Kalman Filter
1.6

1.5

1.4-U
*N 1.3- ,/

/I I

1t.5 100 101

Normalized Noise Covariance

Figure 5.1: Sensitivity Of Kalman Filter

One way of looking at the operation of the Kalman filter is to consider the

observations as being a combination of information and noise. The Kalman filter is then

a device which extracts the information from the observations and rejects the noise.

The Kalman gains are then seen to be directly related to the information in the
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observations and inversely related to the noise. As the information goes up, the gains go

up; as the noise goes up, the gains go down. The goal of the Kalman equations is to set

the gains to maximize the information taken from the observations while minimizing the

effects of the noise. This is, of course, predicated on the a priori values for the noise

that we give to the Kalman filter.

If the a priori value of R is larger than the actual (KR > 1) then the Kalman gains

will be lower than optimal and the filter will reject some of the information in the

observations along with the noise. If the a priori value is too small, then the gains will

be too large and the filter will treat some of the noise as information. The Kalman is

thus dependent upon our choice of a priori values of R and requires them to be accurate

for its estimates to be optimal.

To satisfy this requirement we must give the Kalman filter either perfect a priori

noise information, or else the ability to estimate and adapt to the actual value of R.

Since perfect a priori information is only a concept (as opposed to reality), we have

chosen to implement a method which will allow the Kalman filter to adapt to the actual

values of the noise.

B. ESTIMATING OBSERVATION NOISE

Before the Kalman filter can adapt to the actual observation noise covariance it

must be able to form an estimate of the matrix R. Since the only information available

to the Kalman filter comes from the observations, it must calculate an estimate of R as a

function of the observations. We will define the estimate of R for observations from

time k = n through k = m as

lRn = (zn9,zn+,*.,zm). (5.7)
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Since the observations for our system are given as

Zk+' - H(Xk+1) + Vk+1 (5.8)

we cannot directly separate the noise from the observation without an exact knowledge

of. the state, Xk+llk. But if we had this knowledge, there would be no need to use a

Kalman filter. The best we can do is to use the residual, rk+1, which provides an

estimate of the observation noise.

rk+l . Zk+1 - H(k+1Ik) (5.9)

This makes our estimate of R in Equation (5.7) a function of both the observations and

the state estimates.

Rnpi =AZns...,zm,inI.,..**,m.1). (5.10)

Since the state estimates are functions of the observations it might seem unnecessary to

use them in Equation (5.10). We do this, however, because the state estimates are also

functions of other parameters, notably the a priori value of R. So we expect different a

priori values of R to produce different state estimates for the same set of observations.

This is exactly what Figure (5.1) demonstrates. We will now present two different

functions for Equation (5.10) which can prcduce estimates of R.

1. Recursive Variance

The most direct (and least memory intensive) method of calculating an

estimate of the noise variance is to assume that R is a diagonal matrix (no cross-

correlation terms) and to recursively calculate the variance of each component. This
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only works if we assume that the residual and the observation noise are both zero-mean.

The function which calculates the recursive variance is given as

V~ilk+l I f--Vlk + 12r[ilk+l) k I ... n (5.11)

where the index i spans the number of elements in the residual vector. We then apply

Equation (5.11) to each element.of the residual vector independently.

This method has the advantages of simplicity and ease of implementation.

Its two disadvantages are that it requires many (30 to 40) observations before its

estimates become meaningful and that it ignores any possible cross-covariances of the

noise terms. The former is rooted in stochastic theory and cannot be circumvented; the

latter is solved by the following method.

2. Time Series Covariance

Although we have assumed that the noise components were uncorrelated to

simplify the derivations, we will now attempt to estimate the possibly non-zero off-

diagonal terms of the matrix R. In order to do this we will use a batch processing

function which uses all of the residuals at nce, instead of one at a time, as the

recursive method does. This function requires a time series of residuals as its argument,

-I m T (5.12)
km - Mf (Zk - 2npn)(Zk - n)k=n

where the mean of the residuals is given by

44
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Equations (5.12) and (5.13) are defined as the sample variance and the sample mean of

the parameter zk.

It is interesting to note that the Kalman filter equations already provide an

expected value for the observation covariance matrix which is estimated by Equations

(5.12) and (5.13). This value is calculated with each new observation and is the expected

covariance of the residual,

V[rk+1 - H'Pk~llkH'T + Ra priori, (5.14)

Equating this to our estimates we find that

E[ftl-n] -.HPml,-'T + Ra priori (5.15)

Solving Equation (5.15) for the value of Ra priori gives us

Ra priorit E[(lRm] - H'Pmm. H.T (5.16)

which could be used as an estimate for the actual value of R. The problem with

Equation (5.16), though, is that the difference of two positive semi-definite matrices is

not necessarily another positive semi-definite matrix. Si:-.' we require R to be positive

semi-definite (noise cannot have negative power), the use of Equation (5.16) can, and

has. produced calculational singularities in the Kalman equations.

Although this singularity problem can be contolled by additional processing,

we have chosen to implement Equation (5.12) as our estimate of the actual noise

covariance. It is more computationally stable than Equation (5.16), more robust than

(5.11), and provides an estimate which is conservative; the expected value of the estimate

is larger than the actual values, as shown by Equation (5.16). Now that we have chosen
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a method for estimating the actual observation noise covariance matrix, R, we will

present a method for incorporating this information into the Kalman filter.

C. NOISE ADAPTATION

The purpose of estimating the observation noise covariance is to provide the

Kalman filter with the ability to both correct for poor a priori estimates and to adapt to

non-stationary noise processes. Since the primary objective of Kalman filtering is to

provide the best state estimates possible, we will not allow our design to be driven by

dogmatic concerins for computational efficiency. It is expected that an adaptive process

will require more processing, and we will suffer this, within limits. We will also consent

to the use of more memory for the computations. Because these issues of speed of

memory are being overtaken by technology, we will stretch our design to maximize the

benefits at a moderate expense of processing and memory.

With this license to moderately increase processing and memory requirements, we

have chosen to implement the observation noise adaptation in the form of a smoothing

process. This means that the Kalman filter carries along a finite, growing memory

which stores the observations and the residuals. At specified intervals the estimate of R

is calculated from the collected residuals. This new estimate of R is used to recompute

the estimates from the stored observations. The filter then releases the stored residuals

and observations and the process repeats,,

This explanation is best served by an example. Table (5.1) details the operation of

a Kalman filter which adapts every 30 observations. The number of observations

between adaptations should be chosen on the basis of a Monte Carlo analysis for each

specific problem. Although this number will vary, we have achieved consistently good
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results with a value of 30. This is a reasonable value as it does not require much

increase in either processing speed or memory.

TABLE 5.1: EXAMPLE ADAPTATION ALGORITHM

Time index Action Store

I Compute kilo z,, r,

2 Compute i 2 ,1  z2, r2

30 Compute ' 3,o2, Z30, r3o

30 Compute ARo

30 Recompute kio through i30o29 Release memory

31 Compute R31130 z31, r3l

32 Compute RUM131  z32, r32

60 Compute R6015 9  Z60, r60

60 Compute kslo o

60 Recompute R313o through ROOI9 Release memory

The iterative algorithm shown in Table (5.1) can be implemented as long as the

calculations needed to recompute the state estimates can be completed between

observations. For our simulations this is not a problem as the observations occur only a

few times per minute.

Armed with this method of noise adaptation, we will now investigate and derive a

method for allowing the Kalman filter to adapt to a maneuvering target. Following that,

we will present the simulatir.n results which show the benefits of this adaptation scheme.
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VI. MANEUVER GATING

This chapter introduces the concept of correlated maneuver gating. It begins by

defining the Mahalanobis Distance and explains how it can be used as a test statistic for

maneuver gating off of the residual. We then explain how the Kalman filter responds to

a detected maneuver by adapting its error covariance matrix. This adaptation is usually

in the form of a reset to an initial value, but we present a more sophisticated method

which we call incremental, correlated maneuver gating.

A. RESIDUAL GATING

The first step in correcting for improper behavior in a Kalman filter is detecting

that the behavior has occurred. This is the goal of maneuver gating. Once we have

achieved a method which has both a high probability of detection (detecting maneuvers)

and a low probability of false alarm (rejecting noise), then we will employ a method to

correct for the filter's behavior.

The method of adapting a Kalman filter by maneuver gating has been used widely

in the literature in the past several years. In every case the test statistic used to

determine the gate was one or more elements of the residual, which was compared to

some number (the gate). Often the gate size was determined by analysis of the

covariance of the residual, the very method we shall use. What we propose, however, is

that the entire residual be compared to the covariance of the residual by calculating the

Mahalanobis Distance of the residual.

The Mahalanobis Distance, MD, of a random number is its distance from the

sample mean in units of the sample covariance. This is given by

MD = (X - M) T K-' (X - M) (6.1)
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where X is the random vector, M is the mean of the stochastic process, and K is its

covariance. Since we are calculating this statistic for the residual, we make the

assumption that the mean of the residual is zero. If we know that the observations have

a predetermined bias, we would compensate for it so that the residual would still be

zero-mean.

Since the noise processes involved in our system lead to residuals with a zer'o-mean

Gaussian distribution (as shown in Appendix A), we see that each value of the

Mahalanobis Distance for the residual describes a two-dimensional ellipse around the

state estimate projection. The size of the ellipse is directly proportional to the

Mahalanobis Distance. This is seen graphically in Figure (6.1). By recalling that the

covariance of the residual is given by

Vlr,+ 1 ] - H'Pk+llkH'T + R (6.2)

we see that the covariance of the residual is a strong function of the observation noise

covariance. In fact, as the error covariance decreases, the first term in Equation (6.2)

becomes negligible and the observation noise covariance, R, dominates. So the process

of maneuver gating reduces to the problem of discriminating between noise in the

observations and a target maneuver. This will be covered more thoroughly in the last

section of this chapter.

The determination of the optimal value for the Mahalanobis Distance for the gate

should balance the need for early maneuver detection against the probability for false

detections. This value needs to be determined empirically for each implementation of

the Kalman filter and will be shown in the following chapter to be dependent upon the

tatget's actions.
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The set of observations and estimates in Figure (6.1) demonstrates the action of the

Kalman filter when no maneuver gating is used. As seen, the estimates diverge from the

observations because the filter gains have decreased below the value needed to follow the

observations. This is a direct result of the Kalman filter's error covariance matrix

decreasing in magnitude. In order to allow the Kalman filter to adapt to a maneuvering

target we will dynamically adjust the magnitude of its error covariance matrix. in the

next section we describe the widely used method of error covariance reset as well as

propose a method which we call incremental, correlated maneuver gating.

0

0 Observation

)+ Projected Estimate
maneuver Gate

Q Final Estimate

Figure 6.1: Ellipses Described by the Mahalanobis Distance of the Residual
(No Gating)
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B. ERROR COVARIANCE ADJUSTMENT

In Chapters II and III we showed that the Kalman filter gains are a function of the

state error covariance. As the estimated error goes up, so do the gains. This is the

filter's way of compensating for a large expected error; it weights the observations more

heavily. We can exploit this behavior of the Kalman filter and use it to adapt the

Kalman filter to detected target maneuvers. Whenever we detect a target maneuver,

increase the magnitude of the error covariance matrix. This forces the Kalman filter to

move its state estimate update closer to the observation. The question remains, how

much do we adjust the error covariance and how close to the observation do we want

the estimate to be?

1. Covarlance Reset

The commonly used method of error covariance adjustment is to reset the

error covariance to its initial value (Polo). This initial value is simply the value set by

the filter designer which allows the filter to lock-on to the first observation. Since this

value is typically large compared to the steady-state value, the Kalman filter will behave

as if it has been reinitialized whenever a maneuver is detected.

This type of covariance idjustment will force the Kalman filter to disregard

all past information and reinitialize itself on the current observation. This behavior will

be destructive when the gating is a result of anomalous observation noise rather than

target maneuvering. The Kalman's state estimate will simply bounce around chasing the

noisy observations and will result in a larger state estimate error. In addition, the large

magnitude of the initial error covariance matrix will require several time intervals to

again reach a steady-state value. This method of gating can therefore lead to an effect

which will require several observations from which to recover. What is desired is a
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method of gating which will allow the Kalman filter to "relax" back to a steady-state

condition as soon as possible after gating ceases. Such a method is presented below.

2. Covarlance Increment

Some of the objectionable, and persistent, effects of covariance reset gating

can be negated by increasing the error covariance matrix to a magnitude smaller than its

initial value. The determination of this optimal magnitude, however, is not immediately

computable from known data because it is an unknown function of the state of the

Kalman filter. Its value will therefore have to be determined empirically from

experimentation.

Our method for choosing the value of the error covariance matrix consists of

incrementally increasing the magnitude of the old covariance matrix until the maneuver

gate is satisfied. An example of this is shown in Figure (6.2). Although this method is

heuristic in nature, we have achieved consistently good results with it, as the simulations

in Chapter VII will show.

C. CORRELATED GATING

The plight of reset gating, as described above, is its vulnerability to aberrant noise

conditions. To counter this weakness, the maneuver detection algorithm must make use

of the statistical properties of the noise to distinguish the noise from a maneuver. Since

we assume that the noise is zero-mean, additive, white, Gaussian noise (AWGN), we will

use the property of whiteness and the mean as test statistics for our comparison. The

following sections describe simple methods of exploiting these noise properties for the

purpose of maneuver detection.
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0 Observation

-j- Projected Estimate

_--. maneuver Gate

[-1 Final Estimate

Figure 6.2: Ellipses Described by the Nlahalanobis Distance of the Residual
(Incremental Gatiug)

I. Temporal Correlation

The property of whiteness of a random process requires that the spectral

distribution of that process be flat. Whiteness also requires that samples of the process

taken at different times be uncorrelated. For Gaussian processes, this leads directly to
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the property that samples taken at different times are independent. Simply put, the

value of the noise at a given time is independent of the value of the noise at any other

time.

But the same is not true for a target maneuver. When the target accelerates

to one side, we expect that the observations will continue to be off to that side until the

Kalman filter recaptures the target. Even then, the observations will again drift off to

the side until the target stops accelerating. So the time during which the observations

drift due to target maneuvering is strongly correlated.

We can exploit this difference in time correlation by requiring that residuals

exceed the maneuver gate more than just once in a row to be considered a maneuver.

We chose to require two consecutive gatings to signal a target maneuver. This provided

a compromise between fast response and low false alarm rates. On the average, this

method would reject 50% of the aberrant noise signals. If we required three consecutive

gates, we would reject 75% of the aberrant noise, but the filter response would be

slowed. To improve gating performance, we chose to use two consecutive gates and then

further process the gate by requiring spatial correlation.

2. Spatial Correlation

Just as the noise values are uncorrelated in time, so are they uncorrelated in

space. This is a direct consequence of the noise being AWGN of zero-mean. Likewise,

the maneuver observations are heavily correlated in space, and remain so until the

maneuver is complete. Using a method similar to that used for temporal correlation, we

signal a maneuver only when two consecutive gates are detected on the same side of the

projected observation. This method further reduces the false alarm rate by the same
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order as that of temporal gating. All that is required now is to determine the size of the

gate.

As will be shown in Chapter VII, a nominal value for the gate size is two.

This value rejects all noise values which are less than two standard deviations in

magnitude. Since the noise is Gaussian, this will give an average false alarm rate. of only

five percent. By further processing with temporal and spatial correlation, the false

alarm rate is reduced to about one percent.
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VII. SIMULATIONS

This chapter presents only the simulations; the results are liscussed in the next

chapter. The simulations which are presented in this chapter are in accordance with the

scenarios given in Table (4.1) and are given in two sections. The first section shows the

results of the noise power estimator described in Chapter V, while the second section

gives the results of the maneuver gating schemes described in Chapter VI. These

simulations were run using the program code given in Appendix C.

The noise used in the simulations was generated by software which implemented a

pseudo-random noise algorithm. This noise sequence was then filtered to reduce the

effect of abnormal sequences generated by the algorithm. To further reduce the effects

of singularly beneficial (or malevolent) sequences, the simulations were each run for a

suite of 30 independent noise sequences. The results given for each scenario is the

average of these 30 simulations. For the plots of the target tracks, one noise sequence

was chosen at random to be representative of the suite.

A. NOISE ADAPTATION

Figures (7.1) and (7.2) show the output of the noise power estimator as a function

of the input observation noise power for the non-maneuvering scenarios, one through

three. The noise powers are normalized to the values given in Equations (4.15) and

(4.16). Separate graphs are given for the noise power estimates in the bearing and range

dimensions.

Using these estimates in the non-maneuvering scenarios results °ki the performance

shown in Figures (7.3) through (7.5). These graphs show the relative errors of the

Kalman filters as the observation noise power is scaled from its nominal values.
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102 Bearing Noise Power Estimation
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Figure 7.1: Bearing-Noise Power Estimation
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102 Range Noise Power Estimation
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Figure 7.2: Range-Noise Power Estimation
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Filter Performance with Noise Adaptation for Scenario #1
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Figure 7.3: Filter Performance with Noise Estimation for Scenario #1
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Filter Performance with Noise Adaptation for Scenario #2
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Figure 7.4: Filter Performance with Noise Estimation for Scenario #2

57



Filter Performance with Noise Adaptation for Scenario #3
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Figure 7.5: Filter Performance with Noise Estimation for Scenario #3
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B. MANEUVER GATING

The simulations for the maneuver gating performance are given in five stages.

The first stage, Figures (7.6) and (7.7), shows the filter performance as a function of the

maneuver gate size for the maneuvering and non-maneuvering scenarios. Using this

data, the second stage shows the filter performance for scenarios two through five for

each of the gating methods described in Chapter VI. These are shown in Figures (7.8)

through (7.11).

The third stage of simulations shows the plot of the target tracks and the filter

estimates for a representative noise vector for each of the gating methods using scenarios

four and five. These graphs are given in Figures (7.12) through (7.17). The fourth

stage, Figures (7.18) through (7.23), shows the actual and expected errors for the graphs

given in stage four. The fifth stage compares the actual errors for the two gating

methods for the simulations run in stage four, and is shown in Figures (7.24) through

(7.27).

The results of these simulations and their implications are discussed in the next

chapter. All conclusions are summarized in the final chapter, Chapter IX, along with

recommendations for further investigation.
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Filter Performance vs Mahalanobis Distance
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Figure 7.6: Filter Performance as a Function of Gate Size for Non-Maneuvering
Targets
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Filter Performance vs Mahalanobis Distance
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Figure 7.7: Filter Performance as a Function of Gate Size for Maneuvering Targets
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Filter Performance with Gating for Scenario #2
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* Figure 7.8: Filter Performance for Scenario #2
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Filter Performance with Gating for Scenario #
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Figure 7.9: Filter Performance for Scenario 03
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Filter Performance with Gating for Scenario #4
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Figure 7.10: Filter Performance for Scenario #4
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Filter Performance with Gating for Scenario #5
40 ------I- --- I I I I1 -

-------------------------------------
------------- --------------- ------

30 4
-----No Gatin g

~25-
___Incremental Gating

S20-
Reset Gating

W 15

5h

100 101

Relative Noise Power

Figure 7.11: Filter Performance for Scenario #5
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Noise Ratio = 10, Error = 9.704, Scenario #4
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Figure 7.12: Target Track with No Maneuver Gating
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Noise Ratio =10, Error =3.296, Scenario #4
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Noise Ratio = 10, Error = 2.587, Scenario #4
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Figure 7.14: Target Track with Incremental, Correlated Gating
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Noise Ratio = 10, Error = 28.88, Scenario #5
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Figure 7.15: Target Track with No Maneuver Gating
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Noise Ratio =10, Error = 2.798, Scenario #5501
40 hStart 01

0 00

3+ 0 + -i
+Q-+ ~ 0

0o+

15~ 0++

+0+
20K 0 0+

15f 0 Actual k

10 F + Estimated

5-

0 10 20 30 40 50

X (km)

Figure 7.16: Target Track with Reset Covariance Gating
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Noise Ratio = 10, Error = 1.973, Scenario #5
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Actual and Expected Errors for Scenario #4
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Figure 7.18: Actual and Expected Errors with No Maneuver Gating
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Actual and Expected Errors for Scenario #4
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Figure 7.19: Actual and Expected Errors with Reset Covariance Gating
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Actual and Expected Errors for Scenario #4141
10k -- Actual Error

8 ---- stmae Error

6k- *Mnue Gate

4F

2.

0 5 10 15 20 25 30 35

Observation Number

Figure 7.20: Actual and Expected Errors with JIcremental, Correlated Gating
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Actual aiici Expected Errors for Scenario #5
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Figure 7.21: Actual and Expected Errors with No Mianeuver Gating
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Actual and Expected Errors for Scenario #5
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Figure 7.22: Actual and Expected Errors with Reset Covariance Gating
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Actual and Expected Errors for Scenario #5
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Figure 7.23: Actual and Expected Errors with Incremental, Correlated Gating
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Actual Errors for Scenario #4
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Figure 7.24: Actual Errors with No Gating and with Incremental, Correlated Gating
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Actual Errors for Scenario #5
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Figure 7.25: Actual Errors with No Gating and with Incremental, Correlated Gating
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Actual Errors for Scenario #4

14

12

10 ___Incremental Gating

8- --- Rese, Gating
I.

6 oManeuver Gate

9-

4. ,

V

0 10 15 20 25 30 35

Observation Number

Figure 7.26: Actual Errors with Reset Coiariance Gating and with Incremental,
Correlated Gating
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Actual Errors for Scenario #5
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Figure 7.27: Actual Errors with Reset Covarlance Gating and with Incremental,
Correlated Gating
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VIII. RESULTS

This chapter presents the results of the simulntions run in Chapter VII. Following

the structure of this report, the results are divided into two sections. The first section

shows the results of the noise power estimation algorithm given in Chapter V, while the

second section gives the results of the maneuver adaptation schemes described in Chapter

VI.

A. NOISE ADAPTATION

The ability of the Kalman filter to estimate the noise power present in the

observations is shown by Figures (7.1) and (7.2). Figure (7.1) shows that, for a non-

maneuvering target, the Kalman filter produces a noise power estimate for the bearing

noise which is a linear function of the actual noise power. This linear relationship is a

weak function of the tracking geometry and holds for scenarios one through three. The

linearity constant can be computed and used for further processing to provide even

better estimates of both the bearirg-noise power and the target state. This constant is

likely a strong function of the state definition and should be found by simulation for

each Kalman filter implementation.

This noise power estimation breaks down, however, when the range-noise power is

estimated, as shown in Figure (7.2). Although scenario one (stationary target) provides

the same linear relationship found in the bearing-noise estimate, the estimates for

scenarios two and three provide little useful information for adapting the Kalman filter.

Using the noise power estimates, the Kalman filter's performance was tested and is

shown in Figures (7.3) through (7.5). Each case shows that the filter's performance was

improved by noise power adaptation as the observation noise was increased. This

improvement came in spite of the poor estimates in the range channel.
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B. MANEUVER GATING

The block model of the adaptive method used is shown in Figure (8.1). This

figure shows that the adaptive algorithms use the residual and error covariance

information from the Kalman filter and produce observation noise power estimates and

maneuver gating information.

a priori Information

Rolo Initial State Estimate
Polo Initial Error Estimate

O, * Expected Target Motion

R Observation Noise

kolo Polo 0,, R
I I I I
I I I I
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!,aneuver Gating
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Figure 8.1: Block Mfodel of Adaptive Kalman Filter
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The first result found for maneuver gating is shown by Figures (7.6) and (7.7).

These two graphs show that the performance of the Kalman filter in tracking a non-

maneuvering target improves as the gate size increases. This improvement reaches a

steady value at a gate size corresponding to a Mahalanobis Distance of about 2.25. But

-the filter's performance in tracking a maneuvering target improves as the gate size

decreases.

These two results are in harmony with the way in which maneuver gating operates.

When the target does not maneuver, any gating action will only incorrectly adjust the

error covariance matrix resulting in an improperly large weighting to be given to the

current observation. This is due to the gating algorithm incorrectly detecting anomalous

noise as target maneuvering. When the target does maneuver, however, the gate size

needs to be small so that the state estimates are able to remain close to the maneuvering

target. The lower limit of this gate size is a value which is proportional to the noise

power and inversely proportional to the magnitude of the target's acceleration.

Using the results given above, the gate size used in the simulations was set to an

initial value of 2.25. This value was adapted down to a minimum of 0.2 whenever target

maneuvering was detected, and reset to 2.25 when target maneuvers were complete.

Adapting the gate size in this fashion provided experimentally optimal performance for

this set of scenarios.

The rest of the simulations show that the overall best performance was obtained

for tracking maneuvering targets by employing the technique of incremental, correlated

maneuver gating. This method performed well for both maneuvering and non-

maneuvering targets, while providing the greatest degree of noise rejection. Reset gating

performed well for maneuvering targets, but poorly for non-maneuvering targets. This

is because reset gating tends to "chase after" noisy observations so that its performance is
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degraded in the face of anomalous noise. The non-adaptive Kalman filter suffered from

divergence in the face of large noise power and a maneuvering target.

Figures (7.18) through (7.23) show that the method of incremental, correlated

maneuver gating also provided the best estimate of its own error performance. The

regular Kalman filter clearly gave unrealistic values for the estimated error, contributing

to its own divergence.
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IX. CONCLUSIONS AND RECOMMENDATIONS

We have shown that noise power estimation improves the performance of an

extended Kalman filter in the face of anomalous observation noise. By estimating the

noise power from the variance of the filter's residual we adapt the filter to compensate

for varying noise power. Although the performance benefits were significant, much

work needs to be done in this area to improve the noise power estimates further so the

Kalman can provide still better state estimates.

We also introduced the method of correlated maneuver gating to adapt the Kalman

filter to target dynamics. By L. ,, ly and temporally correlating the Mahalanobis

Distance of the residual, the Kal.nan filter's performance is increased while tracking

tangentially accelerating targets. These results should generalize to other applications of

the extended Kalman filter whose state and observation spaces enjoy a one-to-one

mapping.

Although we achieved our objectives of improving the performance of an

extended Kalman filter in the face of significant observation noise and target

maneuvering through adaptive techniques, there remains much fundamental work in this

area for further improvements. Specifically, we feel that an approach incorporating the

emerging potential of neural networks with the mathematical foundation of optimal

estimation could provide new and exciting insight to an old problem.
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APPENDIX A. TRANSFORMATION OF NOISE PROCESSES

The derivation of the extended Kalman filter equations assumed that the noise

processes inh. rent in the physical system were zero-mean, additive, white, Gaussian

noise (AWGN). This is normally a safe assumption, but the Kalman derivation also

requires that the noise be Gaussian distributed in the state space. For the system as

described in Chapter IV the noise processes are defined in spaces other than the state

space.

This appendix will show that the transformation from the noise space to the state

space will result in distributions which are Gaussian for the state excitation noise, and

-approximately Gaussian for the observation noise. Then the state excitation noise

covariance matrix, Q, will be derived.

A. STATE EXCITATION NOISE

For the system used in this report the state is defined to be

'k

--ik [ Yk (A. 1)

where the dot denotes a time derivative and the underbar denotes a matrix (to avoid

confusion with the state, x). This discrete-time state consists of x and y positions and

velocities. The noise vector for this state is given as

wk=r nx (A.2)
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where the state noise coefficient matrix is defined as

T2" 0

r T 0 (A.3)

.0 T2
T

and T is the sampling interval of the discrete system.

The problem is that the noise process is described in a coordinate system which is

aligned with the direction of motion. As such, the noise elements describe the expected

linear and tangential accelerations of the target. We will perform a linear transformation

of the Gaussian noise into the state space. [Ref. 5]

The velocity of the target can be described in terms of its linear velocity and

heading. This relationship, shown graphically in Figure (A.1), is given as

v. vtsine (A.4)
and

v, vtcose. (A.5)

Taking the time derivative of Equations (A.4) and (A.5) we get the accelerations in the x

and y directions.

ax  i,tsine + vtkose
. x . Vy

-V + vt 6'V4

vn- i +6v (A.6)

ay = tcose - vt )sine

vy
= Ivt - -tv

vt - (A.7)
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Figure A.1: Target Geometry

The noise is initially described by

E[ t ]- E o] = 0, (A.8)
adl t ]2 aV2 ,  (A.9)

and
.,2 

2E[6 a( (A.IO)

where the standard deviations in the linear and angular accelerations are given in

Chapter IV. It is important to note that the random variables in Equations (A.8) through

(A.10) are Gaussian distributed. Since ax and ay are linear combinations of these
'4

Gaussian variables (by Equations (A.6) and (A.7)), ax and ay are alsoPaussian.

By squaring Equations (A.6) and (A.7) and taking the expectation of both sides,

recalling Equation (A.8), we get expressions for the variances of ax and ay.

89



- (V) 2  + VY2,,o (A.11)
v t

E(A21 Y )(V'~2 + V 20r8 2  (A. 12)

We also find that the covariance of ax and ay is

E[axay] - E[aya j -

Vic) -Y G e]. A. 13)

Armed with this, we can proceed to calculate the state excitation covariance

matrix, Q. The matrix Q was defined to be

Q- E[WkWkT]. (A.14)

Substituting Equation (A.2) into Equation (A.14), we get

EE[ax'] E[ax] rT

Q. F (A.15)
Etaxy] E[ay2 J

By applying Equations (A.l1) through (A.13) to Equation (A.15) we can calculate the

covariance of the state excitation noise in the state space itself. In addition, Equations

(A.6) and (A.7) ensure that the distributions are Guassian.

B. OBSERVATION NOISE

The coordinate transformation of the observation noise is non-linear due to the

non-linear re-"onship between the observations and the state. The x and y positions of

the target are rlatedI to the bearing and range of the observations by
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x - p sin#l (A. 16)
and

y - p Cos#l (A. 17)

* where p and P are defined by Figure (A.2).

y
Observation

pPp

P0 P0 Target

Observer X

Figure A.2: Observation Geometry

By starting with the equation for the observations,

Z= H(Xk) + Vk, (A. 18)

we can describe the observations as
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Zk -[ ^A(A. 19)

where

H -k 'POO (A.20)

and

Putting Equations (A.20) and (A.21) into Equation (A.16) and expanding out the

trigonometric functions [Ref. 6:p. 1671 gives

x =(p 0  ) sin(,6 +

=(p0 + 7i)(cos~0sin + sinP60cos ). (A.22)

For IAI « 1,

x - (p0 + )(Ocosfl0 + sin,6), (A.23)

and for <<~ «PO,

X = Posinflo + PO~cosflo + 'Asinfl0 . (A.24)

A similar treatment for y results in

y - POcosP0 - P0~sin 0 + Cosfi. (A.25)

Since x and y are shown by Equations (A.24) and (A.25) to be linear combinations

of Gaussian random variables, then x and y are also Gaussian with means and variances

of
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Mix] - posinPo, (A.26)

?4y] *POPO, (A.27)

Vix). (p~oOs )2 I, + sin QoP, (A.28)
and

VIyl - (posinjAu + co' 2 oo/  (A.29)

where

ou2 - E(V (A.30)
and

_ O (A.31)

This appendix has shown that the noise parameters of the system used in this

report can be transformed into equivalent Gaussian vectors in the state space. This is

not only necessary for the optimality of the linear Kalman filter, but it also gives

physical meaning to the error ellipses derived in Appendix B.
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APPENDIX B. ERROR ELLIPSES

Error ellipses provide a measure of confidence in the estimate of a parameter.

Generally these ellipses indicate this confidence by visually displaying the smallest

region which has a given probability of containing the actual value of the parameter.

The size and shape of the ellipse is dependent on the distribution of the estimate, which

is a random variable. This appendix develops the equations used to calculate and display

the error ellipses for a two dimensional Gaussian error covariance matrix about a given

estimate.

A. GAUSSIAN DISTRIBUTIONS

A Gaussian random variable, x, is any random variable whose probability

distribution function is given by

Ax) e 20 2 (B.1)

where the mean and variance of x are given as

= Elx] (B.2)
and

2= E[x2j. (B.3)

The expectation operator, El], is defined in Equation (B.4).

00

E[g(x)] = Jg(x) Ax) dx (B.4)

When the random process is a vector random process, then the variable of interest

is a Vector of random variables. The Gaussian probability density function for a random

vector, X, is
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where the mean and covariance of the vector 2L are given as

M M E[Xg (B.6)
and

The probability density function for a two-dimensional random vector is shown in

Figure (B.1). This graph shows the probability curve to be a two-dimensional form of

the standard Gaussian curve.

Figure BA1: Two-Dimensional Gaussian Curve
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The contour plot of Figure (B.1) is shown in Figure (B.2) and plots contours of

constant probability.

3-

2-

1

-

.3- -

.4 -2 0 2 4

x

Figure B.2: Contour Plot of Two-Dimensional Gaussian Curve

The Gaussian distributions plotted in Figures (B.I) and (B.2) are for

= y I - 01

and

S 0 (B.9)
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B. TWO DIMENSIONAL ERROR ELLIPSES

The most common error ellipse used to indicate confidence in a position estimate

is a two dimensional representation of the position error covariance matrix. If the

position state is higher than second order, then the state elements are taken two at a time

to provide for a convenient graphical result. The following discussion is based upon a

position estimate of the x and y coordinates of an unknown parameter.

In order to calculate the error ellipse, it is necessary to know the mean and

covariance, M and K, of the parameter estimate. These matrices are defined by

Equations (B.6) and (B.7) for the vector

Y(B.10)

where the underscore is used to prevent confusion between the matrix X and the

coordinate x.

In the previous section, the probability density function and probability contours

were plotted for a two-dimensional Gaussian random vector. The contour plot is a locus

of all points for which the probability is a constant. This satisfies the following

equations:

Ax) =5L/3 e ' i(x - M) K' - M) C1

e- " M)TK'(a " M)

(2- M) rK'Q(X- M) - C (B.ll)

where the constant C will be determined shortly.
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In order to separate the x and y coordinates in Equation (B. 11) it is necessary that

K be diagonal, i.e., that the off-diagonal terms of K be zero. This is not generally the

case, however. We must transform the vector X into some vector 2' for which the

corresponding K' is diagonal. This is shown graphically in Figure (B.3), and is

accomplished by means of eigenvector transformation.

y

Olel

X X

Figure B.3: Ellipse Projected onto Orthogonal Coordinates

1. Elgenvector Transformation

The eigenvalues, A, and N x I column eigenvectors, v, of a square N x N

matrix, K, satisfy
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Kv A Av. (B. 12)

This can be rearranged to

(K - AI)v - 0. (B.13)

There exists a non-zero v satisfying Equation (B.13) only if

IK - All - 0. (B.14)

When Equation (B.14) is expanded out it results in a polynomial in A of the same degree

as the size of the square matrix K. So, for an N x N matrix, K, there exist N (not

necessarily unique) solutions to Equation (B.12). These solutions are the eigenvalues of

K; the associated vectors, v, are the eigenvectors.

The eigenvectors are normally chosen so that they are orthonormal. They

will then satisfy the following:

viTvj - 61j. ( B. 1S)

When these orthonormal column vectors are combined into an N x N matrix, V,

V [ - IVII V2 .. vN ]  ( B. 16)

they give the following useful result:

VT - V-1. (B. 17)

Combining Equations (B.12) and (B.16) we get the first stage of the transformation.
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KV -K [V! V2  I N]

Kv I y KV2 1 . I KvN

- [ I I -4~ 3.(B. 18)

Applying a little intuition we will now use Equations (B. 15), (B.l17), and (B. 18) to arrive

at the form of the transformation from K to K'.

'VTKV uVT [ )V1 A2V2  I'NV'N

m[~] [ 'IP1 IA2V2  IA1~vN

F \1  0 ..0

Defining K' to be the diagonal matrix of eigenvalues of K, we can write the

transformation of K to K' in terms of the eigenvalues and eigenvectors.

K9 -- [0 A2 0] B. 20)

K' - VT KV (B.21)

Putting Equation (B.7) into (B.21) we get the corresponding coordinate transformation,
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K -VT E[(X -M)(2j M)T] V

_ EfVT(Xj M- - M) TV,

- E[2PNT], (B.22)
where

)v- VT(2i-M (13.23)
and

X -VX + M. (B.24)

Now that we have a transformed coordinate system with a diagonal covariance matrix we

can proceed to the solution of the ellipse equations.

2. Ellipse Equations

Using the coordinate system defined by Equations (B.2 1) and (B.23), and

using Equation (B. 17), we can write Equation (B.l 11) as

(~M) TK-(2 -M) - C
Qj- M) T(VK'VT) -(2j - M) - C

-M)T(VK1-VT)(Xi - M) - C

[V(2 - M)]TKI'[VT(2i - M)] -C

_ =''X C _ C2  (B.25)

where vye introduce the new constant C2 simply for later convenience.

Since K' is a diagonal matrix, we can expand Equation (B.25) into

x2+ Y4S c2  (B.26)

where 4

and 2 (B.27)

A.2  (B.28)
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Equation (B.28) is the standard form for the equation of a two-dimensional ellipse. This

can be solved parametrically by dividing through by c2 and introducing a parametric

variable, t.

x92  Ys2

_ _ +

, - cos2t + sin2t (B.29)

So our parameterized equations for x' and y' become

X' - cax.cost (B.30)
and

y' ca,.sint (B.31)

where t 6 [0,21r].

The constant c gives the size of the ellipse in terms of the two-dimensional

standard deviation for the covariance matrix, K'. The probability of a point lying inside

the ellipse is related to c by

Pr a If As/(_X) dxdy (B.32)

where S is the locus of points on the surface inside the ellipse defined by Equation

(B.26) and the function f(X) is defined by Equation (B.5). The relationship between c2

and Pr for a two-dimensional Gaussian distribution is given on page 537 of Reference 6.

Solving Equation (B.26), substituting the solution into Equation (B.24), and

plotting the points yields an error ellipse denoting the probability specified by the choice

of the constant c2. We have employed this method for the calculation and plotting of

error ellipses in this report.
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APPENDIX C. PROGRAM CODE

All of the simulations for this project were run on IBM-PC1 class computers using

the matrix manipulation language MATLAB2, version 3.5f. This appendix contains the

source code for all of the functions written in support of this project.

Only minor programming experience is required to understand these files. While

MATLAB is similar to FORTRAN, MATLAB's control structures are much less

complex. Comments are started by the percent sign (%) and continue to the end of the

line.

To aid the reader in scanning and retyping these functions, each file is started on

a new page. Although an analysis of the workings of these files is not necessary to

understand this report, the curious (or skeptical) reader is highly encouraged to examine

them closely.

The author neither claims nor desires to hold any copyright privileges on the

source code. Written requests for the source code on computer disk should be sent

either to the author, or to Professor Harold A. Titus. Address information can be found

in the Initial Distribution List at the end of this report.

All of the files listed in the second section of this appendix provide general

support for the main files listed in the first section. These support files are not specific

to the simulations run for this report, but can be used for a variety of purposes.

1 IBM and IBM-PC are registered trademarks of IBM.

2 MATLAB is a registered trademark of The MathWorks, Inc..
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A. INCLUDE.M

% This file is a collection of constants which are used
% by multiple files.
% put the following line in the files which use this:

% load include.mat

% Stephen L. Spehn 30 Jan 1990

% YES and NO are defined so as to index into YNSTR

NO W 1;
YES a-2;
YNSTR ['NO'

'YES' 3
LEFT -1

RIGHT -2;

TIMEINTERVALS - 32;
DELTAT -10; % 10 seconds

save include.mat;
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B. DRIVER.M

% Stephen L. Spehn 31 Jan 1990

% This file calls SENRUNOI with a variety of values for the
% following parameters:

% MD Mahalanobis Distance
% RAI Residual Adaptation Interval
% OCS Observation Covariance Scale
% ONV Observation Noise Variance
% SG Spatial Gating
% SN Scenario Number
% METAT Make track graphs
% METAR Make rest of the graphs

% Number xO yo vx0 vy0 g Duration
%(kin) (kin) (kni/hr) (kin/hr) (g's) (sec)

% 1 5 37 0 0 0 0
% 2 5 37 450 0 0 0
% 3 5 37 400 -280 0 0
% 4 5 37 600 50 0.8 40
% 5 5 37 450 -300 -0.8 50

% Target tracks for these scenarios are in the files
% scen__I.inat through scen__5.rnat.

!del sen~l.*
!del sen02.*

% Recompile included files
include,clear;
noise,clear;
scen__gen,clear;
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% DEFINED Constants
load include.mat;

MD -[.75 1 1.25 1.5 1.75 2 2.25 2.5 ]
OCS I 1]
ONV -[0.5 1 25 10t~
RAI - (TIMEINTERVALS 1
SG -IYES I
SN -[12345];
METAT - NO;
METAR - NO;

for ni W :ength(SN)
for n2 - 1:Iength(MD)

senrunO I(MD(n2),RAI,OCS,ONV,SG,SN(nlI),METAT,META__R);
end;

end;

!copy senO1.* sen02.*
!del sen~l .*

MD w[0];
OCS I 1]
ONV [0.1 0.2 0.35 0.5 0.75 1 23.5 57.5 10]
RAI 0 TIMEINTERVALS]1;
SG =NO ];
SN - [12 3 45];
METAT - NO;
METAR - NO;

for ni - H:ength(SN)
for n2 - U:ength(RAI)

senrunO I(MD,RAI(RAI),OCS,ON V,SG,SN(nlI),METAT,METAR);
f.nd;

end;

exit
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C. SENRUNOI.M

function senrunO(MD,RAI,OCS,ONV,SG,SN,METAT,METAR)

% Stephen L. Spehn 31 Jan 1990

% This is the driver file for the sensitivity test for the extended
% Kalman filter. The cumulative errors are shown as a function of noise
% parameters for the filter.
%

% This file calls the following special functions:

% BROBS
% ERRELLIP
% INT2STR2
% KFBR
% KFERR
% RESET
% TIMESTR

% DEFINED Constants
load include.mat;

if nargin -= 0
MD = 0; % Mahalanobis Distance
RAI = TIMEINTERVALS, % Residual Adaptation Interwal
OCS 1 1; % Observation Covariance Scale
ONV - [ 0.2 0.5 1 2 3.5 5 7.5 10 ]; % Observation Noise Variance
SG = YES; % Spatial Gating
SN - 3; % Scenario Number
METAT - YES; % Make meta for tracks
METAR = NO; % Make rest of meta files

elseif nargin -a 8 1
error('Incorrect number of arguments to SENRUNO1.');

end;
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% House-cleaning
reset;

% Constants (Change to suit the problem.)
EraseAllFiles NO;
MakeMat NO;
MakeDiary NO;
MakeData YES;
Meta__Filename -'sen01 .met';
MatFilename - 'senOl.mat';

Diary_Filename - 'sen0l .dia';

DataFilename a 'senO l.dat';

Calculate_X0 = YES;
IterationLimit = 3; % Iterated Kalman

IterationTolerance w 2; % km

EllipseSize = 2;
EllipseType = 1; % 0 Probability, I Mahalanobis Distance

EllipsePoints = 20;
Ellipse_Interval = 8;

% Calculated Constants (Do not change these.)
NumSensRuns - length(ONV);

if EraseAllFiles -a YES

eval(['!del ',MetaFilename]);
eval(['!del ',MatFilename]);

eval(['!del ',Diary__Filename]);
eval(['!del ',DataFilename]);

end;

if Make-Diary -- YES
eval(['diary ',MatFilename]);

end;
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% System Information, in continuous time, for target, and initial guess
A=[0 1 00 % x

0000 % xdot
000 1 % y
0000]; % ydot

BW -[ 00
10
00
01 ];

xO = [ ., % Estimate of target initial state
0

37
0 ];

% System disturbance and observation noise matrices.
% The observation noise matrix will be multiplied by the values
% in the vector Observation_Noise_Var.
W - [ 0.001 0 % linear acceleration

0 0.0011; % angular acceleration
V - [ 0.0005 0.0 % bearing

0.0 0.0005 ]*OCS; % range

% Initial Error Covariance Matrix
PO [200 0 0 0

0250000 0 0
0 0200 0
0 0 0 250000 ].

% Read in the observation and target tracks, and the time vector
eval(['load scen_',int2str(SN),';']);

% Generate noiseless observation matrix.
obs - br.obs(xo,xt);

% Generate noisy observations.
load noise.mat;
for n1 - l:NumNoiseRuns;

alstr - int2str(nl);
eval(['tempn - obsnoise',nlstr,';']);
temp__n(l,:) , tempn(l,:) * sqrt(V(l,1));
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temp__n(2,:) w temp n(2,:) * sqrt(V(2,2));'
eval(['obs-noise',nl1str,' - temp n;')),;

end;

% Run the sensitivity analysis
IL - Iteration__Limit,
IT - Iteration__Tolerance;
JE a Calculate_-XO;
total-err -zeros(NumSensRuns, I);
res-van - zeros(NumSensRuns,2);
res__means - zeros(NumSens__Runs,2);

% For each noise variance:
for ni a l:NumSensRuns;

n var - ONV(n 1);

dc,
fprintf('This computer is busy\n\n');
fprintf('Scenario Number - % I.Of\n,SN);
fprintf('Mahalanobis Distance - %4.2f\n',MD);
fprintf('Adaptation Interval a%I .Of\n',RAI);
fprintf('Coveriance Scale a%4.2f\n',OCS);

fprintf(['Spatial Gating a',YN__STR(SG,:),'\n\n']);

fprintf('Noise Power Ratio - %4.2f\n',n__var);

for n2 - l:Num__NoiseRuns;
eval(f'obs noise - obs__ noise',int2str(n2),' * sqrt(n__var);']);
n__obs - obs + obs__noise;

% Get innovations, xy covariance, and estimates.
[Z,G1,Res,Pxy,xe] - kf__ br(xo,n__ obs,xO,IE,...

A,BW,W,V,DTS/3600,MD,PO,RAIJL,iT,SG);

total__err(n 1,1) atotal__err(n 1,1) + kf__err(xe,xt,TimeI3600);
res__vars(n I,:) ares__vars(nlI,:) + diag(cov(Res'))';
res__means(nl,:) - res__means(nl,:) + mean(Res');

end;
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eval('GI',int2str(nl),' Gl )
evel(['Res',int2str(n 1 ),' - Res,-']);,
eval(('Pxy',int2str(nl ).' a Pxy*']p;
evalQj'xe',int2str(n I),' m xe;'D;)

% Plot track
if META- YES

M4 - 0;
for n3 - 2:length(xe);

if rem(n3,Ellipse__ Interval) Im
nM a n4+1;
PxyI - Pxy(:,2*n3-l:2?n3);
[xp,ypJ - errellip((xe(l,n3);xe(3,n3)],Pxyl,Ellipse_Size,...

Ellipse__Points,Ellipse_Type);
eex(:,n4) m xp;
eey(:,n4) - yp;

end;j
end;
axis('sQuare');
axis(f0 50 0 50]);
plot(xt(lI,:),xt(3,:),'o',xe( I, I:n3),xe(3, 1 :n3),'+',...

xo(l ,:),xo(3,:),'x',eex,eey,'-w');
grid;
title(f'Noise Ratio - ',num2str(n__var),...

',Error - ',num2str(total__err(nI,l)/Num_Noise__Runs)..
',RAI - ',int2str(RAI),...
'SG - ',YN_-STR(SG,:)]);

xlabel('X (km)'),ylabel('Y (kin)');
eval(['meta ',Meta__Filename]);

end;

end;
res__vars - res__ars / Num__Noise__Runs;
res-means - res-means / NumNoiseRuns;
total__err -total__err /Num__Noise__Runs;



% Plot the results
if META -R n- YES & NumSensRuns > I

axis('normal');axis(l 2 3 4]);axis;
semilogx(ONV,total-err);*
grid,
xlabel('Normalized Observation Noise'),ylabel('Scaled Total Error');
title(['Sensitivity of Extended Kalman Filter',...

', RAI a ',int2str(RAI),...
'% SG - ',YNSTR(SO,:)]);

eval(['meta ',Meta__Filename]);

% Display the variance of the residual versus
% the variance of the observation noise.
axis('square');
plot(ONV*V(I ,I),Z(l,I));
grid;
xlabel('Observation Noisz Variance'),ylabel('Variance of the Residual');
title(['Residual Variance for Bearing',...

',RAI - ',int2str(RAI),....
'SG - ',YN_-STR(SG,:)J);

eval(('meta ',Meta__Filename]);

plot(ONV*V(2,2),Z(2,2));
grid;
xlabel('Observation Noise Variance'),ylabel('Variance of the Residual');
title(['Residual Variance for Range',...

',RAI a ',int2str(RAI),...
'SG - ',YNSTR(SO,:)]);

eval((meta ',Meta__Filename]);
end;

% Plot the total errors as a function of observation
if METAT an YES

x-max - ceil((TIMEINTERVALS+I)/S)*5;
axis('normal');axis([O xmax 0 1 5]);axis;
for ni - NumSensRuns:-I:I

eval(['xe -xe',int2str(nI ),';']);

eval(['GI -GI',int2str(n I),';'J);
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rms__err -sqrt( (xe(l,:) - xt(1,:)).A2 + (xe(3,:) - xt(3,:)).A2 )
plotQ[O:Iength(xe)- 1 ],rms-err,,O);
hold on;
for n2 - H:ength(GI)

if GI(n2) w- YES
plot(n2-1I,rms__err(n2),'o');

end;
end;

end;
hold off;
grid;
xlabel('Observation Number'),ylabel('Error');
title(['RMS Errors For All Runs',...

SG - ',YN__ STR(SG,:)]);
eval(['meta ',Meta_Filename]);

end;

% Save everything
if Make__Mat -- YES

eval(['save ',Mat__Filename]);
end;

* % Write the results to the data file.
if MakeData -- YES

if .-exist(Data__Filename)
fprintf(Data__Filename,'Thesis Data for Stephen L. Spehn\n');
fprintf(Data_Filename,['Time: Xtiniestr,'\n\n'J);

else
fprintf(Data__Filename,'\n\n');

end;

fprintf(Data__Filename,'Scenario Number - %1.Of\n',SN);
fprintf(Data__Filename,'Mahalanobis Distance = %4.2f\n',MD);
fprintf(Data__Filename,'Adaptation Interval - % I.Of\n' ,RAI);
fprintf(Data__Filename,'Covariance Scale - %4.2f\nXOCS);
fprintf(Data__Filename,['Spatial Gating = ',YN__STR(SG,:),'\n\n']);
fprintf(Data__Filename,...

'Noise Factor Error Residual Mean (B/R) Residual Var (B/R)\n\n');
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for ni - l:Num_-Sens__ Runs;
fprintf(Data_Filename,' %6.2f %6.2f',ONV(n 1 ),total__err(n 1, 1));
if res__means(nl,l) >- 0

fprintf(Data__Filename,'')
end;
fprintf(Data Filename,' %6.4f',res__means(n 1,1));
if res__reans(nl,2) >- 0

fprintf(Data__Filename,' )
end;
fprintf(Data__Filename,' %6.4r~res__means(nl ,2));

if res__vars(nl,l) >- 0
fprmntf(Data__Filename,'')

end;
fprintf(Data__ Filename,' %6.4fXZ(, 1));
if res__vars(nl,2) >= 0

fprintf(Data__Filename,'')
end;
fprintf(Data__Filename,' %6.4f\n',Z(2,2));

end;
end;

% Cleanup
diary off;
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D. KFBR.M

function [Z,GI,Res,Pxy,xe] = kfbr(xobs,zobs,xO,IE,A,B,W,V,T,MD,P0,RAI,IL,IT,SG)
*

%KF BR
% [Z,GI,Res,Pxy,xe] - kf__br(xobs,zobs,xO,IE,A,B,W,V,T,MD,P0,RAI,IL,IT,SG)
% takes the following arguments:
%

% xobs vector of observer positions
% zobs matrix of nosy observations
% x0 initial estimate
% IE Initial Estimate: 0 - use xO; I = use zobs(l)
% A continuous time state dynamics matrix
% B continuous time state excitation matrix
% W state forcing function covariance matrix
% V observation noise covariance matrix
% T vector of observation intervals; these times are not running
% times, but interval times
% MD Mahalanobis Distance for maneuver gating: MD -.= 0 means no gating
% P0 initial error covariance matrix
% RAI Residual Adapting Interval: RAI == 0 means no adaptation
% The observation noise variance is compensated for the variance
% of the residual at these intervals.
% IL Iteration Limit
% IT Iteration Tolerance
% SG Spatial Gating: I for Yes, 0 for No
*

% This function returns a row vector of gating information,
% an augmented column of innovations, an augmented row of error
% covariance matrices, and an augmented row matrix of estimated states.

% Stephen L. Spehn 30 Jan 1990

% Check arguments
if nargin -- 15

error('Incorrect number of arguments to KF BR.');
end;

115



% DEFINED Constants
load include.mat;

% Allocate variables
kmax - Iength(T)+l;
Res - zeros(2,kmax- 1);
Pxy = zeros(2,kmax*2);
Pxy(:,1:2) =fP0(1,1) P0(1,3)

P0(3,1) P0(3,3) 1
xe - zeros(length(xO),kmax);
if IE -- NO

xe(:,lI) -xO;

else
xe(1,1) =xobs(l,l) + zobs(2,I) *sin(zibs(I,I));

xe(3,I) -xobs(3,I) + zobs(2,l) cos(zobs(l,l));
end;
MDSide - NO * ones(1,kmax); % Side of the residual (LEFT or RIGHT)
GI - NO * MDSide; % Gating output
MDR -0, % Mahalanobis Distance Ratio of the Residual

xi - zeros(length(xO),IL+l);
I - eye(PO);
P a P0;
K? - 1;

if SG -- NO
MD=-0;

end;

% Kalmian Filter loop
next__adjust = RAI;
if RAI - 0

Adapt = NO;
else

Adapt = SG;
end;
oldt = l)
k - 0;
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while 1
k - k + 1;
if k -- kmax

break;
end;

if k -- I

P - P0;

end;

kbest - max(k,next-adjust- RAI);
if (T(l) -- oldt) I (k -- 1)

[phi,del] - c2d(A,B,T(1));
end;
oldt -u )

% Time update of estimate
xeminus - phi*xe(:,k);
xi(:,i) - xeminus;

% Do the iterated Kalman equations
for ki - 1:I1.

P1 - P

% Transform from polar W to rectangular Q
vary - W(1, 1);
varth - W(2,2),
vt - sqrt((xi(2,kl))A2 + (xi(4,kl))A2);
if vt -- 0

qil - vary (xi(2,kl) / Vt)A 2 + varth *(xi(4,kI ))A 2;
q22 = vary (xi(4,kl) / Vt)A 2 + varth *(xi(2,kl ))A 2;
q12 = xi(2,kI) * xi(4,kI) * (vary / vtA12 - varth);
q2l - q12;
Q a[ qII q12

q21 q22 3
else

Q a zeros(W);
end;
Q - del*Q*(del');
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% Linearize H about best estimate
deltx - xi(I,kl);
deity - xi(3,kI);
r2 a deitxA2 + deltyA2;
r -sqrt(r2);

H -(delty/r2 0 -deltx/r2 0
deltx/r 0 delty/r 0 1

resid - hr__resid(zobs(:,k+I),br__obs(xobs(:,k+I),xi(:,kI)));
MDSide(k+ 1) - br__side(xobs(:,k+lI),xi(:,klI),zobs(:,k+ 1));

KP - I;
MDI -- NO;
while I

P2 - KP*PI;
P2 - phi*P2*phil + Q; % Projected error covariance
vresid - H*P2*H' + V; % Expected variance of the residual
G -P2*H' / vresid; % Kalman gain
P2 -(I - G*H)*P2; % updated error covariance

% Now check the Mahalanobis Distance of the residual
if MD -- 0

MDR - 0;
else

MDR = (resid' /vresid *resid) /MD A2;

end;
if MDR > 1

MDl = YES;
else

MDI =NO;

end;
if (MD 0) 1 (MDI NO) I(Adapt NO)..

I ((SG =- YES) & (MDSide(k) -- MDSide(k+I)))
xi(:,kl+l) = xeminus + G*(resid - H*(xeminus - i:k);
break;

else
KP = l.2*KP;
GI(k+l) - YES;

end;
end;
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% Check iteration tolerance
if ( (xi(l,kI+l)-xi(1,kl))A2 + (xi(3,kl+I)-xi(3,kl ))A 2 )< IT^2

break;
end;

end;
% Estimate is final iterated estimate
xe(:,k+l) - xi(:,kI+l);
P = P2;

Res(:,k) -resid;

Pxy(:,(2*k+I:2sk+2)) -fP(1,l) P(1,3)
P(3,I) P(3,3) ]

" Update the a priori observation noise covariance based on the residudts,
" and start from the first observation.
if k munext-adjust

V =cov(Res');

next-adjust - next-adjust + RAI;
Adapt - YES;
k - 0;

6 end;

end;
* Z = V
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E. BROBS.M

function obs = br__obs(x._obs,xtar)

%BROBS

% This function takes a vector of observer positions
% and a vector of target positions and returns a matrix
% of observation vectors consisting of the bearing and range
% from the observer to the target. The bearings are
% given in radians.

% xobs vector of observer positions,
% xtar vector of target positions.

% obs matrix of bearing/range observation vectors

% Stephen L. Spehn 21 Nov 1989

% Check input arguments
if nargin -= 2

error('Incorrect number of arguments to BROBS.');

end;

% Get the x and y differences and calculate observations
x = xtar(l,:) - x-obs(l,:);
y = xtar(3,:) - xobs(3,:);

b = atan2(x,y);
r = sqrt(x .A2 + y A2);

obs = [ b
r ];
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F. BRRESID.M

function resid -br__resid(z_._obs,z__est)

%BRRESID

% resid - br__resid(z__obs,z__est) takes the following arguments:

% z__obs observation vector,
%z__est estimated observation vector.

" This function returns a vector of residuals for use in the
"Kalman filter estimate update equation.

"Stephen L. Spehn 18 Dec 1989

" Check number of input arguments
if nargin -- 2

error('Incorrect number of arguments to BR__RESID.');
end;

% Get difference
resid - z__obs - z__est;

% Normalize by putting angle in [-pi..pi]
resid(l,:) = resid(l,:) + 2*pi*(resid(l,:) <-p)

resid(l,:) = resid(l,:) - 2*pi*(resid(1,:) >pi);
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G. BRSIDE.M

function side - br._side(xo,xe,z);

%side - br_side(xo,xe,z);

% This function takes the observer's position, the current
% target estimate, and the bearing/range observation and returns
% an integer indicating on which side of the estimate the
% the observation lies.
%

% Xo observer location [ x
% vx
% y
% vy]
%

% xe target estimate [ x
% vx

% y
% vy]

% z observation [ bearing
% range ]

% Stephen L. Spehn 30 Jan 1990

% Check the input arguments
if nargin -= 3

error('Incorrect number of arguments to BR__SIDE.');
end;

% DEFINED Constants
load include.mat;

% Get tne x and y difference between the estimate and the observation

xdiff = xo(l) + z(2) * sin(z(l)) - xe(l);
ydiff : xo(3) + z(2) cos(z(l)) - xe(3);
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% Rotate the velocity vector of the estimate by pi/2

xr - rotate v([xe(2);xe(4)],pi/2);

% Get the component of the difference vector along this rotated vector

signr = xr(l) * xdiff + xr(2) * ydiff;

% If this is positive, then the observation lies to the right

if sign.r > 0
side - RIGHT;

else
side - LEFT;

end;
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H. SCENGEN.M

function scen__gen(n)

% Stephen L. Spehn 31 Jan 1990

% This file generates target tracks for the various scenarios
% and stores them in mat files.

% Number xO yo vx0 VY0 g Duration
% (kin) (kin) (km/hr) (km/hr) (g's) (sec)

% 1 5 37 0 0 0 0
% 2 5 37 450 0 0 0
% 3 5 37 400 -280 0 0
% 4 5 37 600 50 0.8 40
% 5 5 37 450 -300 -0.8 50

% Target tracks for these scenarios are in the files
% scen__1.mat through scen__5.mat.

% DEFINED Constants
load include.mat;

% Calculate time vector
DTS - ones(1,TIME_-INTERVA LS)*DELTAT;
Time = zeros(1,TIMEINTERVALS+1);
for n1 = 2:length(Tirne);

Time(nl) - Tiine(nl-l) + DELTAT;
end;

xo =zeros(4,TIMEINTERVALS+I);

xt -xo;

A [0 1 00 %x
0 00 0 % xdot
000 1 % y
0 00 0] % ydot
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% scen__1.mat
xtOaE5; 0;37; 0]
xt - track__t xtO,DTS/3600,A);
save scen_1.mat xo xt Time DTS;

% scen__2.mat
Xto-[ 5; 450; 37; 0]

*xt a track__t(xto,DTS/3600,A);
save scen__2.mat xo xt Time DTS;

% scen__3.mat
xt0 a [ 5; 400; 37; -280 1

at track__t(xtO,DTS/3600,A);
save scen__3.mat xo xt Time DTS;

% scen_4.mat
g - 9.8 * 3600A 2 / 1000; % g acceleration in km/hr A2

xt0 - [ 5; 600; 37; 50 1
G4 - 0.8;
ACCTIME - 4;
nl - length(DTS);
ml - round(n/ 2),
m2 - n - ml - ACCTIME;
xt w track_t(xr,DTS(:mi-l)/3600,A); % I .. Ml

V - sqrt(xt(2,ml )A 2 + xt(4,ml )A 2); % V in km/hr
theta - atan2(xt(2,mlI),xt(4,m I));
ACC = G4*g;
da =ACC * DELTAT / 3600 / V; % angle change in radians
R aabs(V*V / ACC); % R in km
if ACC > 0 % right turn, Clyde

xR = xt(l,ml) + R~cos(theta),
yR -xt(3,mI) - R*sin(theta);
alpha0 - 1.5*pi + theta;

else % lef t tern
xR = xt(l,ml) - R*cos(theta);
yR - xt(3,ml) + R*sin(theta);
alpha0 = 0.5*pi + theta;

end;
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for ni - I:ACCTIME % I .. mlI + ACCTIME
alpha - alpho0 + da*nI;
xt(l,ml+nI) a xR + R*sin(alpha);
xt(3,ml+nI) - yR + R*cos(alpha);
xt(2,ml+nl) n Vcos(alpha);
xt(4,ml+nl) - -V*sin(alpha);

end;
xt - ( xt track-t(xt(:,ml+ACCTIME),DTS(ml+ACCTIME+l:n)/3600,A)]
save scen__4.mat xo xt Time DTS;

% scen__5.mat
xt0 - [ 5; 450; 37; -400]
G5 - -0.8;
ACCTIME w 5;
n -length(DTS);

ml -round(n/2);

m2 -n - ml - ACCTIME;
xt - track_t(xt0,DTS(I:ml-l)/3600,A); % I .. MI
V - sqrt(xt(2,ml)A2 + xt(4,mI)A2); % V in km/hr
theta - atan2(xt(2.mlI),xt(4,mlI));
ACC - G5*g;
da -ACC * DELTAT /3600 /V; % angle change in radians
R -abs(V*V / ACC); % R in km
if ACC > 0 % right turn, Clyde

xR - xt(I,mI) + Rcos(theta);
yR - xt(3,mI) - R*sin(theta);
alphaO - I .5pi + theta;

else % left tern
xR - xt(l,ml) - Rcos(theta);
yR - xt(3,ml) + R*sin(theta);
alpha0 - 0.5*pi + theta;

end;
for ni - I:ACCTIME % 1I. ml + ACCTIME

alpha - alpha0 + da*nl;
xt(l,mI+nl) - xR +i R*sin(alpha);
xt(3,ml+nl) - yR +. R*cos(alpha);
xt(2,ml+nl) a Vcos(alpha);
xt(4,ml+nl) = V*sin(alpha);

end;
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xt -[xt track -t(xt(:,mI+ACC-TIME),DTS(ml+ACCTIME+1:n)/3600,A) ]
save scen__5.mat xo xt Time DTS;
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I. TRACK.T.M

function x - trackt(xO,tvec,A)

%TRACK T

% x - trackt(xO,tvec,A) takes the following arguments:

% xO initial target position
% tvec vector of observation intervals; these times are not running
% times, but interval times. i.e. tvec - [1 1.5 .2 .7 .9 .5 1]
% A continuous time state transition matrix

% This function returns a matrix of the target states.

% Stephen L. Spehn 15 Nov 1989

% Check arguments
if nargin -- 3

error('Incorrect number of arguments to TRACK__T.');
end;

% Check for consistency in the size of the inputs
[rx,cx] - size(xO);

if cx ~- I
error('xO must be n x I.');

end;
[rA,cA] - size(A);
if rA -= cA

error('A must be square.');
end;
if rx -- cA

error('xO and A must be conformable.');
end;

% Allocate and initialize x and B

N = length(tvec);
x - zeros(rx,N+l);
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x(:,1) -xO;

B - zeros(xO);

% Loop through and calculate new positions
oldt - tvec(l);
for k - I:N

% Only recalculate phi and del when necessary
if (tvec(k) -- oldt) I (k a- 1)

fphi,del] mc2d(A,B,tvec(k));

end;

% Discrete state projection
x(:,k+l) - phi*x(:,k);

% Save the current time interval for the check above
oldt -tvec(k);

end;
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J. KFERR.M

function err - kf__err(xe,xt,T)

%KFERR

% err - kf._err(xe,xt,T) takes, the following arguments:

% xe vector of estimated target positions,
% xt vector of actual target positions,

% T vector of Times of estimates.

% This function returns the total weighted error:

% err - sum(abs(distance) * Time)

% Stephen L. Spehn 24 Nov 1989

% Check arguments
if nargin -= 3

error('Incorrect number of arguments to KFERR.');
end;

% Compute the error
dif_ = sqrt((xt(l,:) - xe(l,:)).A2 + (xt(3.:) - xe(3,:)).A2);

err = sum( dif_ .* T);
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K. NOISE.M

% This file generates the suite of noise matrices for SENRUNO1.M

% Stephen L. Spehn 31 Jan 1990

% defined constants
load include.mat

NumNoiseRuns = 30; % the more runs, the better the average

StandardNoiseSeed = 1989; % I .. 2"31 - I
UseStandardNoise = YES; % YES: same random numbers every day

% Generate a set of observation noise matrices.

rand('normal');
if UseStandardNoise =- YES

rand('seed',StandardNoise..Seed);
else

rand('seed',sum(clock)* 100);
end;
fornl i l:NumNoiseRuns;

eval(['obsnoise',int2str(nl),' = rand(2,TIMEINTERVALS+I);']);
end;

save noise.mat
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L. SUPPORT FILES

1. Errellip.m

function fx,y] - errellip(M,K,Pr,n,MD)

%errellip(M,K,Pr,n,MD)

% This function is used to generate vectors of x and y
% coordinates for the plotting of error ellipses. It takes

% the following arguments:
%

% M Mean Vector (2 x 1)
% K Covariance Matrix (2 x 2)
% Pr Probability (0 .. 1)
% n Number of points to compute

% MD Compute by Mahalanobis Distance vice probability
% 0 = Probability

% I = Mahalanobis Distance

% and returns x and y vectors of the confidence ellipse for the
% given probability or Mahalanobis Distance.

% Stephen L. Spehn 15 Nov 1989

% Check the input arguments
if nargin -= 5

error('Incorrect number of arguments to ERRELLIP.');

end;

% Compute the Mahalanobis Distance for the ellipse
if MD == I

c = abs(Pr);
else

Pr - max(min(.995,Pr),.005);
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% Cubic spline fit for the ellipse constant.
% Using this method is a compromise between speed and accuracy.
pp [ 12;

.005; .01; .025; .05; .1; .25; .5; .75; .9; .95; .975; .99; .995;
4.0;
4.190809197869072e+1; 4.190809197872625e+1; -2.1 18721291999464e+ 1;
3.970929262330003; 2.15930349191602; 5.955793735647319e- 1;
1.6288224111 1034e+l; 8.24375856514019e+1; 2.725551521454689e+3;
4.1 76985755223079e+2; 2.087990965023806e+5; 2.087990965023842e+5;

-3.810356328008524e- 1; 2.4758574o879301 Ile- 1; 2.133449885921905;
5.444089169224142e- 1; 1.140048306271903; 2.111734877634124;
2.55841940780766; 1.4774587491 13522e+l; 5.187150103426589e+1;
4.6070422925247e+2; 4.9203162241 66436e+2; 9.887990965023757e+3;
2.020857475864537; 2.02019022643493; 2.055905760926949;
2.122852230998054; 2.20707509215777; 2.694842569743673;
3.862381141104123; 8.195632865839841; 1 .819254614465004e+1;
4.382133265898673e+1; 6.76397289507 1458e+1; 2.2334006776232 1e+2;

.01; .0201; .0506; .103; .211; .575; 1.39; 2.77; 4.61; 5.99; 7.38; 9.21 ]

c = ppval(pp,Pr);
end;

% Get Eigenvectors and Eigenvalues of the Covariance matrix
[Evec,EvalI = eig(K);
sigx = sqrt(Eval( 1,1));
sigy = sqrt(Eval(2,2));

% Parameterize the ellipse equations by the angle, t
t = 0:(2*pi/n):(2*pi),
xv = sigx*c*cos(t);
yv = sigy*c*sin(t);

% Translate back to the original coordinates
% and add in the mean (center of the ellipse)
x - (xv*Evec(l,I) + yv*Evec(l,2) + M(l))';
y - (xv*Evec(2,1) + yv*Evec(2,2) +M();
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2. Int2str2.m

function str - int2str2(i)

%INT2STR2

" str = int2str2(i) returns a two character string with the
" value of i as a zero padded integer to two places. Examples

" are given below.

" i = str '05'
" i- 50 str '50'
" i - 500 str ='500'

% i- -S str '-5'

% Stephen L. Spehn 30 Nov 1989

str - int2str(i);

if (i < 10) & (i >= 0)
str - f'0',str];

end;
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3. Reset.m

function reset

%RESET

% This function is used to reset various MATLAB parameters
% so that the current simulation will be unaffected by previous
% runs.

% Stephen L. Spehn 25 Nov 1989

hold off;
subplot(I 11);
axis(normal');axis([l 2 3 4]);axis;
clg,clc;
clear;
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4. Rotatev.m

function new vector - rotatev(vector,angle)
%

%new vector - rotatev(vector,angle);

% This function takes a vector of x and y coordinates and an

% angle of rotation specified in radians. It returns the
% rotated vector.

% vector [ x
% y ];

% angle angle of rotation in radians (positive CW)

% new vector fx
% y, ];

% Stephen L. Spehn 17 Jan 1990

% Check input arguments for number and size

if nargin -- 2

error('Incorrect number of arguments to ROTATE_V.');
end;

[rv,cv] = size(vector);
if (rv -= 2) 1 (cv -- 1)

error('Input vector incorrect size.');
end;

% Calculate transformation matrix and rotate the vector
cosi = cos(angle);
sini = sin(angle);

T=[ cosi sinl

-sin1 cosl ];

new vector - T * vector;
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5. Tliestr.m

function tstr -timestr

%TIMESTR

% This function returns the time and date in a string, i.e.,

% 1525, 28 Nov 1989

% Stephen L. Spehn 28 Nov 1989

months =[' Jan
Feb'
Mar'
'Apr'
May'
Jun'
Jul
'Aug'
Sep
Oct
Nov
Dec'

td =fix(clock);

tstr = [int2str2(td(4)),int2str2(td(5)),',',.
int2str(td(3)),months(td(2),:),int2str(td( 1))];
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