Aliquots sums of Fibonacci numbers

Luca, Florian; Stănică, Pantelimon

https://hdl.handle.net/10945/38844

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun
Abstract

Here, we investigate the Fibonacci numbers whose sum of aliquot divisors is also a Fibonacci number (the prime Fibonacci numbers have this property).

1 Introduction

Let \((F_n)_{n \geq 1}\) be the sequence of Fibonacci numbers. For a positive integer \(n\) we write \(\sigma(n)\) for the sum of divisors function of \(n\). Recall that a number \(n\) is called \emph{multiply perfect} if \(n \mid \sigma(n)\). If \(\sigma(n) = 2n\), then \(n\) is called \emph{perfect}. In [2], it was shown that there are only finitely many multiply perfect Fibonacci

\[\text{FLORIAN LUCALuca}
\text{Instituto de Matemáticas}
\text{Universidad Nacional Autónoma de México}
\text{C.P. 58089, Morelia, Michoacán, México}
\text{fluca@matmor.unam.mx}
\]

\[\text{PANTELIMON STĂNICA*}
\text{Naval Postgraduate School}
\text{Applied Mathematics Department}
\text{Monterey, CA 93943, USA}
\text{pstanica@nps.edu}
\]

July 24, 2007
numbers, and in [3], it was shown that no Fibonacci number is perfect. For a positive integer \(n \), the value \(\varphi(n) \) of the Euler function is defined to be the number of natural numbers less than or equal to \(n \) and coprime to \(n \).

Let \(s(n) = \sigma(n) - n \). The number \(s(n) \) is sometimes called the sum of aliquot divisors of \(n \). Two positive integers \(m \) and \(n \) (with \(m \neq n \)) are called amicable if \(s(m) = n \) and \(s(n) = m \). It is not known if there exist infinitely many amicable pairs, but Pomerance [5] showed that the sum of the reciprocals of all the members of all amicable pairs is convergent.

Here, we search for Fibonacci numbers \(F_n \) such that \(s(F_n) \) is a Fibonacci number. In particular, prime Fibonacci numbers have the above property. We put \(A = \{ n : s(F_n) = F_m \text{ for some positive integer } m \} \).

In this paper, we give an upper bound on the counting function of \(A \).

Theorem 1. There exists a positive constant \(c_0 \) such that the inequality

\[
\#A(x) < c_0 \frac{x}{\log \log \log x}
\]

holds for all \(x > e^{e^{e^e}} \).

Throughout this paper, we use the Vinogradov symbols \(\gg, \ll \) and the Landau symbols \(O, \asymp \) and \(o \) with their usual meanings. We recall that \(A \ll B, B \gg A \) and \(A = O(B) \) are all equivalent and mean that \(|A| < cB \) holds with some constant \(c \), while \(A \asymp B \) means that both \(A \ll B \) and \(B \ll A \) hold. For a positive real number \(x \) we write \(\log x \) for the maximum between 2 and the natural logarithm of \(x \). Note that with this convention, the function \(\log x \) is sub-multiplicative; i.e., the inequality \(\log(xy) \leq \log x \log y \) holds for all positive numbers \(x \) and \(y \). For a positive real number \(t \) and a subset \(B \) of the positive integers, we write \(B(t) = B \cap [1, t] \). We use \(p, q, P \) and \(Q \) with or without subscripts to denote prime numbers.

Acknowledgements. During the preparation of this paper, F. L. was supported in part by projects PAPIIT 104505, SEP-CONACyT 46755 and a Guggenheim Fellowship.

The Proof of Theorem 1

Let \(x \) be a large positive real number.
2.1 Some sieving

Let \(\omega(n) \) and \(\Omega(n) \) be the number of prime divisors of \(n \) and the number of prime power divisors of \(n \) (\(> 1 \)), respectively. Let

\[
\mathcal{A}_1(x) = \{ n \leq x : \omega(n) < 0.9 \log \log x \text{ or } \Omega(n) > 1.1 \log \log x \};
\]
(1)

By the Turán-Kubilius inequalities (see [8])

\[
\sum_{n \leq x} (f(n) - \log \log x)^2 = O(x \log \log x)
\]

for both \(f \in \{ \omega, \Omega \} \),

we infer that

\[
\# \mathcal{A}_1(x) \ll \frac{x}{\log \log x}.
\]
(2)

Let \(y = (\log \log x)^{1/3} \) and let

\[
\mathcal{A}_2(x) = \{ n \leq x : p \nmid n \text{ for all primes } p < y \}.
\]
(3)

By Brun’s sieve,

\[
\# \mathcal{A}_2(x) \ll x \prod_{p < y} \left(1 - \frac{1}{p}\right) \ll \frac{x}{\log y} \ll \frac{x}{\log \log \log x}.
\]
(4)

We now write

\[
\sigma(F_n) = F_n + F_m,
\]

and we look at bounds for \(m \) in terms of \(n \), where \(n \leq x \) does not belong to \(\mathcal{A}_1(x) \cup \mathcal{A}_2(x) \).

2.2 Bounds for \(m \) in terms of \(n \)

We start with a lower bound for \(m \). Let \(\gamma = (1 + \sqrt{5})/2 \) be the golden section. Let \(n \leq x \) not in \(\mathcal{A}_1(x) \cup \mathcal{A}_2(x) \). Then, there exists \(p < y \) such that \(p \nmid n \). Thus, \(F_p \nmid F_n \), therefore

\[
\gamma^m > F_m = s(F_n) \geq \frac{F_n}{F_p} \gg \gamma^{n-p} \geq \gamma^{n-y},
\]

where we used the fact that \(F_n \approx \gamma^n \). Hence,

\[
m \geq n - y + O(1),
\]

3
therefore

\[m \geq n - 2y, \]

once \(x \) is sufficiently large. We now look at an upper bound for \(m \). Note that

\[\gamma^{m-n} \ll \frac{F_m}{F_n} \leq \frac{\sigma(F_n)}{F_n} \leq \prod_{p|F_n} \left(1 + \frac{1}{p-1} \right). \quad (5) \]

For every prime number \(p \) let \(z(p) \) be its order of apparition in the Fibonacci sequence, and for a positive integer \(d \) let \(\mathcal{P}_d = \{ p : z(p) = d \} \). It is known that \(p \equiv \pm 1 \pmod{z(p)} \) holds for all primes \(p > 5 \) and it is clear that

\[F_d \geq \prod_{p \in \mathcal{P}_d} p \gg (d-1)^{\# \mathcal{P}_d}, \]

therefore

\[\# \mathcal{P}_d \ll \frac{d}{\log d}. \quad (6) \]

Furthermore, \(z(p) \gg \log p \). We now get by taking logarithms in (5) that

\[m - n \leq \sum_{p|F_n} \frac{1}{p-1} + O(1) \leq \sum_{d|n} \sum_{p \in \mathcal{P}_d} \frac{1}{p-1} + O(1). \]

Obviously,

\[\sum_{p \in \mathcal{P}_d} \frac{1}{p-1} \leq \sum_{p \equiv \pm 1 \pmod{d}} \frac{1}{p-1} + \frac{\# \mathcal{P}_d}{d^2 - 2} \ll \frac{\log \log d}{\varphi(d)}, \]

where in the above inequality we have used estimate (6) as well as the known fact that the inequality

\[\sum_{p \equiv a \pmod{b}} \frac{1}{p-1} \leq \frac{1}{p_1(a,b) - 1} + O\left(\frac{\log \log t}{\varphi(b)} \right), \quad (7) \]

holds uniformly in coprime positive integers \(a < b \) and positive real numbers \(t \), where \(p_1(a,b) \) is the first prime in the arithmetic progression \(a \pmod{b} \).
(see, for example, [4]). Since the function \(\log \log d \) is sub-multiplicative, we get that

\[
m - n \leq \prod_{p^e \mid n} \left(1 + O \left(\sum_{\nu=1}^{\mu} \frac{\log \log (p^\nu)}{p^\nu} \right) \right).
\]

\[
\leq \exp \left(O \left(\sum_{p \mid n} \frac{\log \log p}{p} + \sum_{p \geq 2} \sum_{\nu \geq 2} \frac{\log \log (p^\nu)}{p^\nu} \right) \right)
\]

\[
= \exp \left(O \left(\sum_{p \mid n} \frac{\log \log p}{p} + 1 \right) \right).
\]

Since \(n \not\in A_1(x) \), it follows that \(\omega(n) < 1.1 \log \log x \). Thus, if we write \(p_1 < p_2 < \ldots \) for the increasing sequence of all the prime numbers, then

\[
\sum_{p \mid n} \frac{\log \log p}{p} \leq \omega(n) \sum_{\nu=1}^{\mu} \frac{\log \log p}{p} \leq \int_2^{p_\omega(n)} \frac{\log \log t}{t} d\pi(t)
\]

\[
\ll (\log \log p_{\omega(n)})^2 \ll (\log \log \log \log x)^2.
\]

Hence,

\[
m - n \leq \exp \left(O((\log \log \log \log x)^2) \right) < 2y,
\]

where the last inequality holds if \(x \) is large. In conclusion, if \(n \leq x \) is not in \(A_1(x) \cup A_2(x) \), then \(m \in [n - 2y, n + 2y] \).

2.3 More sieving

Let \(Q = \{ q : z(q) < q^{1/3} \} \). Note that uniformly in \(t > 1 \),

\[
2^#Q(t) \leq \prod_{q \in Q \atop q < t} q \leq \prod_{n < t^{1/3}} F_n < \gamma \sum_{n < t^{1/3}} n < \gamma^{2/3},
\]

therefore

\[
#Q(t) \ll t^{2/3},
\]
which shows that
\[\sum_{q \in \mathbb{Q}} \frac{1}{q} \leq \int_{s}^{\infty} \frac{1}{t} d\# \mathcal{Q}(t) \]
\[\leq \frac{\# \mathcal{Q}(t)}{t} \bigg|_{t=s}^{t=\infty} + \int_{s}^{\infty} \frac{\# \mathcal{Q}(t)}{t^2} dt \]
\[\leq \frac{1}{s^{1/3}} + \int_{s}^{\infty} \frac{dt}{t^{4/3}} \ll \frac{1}{s^{1/3}}. \] (8)

We now put \(u = (\log x)^3 \) and let
\[\mathcal{A}_3(x) = \{ n \leq x : z(p)p \mid n \text{ for some } p > u \}. \] (9)

For every fixed prime \(p > u \), the number of \(n \leq x \) which are multiples of \(pz(p) \) is \(\lfloor x/pz(p) \rfloor \leq x/pz(p) \). So,
\[\# \mathcal{A}_3(x) \leq \sum_{p > u} \frac{x}{pz(p)} \leq \sum_{p > u} \frac{x}{p} + \sum_{p > u} \frac{x}{z(p)p} \]
\[\ll \sum_{u^{1/3} < d \leq x} \frac{x}{d^{1/3}} \sum_{p \equiv \pm 1 \pmod{d}} \frac{x}{dp} + \frac{x}{u^{1/3}} \]
\[\ll x \sum_{u^{1/3} < d \leq x} \frac{\log \log d}{d\varphi(d)} + \frac{x}{u^{1/3}} \]
\[\ll x \sum_{u^{1/3} < d \leq x} \frac{(\log \log d)^2}{d^2} + \frac{x}{u^{1/3}} \]
\[\ll x(\log \log x)^2 \sum_{d > u^{1/3}} \frac{1}{d^2} + \frac{x}{u^{1/3}} \ll \frac{x(\log \log x)^2}{(\log x)^{1/3}}, \] (10)

where in the above estimates we used (8) with \(s = u^{1/3} \), the fact that \(\varphi(d) \gg d/\log \log d \) for all \(d \), as well as estimate (7) with \(b = d \) and \(a = 1 \) and \(d - 1 \), respectively.

We finally put \(\omega_u(n) \) for the number of prime factors \(p \leq u \) of \(n \), \(v = 2 \log \log \log x \) and let
\[\mathcal{A}_4(x) = \{ n \leq x : \omega_u(n) > v \}. \] (11)
Again by Turán-Kubilius inequality,
\[\sum_{n<x}(\omega_u(n) - \log \log u)^2 = O(x \log \log u), \]
and since \(\log \log u = (1 + o(1)) \log \log \log x \), we get easily that
\[\#A_4(x) \ll \frac{x}{\log \log \log x}. \tag{12} \]

From now on, we deal only with numbers \(n \leq x \) which are not in \(A_1(x) \cup A_2(x) \cup A_3(x) \cup A_4(x) \).

2.4 The 2-adic order of \(\sigma(F_n) \)

Let \(K = \lfloor 0.8 \log \log x \rfloor \). Since \(n \notin \bigcup_{i=1}^4 A_i(x) \), we get that \(n \) has \(\omega(n) - \omega_u(n) > 0.9 \log \log x - 2 \log \log \log x > K \) prime factors \(P > u \), once \(x \) is sufficiently large. Let \(P_1 > P_2 > \ldots > P_K \) be the first (largest) prime factors of \(n \). Then \(P_K > u \). Note that
\[
F_n = \left(\prod_{i=0}^{K-1} \frac{F_{n/P_1\ldots P_i}}{F_{n/P_1\ldots P_{i+1}}} \right) F_{n/P_1\ldots P_K},
\]
where by convention we take \(P_0 = 1 \). Let
\[
L_i = \frac{F_{n/P_1\ldots P_i}}{F_{n/P_1\ldots P_{i+1}}} \quad \text{for} \quad i = 0, \ldots, K-1 \quad \text{and} \quad L_K = F_{n/P_1\ldots P_K}.
\]
We next observe that \(L_i \) and \(L_j \) are coprime for all \(0 \leq i < j \leq K \). Indeed, assume that \(i < j \leq K \) and \(Q \) are such that \(Q \mid \gcd(L_i, L_j) \). Then
\[
Q \mid \gcd \left(\frac{F_{n/P_1\ldots P_{i+1}}}{F_{n/P_1\ldots P_{i+1}}}, \frac{F_{n/P_1\ldots P_i}}{F_{n/P_1\ldots P_{i+1}}} \right).
\]
However, it is well-known that the greatest common divisor appearing above divides \(P_{i+1} \). Hence, \(Q = P_{i+1} \), and \(Q \mid F_n \), therefore \(z(Q) \mid n \). Since \(Q > u > 5 \) for large \(x \), we get that \(Qz(Q) \mid n \) contradicting the fact that \(n \notin A_5(x) \). Thus, \(L_i \) and \(L_j \) are indeed coprime for all \(i < j \).

In [6], Ribenboim and McDaniel studied square-classes of Fibonacci numbers. Given two integers \(m \) and \(n \), they are in the same square-class if \(F_m F_n \)
is a square. It follows from their results that if \(m > 12n \) and \(n \) is sufficiently large, then \(m \) and \(n \) are not in the same square-class. In particular, if \(x \) is large, then none of the numbers \(L_i \) is a perfect square. Thus, there exists a prime \(Q_i \mid L_i \), such that the order at which \(Q_i \) appears in \(L_i \) (hence, in \(F_n \)) is odd. It is also clear that \(Q_i \) is odd if \(x \) is large enough (say if \(u > 3 \)). Thus, \(\prod_{i=1}^{K}(Q_i+1) \) is a divisor of \(\sigma(F_n) \), which proves that \(\sigma(F_n) \) is a multiple of \(2K \).

2.5 The conclusion

Let \(A_5(x) \) be the set of all positive integers \(n \in A(x) \) which are not in \(\bigcup_{i=1}^{4} A_i(x) \). Let \(n_1 < n_2 < \ldots < n_{\ell} \) be all the elements in \(A_5(x) \). Then there exists \(k_i \in [-2y, 2y] \) such that \(m_i = n_i + k_i \) for all \(i = 1, \ldots, \ell \). Furthermore, \(2K \mid \sigma(F_{n_i}) = F_{n_i} + F_{n_i+k_i} \). Let \(M = [4y + 1] \). We show that if \(\ell > M \), then \(n_i + M - n_i \) is large whenever \(i \leq \ell - M \). Indeed, let \(n_i < n_{i+1} < \ldots < n_{i+M} \). Then \(k_j \in [-2y, 2y] \) for all \(j = i, \ldots, i + M \), and since there are at most \(2[2y] + 1 < M + 1 \) possible values of \(k_j \) and \(M + 1 \) possibilities for the index \(j \), it follows that there exist \(j_1 < j_2 \) in \(\{i, \ldots, i + M\} \) such that \(k_{j_1} = k_{j_2} \). Let \(k \) denote the common value of \(k_{j_1} \) and \(k_{j_2} \). Using the formula \(F_n = (\gamma^n - \delta^n)/(\gamma - \delta) \), where \(\delta = (1 - \sqrt{5})/2 \) is the conjugate of \(\gamma \), we note that the relation \(2K \mid F_{n_{j_1}} + F_{n_{j_1}+k} \) gives

\[
\gamma^{n_{j_1}}(1 + \gamma^k) - \delta^{n_{j_1}}(1 + \delta^k) \equiv 0 \pmod{2^K},
\]

and similarly for \(n_{j_2} \). Here and in what follows, we say that an algebraic integer \(\alpha \) is a multiple of an integer \(m \) if \(\alpha/m \) is an algebraic integer. Write \(\lambda = n_{j_2} - n_{j_1} \). Then the above relation for \(n_{j_2} \) gives

\[
\gamma^{n_{j_1}}\gamma^{\lambda}(1 + \gamma^k) - \delta^{n_{j_1}}\lambda^{\lambda}(1 + \delta^k) \equiv 0 \pmod{2^K}.
\]

Multiplying the congruence (13) by \(\gamma^\lambda \) and subtracting it from congruence (14), we get that

\[
\delta^{n_{j_1}}(1 + \delta^k)(\gamma^\lambda - \delta^\lambda) \equiv 0 \pmod{2^K}.
\]

Conjugating the above relation (15) and multiplying the resulting congruences, we get

\[
|1 + \delta^k||1 + \gamma^k||\gamma^\lambda - \delta^\lambda|^2
\]

8
is an integer which is a multiple of 2^K. Noting that the above integer is nonzero, by taking logarithms we get

$$\lambda \log \gamma + O(M) \geq 2K,$$

therefore $\lambda \gg K$. Thus, we just proved that $n_{i+M} - n_i \gg K$, therefore

$$\#A_5(x) \ll \frac{xM}{K} + M \ll \frac{x}{(\log \log x)^{2/3}}, \quad (16)$$

which together with the upper bounds (2), (4), (10) and (12) completes the proof of Theorem 1.

References

