“Lalhoun

Institutional Archive of the Naval Pastgraduate School

&DOKRXQ 7KH 136 ,QVWLWXWLRQDO $UFKLYH
'6SDFH 5HSRVLWRU\

136 6FKRODUVKLS 7TKHVHYV

$ UHDO WLPH VA\VWHP IRU DEXVLYH QHW

.DNDYHODNLV *HRUJLRYV

ORQWHUH\ &DOLIRUQLD 1DYDO 3RVWJUDGXDWH 6FKRRO

KWWSV KGO KDQGOH QHW

7KLY SXEOLFDWLRQ LV D ZRUN RI WKH 8 6 *RYHUQPHQW DV GHILQHG LQ
6WDWHY &RGH O6HFWLRQ &RS\ULJKW SURWHFWLRQ LV QRW DYDLODE(
8QLWHG 6WDWHYV

'RZQORDGHG IURP 136 $UFKLYH &DOKRXQ

Calhoun is the Maval Postgraduate School's public access digital repository for

‘: DUDLEY research materials and institutional publications created by the NPS community.
ﬂ“m Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first

m“ KNOX appointed — and published — scholarly author.
LIBRARY Dudley Knox Library / Maval Postgraduate School

411 Dyer Road / 1 University Circle
Monterey, California USA 93943

hitp://www.nps.edu/library

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

A REAL-TIME SYSTEM FOR ABUSIVE NETWORK
TRAFFIC DETECTION

by
Georgios Kakavelakis
March 2011

Thesis Advisor: Robert Beverly
Second Reader: Joel D. Young

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Washington headquarters Services, Directorate for Inform&tpmrations and Reports, 1215fdeson Davis Highway, Suite 120Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

Public reporting burden for this collection of information is estimated to average 1 housg@rse, including the time for reviewing instructid
searching existing data sources, gathering and maintaining thenéeded, and completing andiesving the collection of infonation. Send
comments regarding this burden estimate or any other asp#ts @bllection of information, including suggestions for redgdhis burden, tg

>

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 2011 Master’s Thesis

4. TITLE AND SUBTITLE A Real-Time System for Abusive Network Traffic 5. FUNDING NUMBERS
Detection

6. AUTHOR(S) Georgios Kakavelakis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey, CA 93943-5000

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are thogheofiuthor and do not reflect the official poli
or position of the Department of Defense or th8.lGovernment. IRB Protocol number N/A

3%

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public releaseéjstribution is unlimited A

13. ABSTRACT (maximum 200 words)

detection infrastructure, none ofethavailable techniques addresses thablpm effectively or completely. Th
fundamental failing of existing methods is that spammers and attack perpetrators rapidly adapt to and circu
mitigation techniques. Analyzing network traffic by explogfitransport-layer @racteristics can help remedy t
and provide effective detéon of abusive traffic.

Within this framework, we develop a real-time, online system that integrates transport layer chara
into the existing SpamAssasin tool for detecting unsotloitemmercial e-mail (spam). Specifically, we implem
the previously proposed, but undeveloped, SpamFlow technique. We determine appropriate algorithms

in a virtual test bed and live environment and present acallygsults. Finally, we evaluat@ir system in the conte
of SpamAssassin’s auto-learning mode, providing an effective method to train the system without expl
interaction or feedback.

Abusive network traffic—to include unsolicited e-mail, mate propagation, and deniafl-service attacks—remairfs
a constant problem in the Internet. Despite extensivearels in, and subsequent deployment of, abusive-trdffic-

11

vent new
S

teristics
nt
pased on

t
cit user

classification performance, training required, adaptability, and computational load. We evaluate system periormance

14. SUBJECT TERMSNetwork Security, Autonomousystems, Machine Learning 15. NUMBER OF
PAGES
89
16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified Uu
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

A REAL-TIME SYSTEM FOR ABUSIV E NETWORK TRAFFIC DETECTION

Georgios Kakavelakis
Lieutenant, Hellenic Navy
B.S., Hellenic Naval Academy, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

March 2011
Author: Georgios Kakavelakis
Approved by: Robert Beverly

Thesis Advisor

Joel D. Young
Second Reader

Peter J. Denning
Chair, Department of Computer Science

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

Abusive network traffic—to include unsoiied e-mail, malware propagation, and denial-
of-service attacks—remains a constant problem in the Internet. Despite extensive
research in, and subsequent deploymenthafsiae-traffic-detection infrastructure, none

of the available techniques addresses pieblem effectively or completely. The
fundamental failing of existing methods is tisgammers and attack perpetrators rapidly
adapt to and circumvent new mitigation techniques. Analyzing network traffic by
exploiting transport-layer characteristics chalp remedy this and provide effective
detection of abusive traffic.

Within this framework, we develop a real-time, online system that integrates
transport layer characteristics into the ergtspamAssasin tool faletecting unsolicited
commercial e-mail (spam). Specifically, vilmplement the previously proposed, but
undeveloped, SpamFlow technique. Wetedmine appropriate algorithms based on
classification performance, training requireadaptability, and computational load. We
evaluate system performance in a virttedt bed and live environment and present
analytical results. Finally, wevaluate our system in the context of SpamAssassin’s auto-
learning mode, providing anfettive method to train the siem without explicit user

interaction or feedback.

THIS PAGE INTENTIONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

INTRODUGCTION. ...ttt ettt et e e e e e e e e e e e e e e e e s e s e s s ebbbebeeees 1
A. SCOPE ...ttt aaaaaaaaaaaan 1
B. (10 7 IS TP PPPPPPUPPPPPPPP N 4
C. MAJOR RESULTS....ciiiiiiiiiiiiiiiiit ettt e e e e e e e e e e e aeaeaaaaeanans 5
D. STRUCTUREottt e s e e e e e e aaaaaeaaaaaeeeseaannns 6
RELATED WORKuutiiiitiiitiiiititet ettt e e e e e e e e s s s st e et e e eeeaeaeaaeaeeaaaassaaannnnnnns 7
A. CONTENT FILTERING ..ottt a e e e e e e 7
1. Naive Bayesian ClassSifier...........ccccovvviiiiiiiiiiicci e 8
2. Support Vector Machines............ooooiiiiiiiiiiiiiieieeeeeeee e 10
3. . D e ——————————— 11
B. COLLABORATIVE FILTERING.......ccoiiiiiiiiiiiiiiiicireeeee e 13
C. REPUTATION SYSTEMSooiiiiiiiiiiieee e 13
1. Identification Method ... 14
2. Feedback Method...........uuuiiiiiiiiiiiiiiieeee s 15
D. TRAFFIC CHARACTERIZATION....uttiiiiiiiiiiiiiiieae e 15
1. Network-Level CharacteristiCS.........oovvvviiiieeeiiiiiiiiiie e 16
2. Transport-Level CharacteristiCsooovvvviiiiiiiiiiiiiii e, 17
ENVIRONMENT-SYSTEM OVERVIEW ...ttt 21
A. VIRTUAL-ENVIRONMENT ARCHITECTURE ...t 21
1. SEIVEE SIHE ... 21
2. ClIENt SIAE.. .o 23
3. NetWOork EMUIALONcooeiieiiiiiee e 24
B. SYSTEM DESIGN.....uiiiiiiiiiiiiiiiiiieeee ettt e e e e 26
1. SPAMASSASSIN .ttt e e e e e 26
2. SPAMFIOW ..t 28
3. SPAMFIOWPIUGIN ... e 28
4. SpamFlow Classification ENgineuuviiiiiiiiiiiis 30
EXPERIMENTAL METHODOLOGY AND RESULTSuuviiiiiiiiiiiiieeeeeeeiiee 31
A. EXPERIMENTS ...t e e e e e e e e e e e e e s e e e e e neeeees 31
B. RESULTS L.t r et e e e e e e e e e e e e e e e e e s anans 33
1. Test-Bed Evaluation.........ccoooioiiiiiiieieii et 33
a. Classification Performancecccccovviiiiiiiiiiiiiiiiiiiieeee 33
b. Throughput — Loadcooiiiiiiiiiii e 38
2. Test-Bed Evaluation Using SpamAssassin in Auto-Learning
1Y [0 o [P PPUPPPPRPPRPRR 39
3. LIVE TESHING «eeiiieieiieieeee et e e e e 44
C. AUTO-LEARNINGottt eee s 48
CONCLUSIONS AND FUTURE WORK ...ttt 59
A. FUTURE WORKcttttiiiiiiitieeeee ettt et e e e e e e e e e e e e aaaeaa s 59
1. System EValUuatioN.......cooooiiiiiii e 59

2. ApPlIcation DOMAINSuuvruiiiiiiiee e e eee e e e e e e e e e eeeeeeananane 61
B. CONCLUSIONS ... e e e e e e e e e e e e e e e et eereeaaaeeeeeas 61

LIST OF REFERENCES
INITIAL DISTRIBUTION

L ST 71

viii

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.

Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.

LIST OF FIGURES

Spam E-mail Detected [From [L]] ...cooooeeeiiiiieeeeeeeii e 2

Virtual-Environment ArChiteCIUIeovvviiiiiiiiie e 22
Dummynet [From [2]]....ccooeeeiiiiiie e 25
SYSEEM ANCHITECIUIE......eeeeeeeeeee e e e e e e as 27
Message Headers wathamflowfeaturescccoevvvieiiiiicciiii e, 29
Test-Bed Evaluation: ACCUIACYcooeiiiiiiiiiiiiiiiiiiiiee et 34
Test-Bed Evaluation: PrecCiSion......... ... 35
Test-Bed Evaluation: RecCall...........coooiiiiiiiiiiiiiciiie e 36
Test-Bed Evaluation Usin§pamAssassin in Auto-Learning Mode:

ACCUIAICY ..ttt ettt et e ettt e e et e e e et e e e ea e e e era e e eennnaeaes 40
Test-Bed Evaluation Usin§pamAssassin in Auto-Learning Mode:

o (=Tt 151 o] o 1RSSR 41
Test-Bed Evaluation Using Spgessassin in Auto-Learning Mode: Recall ..42
LIVE TeSHNG: ACCUIACY .. .cciiiiieeeieeeiiitiiiaea e e e e e e e e e e e e e e et eeeeattba e e e e e e e e e e e eeeeeeeenssnnnes 45
Live TeStiNg: PreCISIONccii ittt a7
Live Testing: RECAIl.......cccooo i e e e e e e e eaaanees 48
Auto-Learning (Threshold=16): ACCUIACY.ccoeeeirieiiiiiiiiiiiiiiiiiiieeeeee 50
Auto-Learning (TBBhold=16): PreciSion.............ccccceeeiiiieeeeeiieeeeeeeiceeenn 50
Auto-Learning (Threshold=16): Recall ... 51
Auto-Learning (Threshold=24): ACCUIACYcevurerrrrrurniiieeeeeeeeeeeeeeeeeennnnnns 52
Auto-Learning (TBBhoId=24): PreciSioN..............cceeeiiiieeeeeeiiieeeeeeiiiiins 53
Auto-Learning (Threshold=24): Recallccccccoeeeiiiiiiiiieeccce e 53
Auto-Learning (Threshold=30): ACCUIACYceerrrrrurrmmniiianaeee e eeeeeeeeeeeeannens 54
Auto-Learning (TBshold=30): PreciSioN...............cceeeeiiiieeeeeeeeeeeeeeeeiiiiee 55
Auto-Learning (Threshold=30): Recallcooovrriiriiiiiiii e, 55
Auto-Learning (Threshold=40): ACCUIACYccoueeiiieiiiiiiiiiiiiiiiiieeeeee 56
Auto-Learning (TBehold=40): PreciSion............ccccceveeiiieeeeeeeeeeeeeeeieeen 57
Auto-Learning (Threshold=40): Recall ... 58

THIS PAGE INTENTIONALLY LEFT BLANK

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.

Table 11.
Table 12.

Table 13.

Table 14.

Table 15.

Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.

LIST OF TABLES

Test-Bed Evaluation: ACCUIACYcooeuiiiiiuiiiiiiaieeee e ettt e e e 34
Test-Bed Evaluation: PrecCiSion..............uuuieeiiiiiiiiiiiiiieeeeeeeee e 36
Test-Bed Evaluation: RecCall ... 37
Test-Bed EvaluatioNaive Bayes Confusion MatrixX...........cccceevvvvvivnnnininnnnnn. 37
Test-Bed Evaluati: C45 Confusion MatriXeeeeveeiiiiiieeeeeeeniiiiiiiiiiinnns 37
Test-Bed Evaluati: SVM Confusion MatriXoeevvvvevvviiiiiiiinneeeeeeeeeeeee 38
SYStEM PerfOrMAaNCEccoviiiii e e e e e aaees 38
Classification Engine CPU UtIliZationoooiiiiiiiiiiiiiiiiiieeeeeeeeeeeee e 39
Test-Bed Evaluation Usin§pamAssassin in Auto-Learning Mode:
ACCUIAICY ..ttt ettt et e ettt e e et e e e et e e e ea e e e era e e eennnaeaes 40
Test-Bed Evaluation Usin§pamAssassin in Auto-Learning Mode:

o (=Tt 151 o] o 1RSSR 41

Test-Bed Evaluation Using Spessassin in Auto-Learning Mode: Recall ..42
Test-Bed Evaluation Usin§pamAssassin in Auto-Learning Mode:

SPAMASSASSIN RESUIES......ouuiiiiiiiiiiiiii e 43
Test-Bed Evaluation Using &pAssassin in Auto-Learning Mode:
Naive-Bayes CoNnfuSION MALIIiXcooeeiiiiiiiiiiiiiiiiiiiiiii e e 43
Test-Bed Evaluation UsingaBpAssassin in Auto-Learning Mode: C45
(@] o110] 0] 1Y/ -1 b USSP 43
Test-Bed Evaluation Usinga@pAssassin in Auto-Learning Mode: SVM
(O70] a1 {UES] o] 1Y/ =1L b PP 44
LiVE TeSHNG: ACCUIACYccceeieeeeeeeeietiiiiieea e e e e eeeeeeeeeeseessasnsaaaeaaaeaaeaeeeeeensnsnnnnns 46
Live TeStiNg: PreCISIONcceeiiiiiiiiiieie ettt e e e e e s 47
Live Testing: RECAIl........ccoi i e e e e e e e e e eeenaannes 48
Auto-Learning (Thrhsld=16): Confusion MatriX.............cccceevvvrverrrirnrnnnnnnnn. 52
Auto-Learning (Threseld=24): Confusion MatriX.........ccccccceeeeieniniiiinininnnns 54
Auto-Learning (Thrbeld=30): Confusion MatriX.............cccceevvvvveriiirnnnnnnnnnn. 56
Auto-Learning (Thrleseld=40): Confusion MatriX.........ccccccceeeeiinnniininniiinnns 58

Xi

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

AS
BGP
CSS
DCC
DKIM
DNS
DoS
FIN
HTML
HTTP

ISP
MAP
MTA
oS
RAM
RPC
RST
RTT
SMTP
SYN
TCP
TOS
XML

LIST OF ACRONYMS AND ABBREVIATIONS

Autonomous System

Border Gateway Protocol
Cascading Style Sheets
Distributed Checksum Clearinghouses
DomainKeys ldentified Mail Signatures
Domain Name System

Denial of Service

Finish (flag)

Hypertext Markup Language
Hypertext Transfer Protocol
Internet Protocol

Internet Service Provider
Maximum A-posteriori Probability
Message Transfer Agent
Operating System

Random Access Memory
Remote Procedure Call

Reset (flag)

Round-trip Time

Simple Mail Transfer Protocol
Synchronize (flag)

Transmission Control Protocol
Type of Service

Extensible Markup Language

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

ACKNOWLEDGMENTS

| would like to express my deepest gradié to my thesis advisor, Professor
Robert Beverly, for his patient guidancedacontinual encouragement and my second
reader, Professor Joel D. Young, for his asle insights and comments. Without their

knowledge and assistance, this thegisild not have been successful.

Above all, I would like to express my love and gratitude to my wife, Dimitra, and
my daughter, Afroditi, for their understandiagd endless love through the duration of

my studies.

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XVi

l. INTRODUCTION

A major use of the Internet is trade axdommerce, and increased reliance on the
Internet for these functions demands increased reliability and security. The increase in
Internet use has led to theodution of technologies thatermit high traffic and improved
network performance with regard to bandwidtid traffic capacity. Abuse of the Internet
infrastructure has unfortunately also incexisin the form of daal-of-service (DoS)
attacks, worms, spam abusive traffic, DoS spam attacks, and so on. Internet abuse is
increasing sociologically as well as tectowtally, with organizectriminals and other
malicious individuals exploiting theotential of network abuse.

A. SCOPE

The scope of this thesis is to: i) dege a real-time, online system, based on the
previous work of [3], that detects abusimetwork traffic associated with unsolicited
commercial e-mail, aka spam; ii) determirtiee most appropriate algorithms for such a
detector; iii) evaluates its performance; andpresents analytical results from running

the system.

Electronic mail (e-mail) is one of the stopopular applicationsf the Internet,
enabling users to easily communicate by exging electronic messages at no upfront
cost, quickly, reliably and e#gs E-mail distribution relies on an infrastructure consisting
of three components: user agents, mail eervand Simple Mail Transfer Protocol
(SMTP) [4]. User agents allow users ttead, reply to, forward, save, and compose
messages, whereas mail servers or message-transfer agents (MTAS) [5] are the core of the
e-mail infrastructure, responsible for thpgoper store-and-forward dissemination of
electronic mail. SMTP is the application pyodl normally used for e-mail exchange and
leverages the reliable transfer properties of TCP [6] to deliver mail from the sender’s
MTA to the recipient's MTA [7]. The e-mail architecture of the Internet is over three
decades old and was designed at a time whenmplicit assumption was that a user

wanted to receive all messages addressed to him.

Unfortunately, this popular communication media has been exploited. E-mail
abuse includes using high volumes of e-mailistribute variougypes of content (as
shown in Figure 1) ranging from produatvartisements to malware and pornography,
delivered to unsuspecting atiis without their consent. These kinds of messages are
known as unsolicited commercial e-mail apam” Abusive e-mail started to become a
problem when the Internet was opened to the public and has increased from
approximately 10% of overall e-mail volume 1898 to a fairly consistent rate of about
88% to 92% today, posing a great burden owly to users but to service providers,

companies, and the network itself [8].

Figure 1. Spam E-mail Detected [From [1]]

The nuisance factor of spam is manifoldislirritating to sift cautiously through
guantities of junk e-mail to find legitimatmessages, and it is a waste of time and
productivity. Besides that, spamay violate user privacypr example, by phishing, in
which the spammer deceives tleeipient by pretendg to be a trusted party and asks for
sensitive information (passwords, credite&canumbers, etc.) [9]. Spam e-mail is a
problem for mail providers because it redussage space and consumes computational
resources [10]. Network performance isgdmled, since bandwild is wasted in

delivering spam e-mail and congestion increases on the links.

Many methods have been proposed to address the increasing problem of spam.
One of the earliest, still used today, rejects messages that originated from senders found
in blacklists—that is, databases, suchSgmmhaus [11] and MAPS [12], that contain
untrusted IP [13] addresses. Content ffiftg, another popular technique, relies on the
assumption that spam messages contain wordshrases that differentiate them from
legitimate e-mail messages. Systems thatths technique check the body and headers
of a message for indicative words or phrasesng either a rule- or learning-based
approach. Rule-based systems are less effdntivause the user has to be involved in the
construction and update of the rules, which is time woisg and error prone. By
contrast, learning-based systems use inaelearning algorithms to automatically
categorize a message as spam or legitimateséleystems need to be trained on a set of
messages in order to extract the features, wordshrases that wilbecome the basis for
classifying messages. Spammers, meanwhile, adapt accordingly and find
countermeasures, such as fake IP addresssmmpromised hosts,sal known as botnets,
to evade blacklisting. To counter contertefing, they use sophisticated HTML- and
CSS-based obfuscation techniguar place the entire meggacontent in randomized
images [14].

Traffic-characterization studies [3, 13,6] try to address these issues by
examining network characteristics associatgth spam behavior at the IP and TCP
level. Studies have shown that spam mgssdrequently originate from specific 1P-
address space regions and autonomous-sy@&&nnumbers. To be more effective and
hide their trails, spammers take advaetarf compromised hosts to send unsolicited

3

commercial e-mail, which manifests itself inesgiic TCP features such as packet drops,
retransmissions, and variable roundtrip tinlR3T) [6]. These techniques are promising
since it is more difficult for spammers toatrt such charactetiss by manipulating the
IP or TCP layer.

The reputation of senders, messages, or flows, and collaboration among systems
and providers can leverage the above teclasig@nd provide a more holistic view of the
methods and behavior that spammers use to obscure themselves.

B. GOALS

The goals of this thesis are summarized as follows:

X Develop a test bed consisting of three infrastructure components: i) the
user agent implementing the clieside of the SMTP protocol and
generating e-mail traffic; ii) the theork emulator, which mimics the
network path and condition charactadstto create traffic analogous with
that of a live network; and iii) the MTA, which implements the server side
of SMTP protocol.

X Develop the user agent, which will take as input messages from a corpus
and replay them in such a way thae can differentiate spam from
legitimate traffic and establish a ground truth when we receive messages
on the MTA side.

X Modify the network emulator so dh it can produce random delay with
meany and standard deviatiofh Create two different traffic schemes: one
that simulates legitimate traffic and one that simulates spam-traffic
characteristics, such as loss of petekretransmissions, and variable RTT.

X Modify our MTA to include the pomhumber along with the IP address of
the sender in the message headees{l#h:Port) tuple will be our message
identifier.

X Integrate SpamAssassin with our MTA; SpamAssasdinbe the host of

our real-time system.

Integrate our system with SpamAssassin by developing a plug-in
(controller) that will control both theflow-analysis engineand the
classification engineFurther, it will aggregate t&from our classification
engines and build the confusion meds that will be used later in the
evaluation process.

Develop our classificain engine in a simpleand extensible way by
utilizing existing technologies such # classifiers #i are provided by
Orange, a statistical- and machinarl@ng software package, and the
XML-RPC protocol for the estalshment of two-way communication
betweercontroller and theclassification engine.

Evaluate the performance of our systeithin the test bed with respect to
accuracy, precision, and recall.

Deploy our system in a live envirommt and evaluate its performance.
Evaluate how our system perfornis an auto-learning fashion. We
describe how we define auto-learning and discuss thdtsein Chapter
IV, Section C.

Discuss future work, such as otheelds of abusive traffic where our

system may be used and enhaneets of the existing system.

MAJOR RESULTS

The major results of this thesis are summarized in the following points:

X

Our system achieved greater than 90% accuracy, precision, and recall in
both the virtual test bed and livenvironment, independent of the
classification method—which indicatésat it can adopand capture any
changes in TCP characteristics.

We achieved a 99% precision rate live testing with as few as 128
training examples, which suggests tisaam flows are characterized by

high entropy, and we achieve small initialization times.

X In auto-learning mode with SVM, we achieved above 97% rates in
accuracy and precision and above 98%recall, with as few as 256

training examples.
D. STRUCTURE

The structure of our thesis & follows: in Chapter Ilve present previous work
in the field of spam filtering and detection and disdiesmachine-learning algorithms
that we use for our classification engines. We elaborate on the test-bed architecture and
system design in Chapter Ill, and in Chaptédiscuss our experiments within the test
bed and the live environment, along with thaleation results. Finally, in Chapter V we
summarize our work and its resufind discuss future work having to do wetraluation,
the detection of other typeof abusive traffic, unsupervised learning, and system

enhancements that will increase usability.

. RELATED WORK

Many methods have been proposed to address the problem of spam. Among the
most popular and widely deployed are @mtt filtering, collaborative filtering, and
reputation systems. We review these firfien discuss emerging work in traffic

characterization, which is most relevant to this thesis.
A. CONTENT FILTERING

Content filters are foundeazh the premise that spam and legitimate e-mail contain
features, in this case, words, that are sta#iflyi distinguishable. lIgeneral, a filter [17]
is a function that takes as input the mesdadgee classified and a model, and outputs a

classification label.

Cspam, If the decision is spamk
fmM @® . Ya
Ceg, Otherwise -
In the context of messaging and binary labels (spam or legitimaiethe message to be
classified,M is the model, andsyamand g4 are the classification labels assigned to the

messagde.

The model can be either rule or leagnibased. Rule-based models consist of
logical rules that have to be continuousjydated and refined by the user in order to be
competent with the dynamic nature ofasp e-mail. Updating rules is problematic
because it is a time-consuming and ofteroreprone process [18]. In learning-based
approaches, the model is the outcome of apglgi training algorithm on the features of a
selected set of labelled training messages. The objective is to create a model that
generalizes to predicting the classificatiohnew, unseen messages. Each message is
mapped to a feature vectarcomposed of message chaeaistics, either textual or
nontextual, from a dictionary formed by anahgthe messages. For textual features [8],
we consider individual words, particular pkes, or overemphasizpdnctuation, such as
“I1.” Nontextual features [8] can be the dam type of the message sender (e.g., .edu or
.com), whether the message was sent vmading list, or whether it has an attached

7

document (most junk e-mail does not, but sonaware propagates via e-mail). Feature
vectors can be constructed by varioushrods. We mention some of them [19]:

X term frequency, where each feature is represented by the number of times
that it appears in a given messagiefo normalized by frequency across
messages)

X binary representation, which indicatebether a particular feature occurs
in the message

X use of a stop list as a supplementargthod to the above. The stop list
contains words like “a,” “and,” “the,” etc., that amet used in the forming
of the feature vector.

X use of stemming as a supplementary method. Stemming reduces words to
their root, for instance “builder,”Build,” and “building” share a common
root. This technique also makes Bomore compact model representation,

while increasing accuracy.

Learning-based filters have been the focus of considerable interest and one can
select from a wide variety ahachine-learning algorithms. We further elaborate on the
three that we used &valuate our system.

1. Naive Bayesian Classifier

Naive Bayes classifiers [20, 21] were ugefil8, 22] as an automated method for
filtering spam, in order to overcome the problems of manually constructing logical rules,
which require users, on one hand, to be clgpabconstructing robust rules and, on the
other, to constantly tune and refine the sule adapt to the continuously changing nature
of spam e-mail. Their experiments revealetpressive results on both precision and

recall.

The naive Bayes classifier is basedlom Bayes theorem and the assumption that
each feature is conditionally independent oférgvother feature, givethe class variable
C. The Bayes theorem is defined as [22]:

o G J G
JG JGP F f|C 0<F:(C @)
PC «|F f J

]
P(F f) ’

where C is the class variable arid is the feature vectopplying the independence
assumption:

JG JG JG JG
PF fI[C «o —PF f|C e,

and by using the maximum a-posteriori prob&pMAP), the basic decision rule can be

defined as follows [17]:

c =classify #, f,..., &

JG JG
= argmaxP C « |F f
k spam ley :
JG JG
PF f|C & PC)8
= argmax 5 év fJV ;
k spam |
pam ley () ©
JG JG 8§
—aigmaxPC «)P FR fi|C e~
k spam ledy T ©

The prior probabilityP C c¢ is given by the ratio ofhe number of examples

that belong in class © the total number of examples. The product of the conditional
probabilities depends on the feature types, whether they are discrete or continuous. If the
features are discrete, the conditional probibi$ the ratio of the number of vectdfs

that have valu§ and belong to clagx to the total number ofectors that belong to class

Ck In the case of continuous values, we assume that they follow a normal distribution and

we have:
JG JG
P F fllC (05 g X ieklPick , V
where
1 x P
X <Py V=—=e ?Y
Vo RSy

is the normal (Gaugm) distribution.

2. Support Vector Machines

Support-vector machines were introduced by Vapnic [23]. The main objective of
SVM is to discover the optimal hyperpladria n-dimensional feature space, such that the
feature vectors of each class exist on the ssideof the hyperplane. For example, if we
take a random-feature vector that iesdr to the featervectors of class; than toc;, it
will reside in the hyperplane side that represents cla3éerefore, after the discovery of
the optimal hyperplane, we will be abledorrectly classify a given example.

A hyperplaneP is considered optimal if it maximizes the minimum margin, i.e., if
the distances of the closest feature vectors of each clas$*fewmequal. Formally, we
can represerR with the equationNuxxG b 0, wherewis the normal vect8rof P, bis a
term that allows the algorithm to choosecaiy all the hyperplanes that are perpendicular
to the normal vectoP, and xis the inner product. The spatteat separates the feature
vectors of each class is defined as thargin between two hyperplanes with the
following equations:

\vJvU b 1,ifci=1
wxi b 1,ifco=-1

Therefore, every training example belongs to ctass WUXXG b lamd to class
Co, ifW %x b Cf Ourdgoal is to maximize the margin. In that way, the classes will have
a confident degree of sepaaatj thus allowing us to make more effective classifications.
So after having found the supporectors, the decision rule to classify an unknown
example is the following:

f xG sign E ayx I§
i1 © *1
wherea andb are used to maximize the margihthe separating hyperplane andy1,-

1} are the classes.

1 A hyperplane in Ris a point, in Ris a line and in Ris a proper plane.
2 Normal vectorWis perpendicular to the hyperplane.

10

The vectors, however, are not always lmeaeparable, so we have to apply a
transformation function (10) : R) F from the n-dimensional feature space to another

feature space. In that case, the decision rule becomes (1):

>1

G n
f x sign ! ayK gx §
h ©

where K)q,gq; G} X X)xG is the keczarnel function.

3. C4.5

C4.5 [24] is an extension of the ID&dsion-tree algorithnjesigned to address
ID3 issues, such as the handling of cambius attributes, avoiding overfitting data,

reducing error pruning, hahidg missing values, etc.

The algorithm evaluates an unknown feature vector based on the following
strategy: initially, it selects the best feature as the root of the decision tree. For every
different value of the feature, it createsl@scendant node, which consists of all the
vectors that contain the specific feature vallld@s whole process is repeated recursively
for each feature node in the decision trfElee process ends when one of the following
conditions is met:

1. all vectors of the current node belong to the same class or

2. all features are used

How well the decision tree will performepends on the selemt process of the
best feature. This will allow us to have a better clustering for each class of examples. A
suitable measure for the evaluation of theuesd, and therefore for the selection of the
best feature, is the information gain (IG) ofatribute A [25]. If we define S as the set
of training examples, then the mathematicaepresentation of IG is given by the

following formula:

S
IG(A) Entropy S ' uEntrop)(S), where
v-VaILIJes{ A |S|
Entropy(3 : plog, p

il
Values(A) is the set of attribute A values, Swaisubset of S that contains the examples

11

with attribute A having value \and pi is the ratio of the mber of examples that belong
to class i to the total numbef examples. Entropy represents the amount of information
that is provided by the attribute and, in imf@tion theory, is measured in bits [25]. Our
goal is to maximize the 1G of the selecwtribute by minimizing the entropy of Sv, or,

in other words, by reducing the number of bits.

Information gain, however, has the disadeget that it selects attributes with a
large set of values. To overcome this shmrtmg, Quinlan [26] suggests utilizing the
information-gain ratio, which is formalized as follows:

IG(A)

GR(A W where
Alg
IV (A) : Hlogz%,

and Si are the subsets of S that contain ateil with value i. So, again, our goal is to
find the attribute that maximizes the above ratio.

Drucker et al. [19] evalted both the SVM and C4.5 algorithms on the spam
problem, reporting acceptable results in tewhsccuracy. Furthermore, Blanzieri and
Bryl [27] improved the accuracy of the SVM filtering technique by leveraging the
phenomenon of locality in spam [17].

Spammers, however, can easily evade content filters through different techniques,
such as misspelling words, inserting HTML tags inside words to avoid detection of
typical spam keywords, or lately, encapsinig the spam message inside an attached

image, better known as image-based spam [28].

Furthermore, the user is another factat tthetermines the performance of content
filters. Users can give feedback to the systems by reporting false positives and false
negatives in order to retrain the classifiefbe major concern with users is that their
classification is subjective and subject to erEvery user has a different notion of which
e-mail is spam. Most of them classify an e-mail as spam not objectively, based on the
definition of spam as unsolicited commeragamail, but rather, subjectively, based on

the fact that it has no interest to them [29].

12

B. COLLABORATIVE FILTERING

Collaborative filtering addresses the problem of the user’s subjective assessment.
This technique is based on the idea tthamany users collaborate and share their
subjective assessments of an e-mail, tbay be leveraged to create a more objective
classification on that specific e-mail. The larghe number of users that collaborate, the
better the results will be. For example, tiser decides to repatmessage as non-spam
when the application knows that 10,000 users have reported it as spam, the application
will ignore his suggestion. But if the numbest votes is smallthe objectivity of the

suggestion is in doubt.

In a collaborative system [29], whenever a user receives an e-malil, a filtering
application suggests a classification for theat. either spam or not. Then the user can
decide whether to accept this suggestion or denf/the user classifies the message as
spam, a signature is computed for thamhait and is reported to a collective knowledge
base. If the signature matches a known signaititbe database, it is then regarded as
spam.

The robustness of the filter dependseatly on the signature algorithm.
Spammers, in order to evade collaborative-filtering techniques, change at random small
portions of the message, withe intention of making eacdpam message unique. If the
signature algorithm fails to ignore such small randomizations, it will produce different
signatures for the same message. For gredtestoess, algorithms have been developed
to be more content aware, so that uningoar changes do not alter the signature. For
example, Razor [30] uses short-lived signatusbere the signature is based on text that

is selected from the spam message, basedrandom number that changes regularly.
C. REPUTATION SYSTEMS

All transactions on the Internet today are covered by the umbrella of relative
anonymity. This allows users to act maliciously without any consequences. Reputation
systems try to solve this problem by deyeng trustworthy riationships between

producers and consumers. Their goal is to assign a reputation score to an e-mail entity.

13

For this to be accomplished, these systewollect feedback from users, create a

behavioral profile, and assign a score based on previous behavior [31].

Reputation systems can be categorized f&Xording to two characteristics: the
method of identifying the semdy entity and the type ofeedback that is further

processed.
1. Identification Method

Entity identification is accomplished by using either the content or the address of
the message. Systems that are founded on content-based identifiers use a form of
fingerprint to establish a goambrrelation between messagedaentity. We can define a
fingerprint as a many-to-onmapping. A good fingerprinting algorithm must not be
susceptible to message mutation. Thus, istnmap many similar messages to the same
fingerprint while not mapping any additional messages to the fingerprint [32]. Razor [30]
and DCC [33] are two such systems thatfusgerprinting to identify a message sender.

Address-based identifiers can be andédress, sender domain, or the entire
address of the message (IP and domain). Sydteanhsise the IP address as an identifier
have as a back end real-time databases,hwduery in order to find out whether the IP
address is blacklisted. These systems banconsidered binary reputation systems
[38] since they do not give a score but ayesinswer. The disadvantages of this method
[31] are that a legitimate host can be compromised and used to send spam messages, its
IP address can be hijacked, and legitimate users can share IP addresses with others that
send spam. Furthermore, Ramachandran et al. [15] showed that as much as 35% of spam

messages were sent from IP addresses that were not included in blacklists.

As mentioned, another type of addréssed identifier that reputation systems
can use is the sender domain. Sender-authentication schemes, e.g., SenderID [34] and
DKIM [35], prevent domain spoofing. Sentl2 is a path-based technology in which
domain owners publish DNS TXT records thadicate which IP addresses are allowed to
send e-mail on behalf of a given domain. DKik a crypto-basetechnology. The sender
signs the message with a private key assedgiatith the domain and the recipient uses

the public key advertised in the DNi&verify the sender domain [31].
14

2. Feedback Method

Reputation systems use two typed$esdback: reactive and predictive.

We define reactive feedback [3Hs the feedback provided by humans or
automated means such as spamtraps, honeypatsher filtering systems. Examples of
such systems are real-time blacklists and collaborative-filtering systems like those
mentioned above. We must, however, ensuaé tthe feedback provided originates from
legitimate sources. In other words, we gsnestablish a reporter’'s trustworthiness,

otherwise the data are susceptible to malicious or accidental pollution.

Predictive feedback has to do with bunlgl behavioral-featw vectors based on a
vast amount of observed activity for given itiers [31]. The behavioral characteristics
can be extracted from statistical propersash as volume, frequencand distribution of
identifiers or relations among identifiers. Aaxample of a system that uses statistical
properties is DCC, which uséise message fingerprint as an identifier and measures the
volume of reports for each fingerprint. Ifethvolume exceeds a certain threshold, the
message is considered spam. Further, Letbal. [36] assign a reputation score to a
message based on statistics for each IP agldfethe SMTP path. The statistics are the
number of spam or legitimate e-mailg fwhich each IP address on the SMTP path
appears. Goldbeck and Handler [37] use gbeial network of usrs and user-assigned
reputation scores for people they know tolda large reputation network, from which

they can infer recursively a reputatiorose for the sender of a message.

Reputation systems, however, face somf@icdities. First of all, there is no
standard to define what constitutes a repariascore, so each vendor uses different
criteria; and second, there is no centraligkghringhouse of reputations, which makes it

difficult for vendors to exchange reputation scores [38].
D. TRAFFIC CHARACTERIZATION

Traffic-characterization methods are ecent novel approacto differentiating
sources of abusive traffic. Several prior woake directly relevanb our research. These

methods try to identify spam by leveraging the network or transport-layer properties.

15

Whereas spammers have thaligbto alter the content of a message or spoof an IP
address or sender domain, they have mesk power to forgametwork (e.g., IP) or
transport-level (e.g., TCP) properties.

1. Network-Level Characteristics

Ramachandran et al. [15] examine the spamming behavior at the network layer
(IP layer) by correlating data collectecrn three sources: a sinkhole, a large e-mail
provider, and the “command and control” @fBobax botnet. More specifically, they
focused on the following network-level properties:

X IP address space from which spam originates

X autonomous systems that sent spam messages to their sinkhole

X BGP route announcements

With respect to IP address space, their findings showed that spam and legitimate
e-mail originate from the same portion of thealiress space, suggesting that it is not a
good discriminating property. Autonomous-systéAS) utilization, on the other hand,
showed that spammers use different ASslisseminate their load as compared to the
ASs that legitimate e-mail is sent from—whisuggests that it could be a promising

feature for filtering systems of spam messages.

Hao et al. [16], however, showed that AlSne as a feature may cause a large rate
of false positives. Their work focused ortrexting lightweight features from network-
level properties such as geodesic distabeéveen sender and receiver, sender IP-
neighborhood density, probability ratio of spam to hanthattime of day the packet
arrives, the AS number of@rsender, and the status of og®rts on the sender machine.
Their feature-selection process showed thatiABie most influential feature, but when
used for classification yields a false-postikate of 0.76% under a 70% detection rate,
which suggests that it should be used in doation with other features. Further studies
[39, 40] have shown that a spammer can euad technique by advertising routes from
a forged AS number [16].

16

2. Transport-Level Characteristics

In a spirit similar to Ramachandraat al., Beverly and Sollins [3] explored
transport-layer characteristics in order to determine whether spam e-mail presents
different behavior from legitimate e-mailheir idea is based on the premise that
spammers have to send large volumes of e-mail to be effective, which suggests that the
network links involved would experience contention and congestion. Therefore,
transport-layer properties such as numbdosif segments and the roundtrip time (RTT)
would have different metrics in such a camtiious environment, allowing discrimination

between spam and legitimate behavior.

The features that they used to evaluate the transport-layer properties are the
following:

X number of packets

X retransmissions

X packets with RST bit set

X packets with FIN bit set

X number of times zero window was advertised

X number of times mininm window was advertised
X maximum idle time between packets

X initial roundtrip time estimate

X variance of inter-packet delay

Among those features, the feature-seten process showed that RTT and
minimum-congestion window are the most disgnatory. Their analysis revealed that
50% of spam messages have an RTT greén 200ms, which correlates with the
findings of Hao et al. [16] that showed trsgtam messages travel longer distances than
legitimate ones. As for the performance of ttlassifier, the evaluation showed that it

exhibits more that 90% accuracy and precision.

Moreover, Ouyang et al. [41] conducted a large-scale empirical analysis of
transport-layer characteristics on 600K+ mgssa based on the work of Beverly and

Sollins. They expanded the feature set tdude other features such as the operating
17

system of the remote host, the advertised window size in the SYN packet from the remote
host, and variance of RTT. Among the mdg&criminating features between spam and

ham, their analysis revealed three-way-handshake, time-to-live, idle time between
packets and variance of inter-packet delay. Performance-wise, they showed that
transport-layer features are stable over time and can classify spam with 85-92%

accuracy.

Esquivel et al. [42] suggestéelveraging transport-layeharacteristics to defend
against spam at the router level using a digeabased defense mechanism. For this to
be accomplished, the mechanism has toligetweight so that it does not impose
overhead on the router; that the signatures have to k&ateless and require a small
amount of memory. TCP fingerprints wepeoposed as signatures because they are
lightweight, can be computed on a single TCP SYN packet, and are very few in number,

so they can be stored without afuoverhead incurred on the router.

They experimented on two live e-mailtdasets that included both spam and
legitimate e-mail messages. They up€f [43] as the tool to extract signatures from a
packet capture. They discovered common signatures across both data sets for spam e-
mails; however, in the case of legitimate e-mail messages, no common signatures were
revealed. Noteworthy was the fact that manyhef top signatures ed by hosts to sent
legitimate messages are also used by hostsrtd spam, which is evidence that they have
changed some of the OS configurations. Furthermore, they observed that the spam
signatures were stable overpariod of several months for both locations. As far as
performance, analysis showed that routeelditering with TCP fingerprinting can filter

28%—-59% of spam messages vath.05% false-positive rate.

Another approach on traffic characiation was proposed by Schatzmann et al.
[44]. They focused on the tweork-level characteristics of spammers, but from the
perspective of an AS or ISP. Their ided&sed on the assumption that a large number of
e-mail servers perform some level of piieefing (e.g., blacklisting). This knowledge

however, remains local at the server angetieling on the server configuration or the

18

policy that is in effect, each ser would perform differentlylf we had access to that
knowledge, we could analyze it and use itirtgprove the overall performance of the

Servers.

Schatzmann et al. showed that tlisal knowledge of pre-filtering decisions can
be collected using flow-size information likgtes per flow, packets per flow, or average
bytes per packet instead ofamining the server logs. They gathered data within a three-
month period from border routers of a majPlserving more than thirty universities and
government institutions. Their analysis showhdt 95.64% of the sessions that failed
had flows with less than 322 leg, 96.99% of the sessionsthvere rejected had flows
from 322 to 1559 bytes (cosponding to the SMTP enlepe), and 97.16% of the
sessions that were accepted had flowgrehter than 1559 bytes. So just by byte count

we can estimate the filtering decisions of mail servers.

They further validated their claim on atwerk-wide scale with fifty active mail
servers that used blacklisting and whitelistifige results showed that the traffic rejected
by blacklisting had flow sizes betwe&22-1559 bytes, which concur with the above
findings, and more than 90% of the acceptedi8Messions had flow sizes greater than
1559 bytes. Leveraging this knowledge, they further proposed a reputation-rating system
of e-mail senders. This intuition is based the fact that when a server rejects in a
consistent manner, it implicitly applies &ing on the specific client. These ratings can
be used to build a col@rative-rating system, wheithe system would recommend
acceptance or rejection of &MTP session based on the collective behavior of all the

Servers.

19

THIS PAGE INTENTIONALLY LEFT BLANK

20

[lIl. ENVIRONMENT-SYSTEM OVERVIEW

This chapter describes the architectaggbroach we followed for our system and
environment. We evaluated our system both a virtual test bed and a live-test
environment. A virtual test bed providessights about the behavior of a system and
allows for more controllable conditiongllowing us to reach more reliable and
reproducible results [2]. Ougoal was to evaluate our sfgm under high-traffic-rate
conditions and measure characteristics such as throughput and system load. This is
especially appropriate when deploying the eystn a resource-constrained environment

such as a router.

Live testing, on the other hand, is important because it reveals how the system
interacts with possibly unknown featurestoé external environment [2]. We deployed
our system in a live environment from Jary25, 2010 to March 2, 2011 and collected a
trace of 5,926 e-mail messages. Section A dessrihe architecture of our virtual test-
bed environment and Section B discussesdiésagn of our real-tie, abusive-network,

traffic-detection system.
A. VIRTUAL-ENVIRONMENT ARCHITECTURE

An overview of our virtual environment is shown in Figure 2. It consists of three
building blocks: the client side, server side, and network emulator. The client side
generates the required SMTP [4] traffic, which is then received, analyzed, and classified
on the server side. The role of the network emulator is to simulate congestion, in the form
of longer delay, delay variance, retransmissi@ts., that large volumes of spam traffic

will cause on the link.
1. Server Side

The server side consists of two virfumachines: one acting as the DNS server
and the other as the mail server (MTA)r Bar DNS server, we used BIND [45], and for

our mail server, Postfix [46].

21

Figure 2. Virtual-Environment Architecture

Furthermore, we installed SpamAssadgii] and SpamFlow [3] in the virtual
machine that hosts the mail server, in order to achieve real-time, traffic-analysis
functionality. More specificayl, we integrated SpamFlow into SpamAssassin by
developing a Perl plug-in soahSpamFlow could analyze SMTP packets, build the flow

for each message, and extract theasponding TCP features in real time.

Further, we have a libpcap [48] process that is ngim promiscuous mode to
assist SpamFlow in accomplishing its taskscollects all passing traffic from the
interface it is listening on and writes them to a file, which is rotated at a specific rate to
avoid large files and still not miss packetattbelong to a message we haven't processed
yet. Note that in the future, we plan riwore tightly integratehe promiscuous packet
capture with SpamFlow by storing flow features in memasypossible to avoid file

system performance overhead.

For classification, we developed a sddier in Python using Orange [49], a
machine-learning library for Python. See $mtiB for the implementation details of the
classifier and the approach we selectedestablish a communication path between
SpamFlow and the classifier.

22

2. Client Side

The client side also uses two virtualachines that accommodate the task of
generating the appropriate SMTP traffic. Eatient consists of an e-mail replayer and
the 2005 TREC public spam corpus [50] containing 92,187 messages, of which 52,788
are spam and 39,399 are legitimate. The cocpnsists of an index file and a directory
structure with the messages. The indexdoatains the path and label—spam or ham—
for each message, which we use to embyround truth. One issue that we had to
address during our design was the limitedPT€phemeral-port rangbat the operating

system enforces with regard to the volumheur corpus, as we discuss further below.

For the purpose of generating our SMTHfitawe developed in Python [51] an
e-mail replayer which performs the following tasks:

X takes as input each message from augrextracts the headers, and adds
as recipient a valid user ofir virtual-network domain

X adds another helper header that corstéine label of thenessage in such a
way as to not trigger SpamAssassml &nables us to &blish the ground
truth during our analysis process

X establishes an SMTP session with our mail server

X sets the type of servicao§) field in the IP header of each message to
some value, depending on its clasbus spam and legitimate messages
have different tos values, which allows us to redirect them through
different paths in our network emulator

X finally, the replayer transmits the message

As mentioned above, the operating systlimits the range of ephemetalorts a
host can use. In our case, the range of available ephemeral ports is from 32,768 to 61,000,
which allows us to establish 28,232 uniqi€P connections. The total number of
messages we want to transmit, howeer92,187, many more than the available

connections. This is a problem because wethe IP:Port tuple to identify the message,

3 Ephemeral ports are temporary ports assigned by a machine's IP stack, and are assigned from a
designated range of ports for this purpose.

23

build the flow from the message packets that correspond to the given IP:Port tuple, and
extract the features. As a solution, we usea virtual machines and manually bound the
interface to a port using our own ephen@t range. Applying these two approaches,
every message was mapped to a unique 4-{splger IP, server port, host IP, host port),
which allowed us to uniquely identify eachessage on the serveide and extract its
corresponding flow features. We could have adopted another approach and used the
message identifier instead, which is unidaeevery message. This approach, however,
would require making a deep packet inspectmretrieve the message identifier, which
implies more computational time, and we would lose the lightweight principal from our

system.
3. Network Emulator

Emulators are tools that gerate appropriate network-environment characteristics
to allow for protocol or agdpation evaluation. In our caseur goal is to reproduce the
TCP characteristics that spam TCP traffic exhibits, such as TCP timeouts,
retransmissions, resets, and highly variablendtrip time (RTT) esmates [3]. For our
evaluation, we selected Dummyrg2], a publicly available tool that allows packets to
pass through virtual network links to iotluce delay, loss, bandwidth constraints,

gueuing constraints, etc.

Dummynet [2] comprises two main cponents: an emulation engine and a
packet classifier. The emtilan engine (Figure 3) guipe as we will call it, consists of a
finite-size queue, a scheduler, and ampmnication link with fixed bandwidth and
programmable propagation delay. We can baild network envisnment by configuring
the main parameters: bandwidth, queue gizeuing discipline, rad propagation delay.
Traffic is passed to the pipe using the packet classifier, whigh matches packets

according to a predefined rulet sad applies apppriate actions.

24

Figure 3. Dummynet [From [2]]

Once a packet is inserted into the pipe, it is queued and drained at a rate

corresponding to the link’'s bandwidth The next stage for the packet is the
communication link, where it stays for a tirﬁléequal to the propagation delay of the

link. The packet is reinjectedtmthe network stack after time expires. As a result of

this process, the pipe will delay each pacibdaay a timer, | Q‘é t,, wherel is

the length of the packetg is the queue size, anB and b are the bandwidth and

propagation delay of thenlk, respectively [2].

As mentioned above, Dummynet introdueeBxed amount of propagation delay
into the link, which induces difficulties in Bieving a variable RTT, as would be present
in a congested environment. To addressphiblem, we modified Dummynet to provide

random delays based on a normal distribution with mé&and standard deviatiorl.

More specifically, we set up Dummynet to oduce a mean delay of 150 ms with 50-ms
standard deviation for spam traffic that or@fies from the replayer and is destined for
the mail server, and a 40-ms mean delay ®#fh ms standard deviation for legitimate
traffic in both directions. We introduced delay in legitimate traffic in order to avoid

overfitting our model.

To emulate timeouts, retransmissions, and resets, we applied a random-packet-
drop policy on the pipe. While we recognitteat our modificabns to Dummynet only
partially emulate a congested network (Btample, loss events are independent—an

assumption that does not hold true in alrgueue), our goal in the emulation

25

environment was to enable testing. Speally, as mentioned above, the environment
provides a means to emulate high-ratdfitaand evaluate performance, throughput,
system load, etc. on representative traffic.

B. SYSTEM DESIGN

An overview of our real-time system is@vn in Figure 4. It comprises four main
components: SpamAssassin, SpamFlow ¥sial Engine, SpamFlow Plug-in, and the
SpamFlow Classification Enge. We refer to SpamFlow Analysis Engine, SpamFlow
Plug-in, and SpamFlow @ssification Engine aspamflow plugin, and classifier,
respectively. Furthermore, we have a safg process running in promiscuous mode,

which captures every packet of the SMTBssen using libcap and stores it to disk.

Every message received by the mail server is processed by SpamAssassin and
then piped tglugin, where we extract the identificatidaple (host IP adéss, host port
number) from the message and then passspamnflowfor feature extraction. Thereafter,
plugin is responsible for communicating withassifier for the classification task. We

describe each component in mdegail in the following subsections.
1. SpamAssassin

Sp