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ABSTRACT 

The current surface mine countermeasures (MCM) fleet is aging, yet there are no viable 

systems to replace it. The U.S. Navy requires an improved minehunting platform, and 

unmanned underwater vehicles (UUVs) can meet that need. In order to attain enough 

UUVs and operators to make these missions successful, the United States must rely on 

the participation of allies to provide these assets. This study assesses the key decision 

factors in mine clearance operations using UUVs of differing capabilities. It uses a 

discrete-event simulation to model the performance of UUVs in a large-scale MCM 

operation. Data is generated using a state-of-the-art design of experiments and analyzed 

to find the best tasking plan for the scenario. The results show that with proper tasking, 

UUVs with lesser ability levels can be used appropriately and still produce acceptable 

levels of mine clearance, usually more quickly than a smaller cadre of highly capable 

vehicles. This study finds UUV altitude, track spacing, number of passes, and search 

speed to be decision factors that influence minehunting results, while track spacing, 

number of passes, search speed, and resupply are influential factors that effect mission 

completion times. 
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EXECUTIVE SUMMARY 

Mines are the single most effective and cost efficient weapons known to naval 

warfare. They are vicious tools that can block all sea trade and prevent security and 

supplies from entering a particular region. Minefields can take weeks, months, or even 

years to clear, with no real certainty of completion. To underestimate the capability of 

today’s mines can prove fatal.  

The current surface mine countermeasures (MCM) fleet is aging, yet there are no 

viable systems to replace it. The U.S. Navy requires an improved minehunting platform 

and unmanned underwater vehicles (UUVs) can meet that need. The U.S. needs support 

from the international community to provide MCM Commanders with enough UUVs and 

operators to make these missions successful.  When countries form new partnerships with 

the U.S. it remains difficult to assess their abilities to execute MCM.  This unfamiliarity 

makes tasking their UUVs challenging, because their skill level is unknown. 

This study show evidence that it is possible to use an efficient planning design to 

incorporate all international UUV assets, attain desired clearance levels, and finish in a 

reasonable timeframe. A discrete-event simulation is used to model the execution of an 

MCM scenario.   

The model is written in Python programing language and the flowchart in Figure 

1 shows the logic and sequence of events. The first part of the simulation is constructing 

the Q-route, and setting the simulated mines. UUVs then drive search tracks inside the Q-

route until the coverage is complete. Following the search, a post-mission analysis is 

conducted to detect and classify all mines as mine-like contacts (MILCOs) and all non-

mine mine-like objects (NOMBOs). Next, all bottom contacts are reacquired and 

identified using a star pattern UUV search. Once all mines are identified, the explosive 

ordinance disposal (EOD) dive platoons neutralize them. 
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Figure 1 Flowchart showing the for the MCM UUV model. 

Data is generated using a state-of-the-art design of experiments and then analyzed 

to find the best tasking plan for the scenario. The results found that UUV altitude, track 

spacing, number of passes per track, along with search speed, all influence the post-

mission analyst’s ability to detect bottom objects. The decision factors that effect mission 

completion times are: search speeds, number of passes, and track spacing.  These factor 

settings were manipulated using a robust design so that the proportion of undetected 

objects and MCM mission completion times were both minimized. 

Another simulation was conducted to focus solely on the performance of 

American MCM operations.  In this scenario only UUVs with outstanding capabilities are 

used, but in far fewer numbers than the coalition simulation.   

The comparison of results shows that the coalition force outperforms in both 

detection effort and overall mission completion times. These results provide evidence that 

a coalition UUV force is more than qualified, even with a mix of experience levels and 

capabilities. 
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I. INTRODUCTION 

Freedom of navigation has been a pillar of global commerce throughout history. 

To this day, the majority of goods and crude oil flow from nation to nation by sea. Sea 

lines of communication (SLOC) provide merchant traffic with routes through open ocean, 

as well as narrow straights and territorial waters. These routes are protected under the 

United Nations Convention of the Law of the Sea of 1982 (UNCLOS). The UNCLOS 

states that all nations have right of innocent and transit passage through international 

waters and exclusive economic zones as long as the transiting ship poses no physical or 

economic threat to the coastal nation (United Nations, 2015, p. 31). The United States 

Navy is dedicated to upholding these laws by maintaining freedom of the seas for all 

nations in good standing with the United Nations. This commitment helps ensure a more 

stable global market, as well as provide access of United States military forces to coastal 

nations, both friendly and hostile. 

A. BACKGROUND 

Naval mines pose one of the greatest threats to free navigation of the seas. A 

single mine could potentially close entire ports, straits, anchorages, channels, or any other 

bodies of water. They are small and extremely difficult to find, making it is nearly 

impossible to determine how many mines are in a designated area. Therefore, the mined 

waterways must undergo extensive de-mining operations before the minefield is clear and 

normal traffic can resume. For this reason, it is sometimes advantageous for a nation to 

falsely declare an area to be mined, because the slightest uncertainty will force an enemy 

halt their current mission and deal with the potential mine threat. 

Mine countermeasures (MCM) are naval operations devoted to removing sea 

mines. It is a vital mission area for the U.S. Navy. The U.S. Navy maintains a strong 

MCM force, with surface ships, helicopters, and underwater systems, all structured to 

locate and destroy mines. New technologies allow for safer and more reliable systems to 

replace the older systems. The Littoral Combat Ship (LCS) MCM Mission Module is one 
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of these new systems. However, the LCS MCM Mission Module program is significantly 

behind schedule. A potential answer is temporarily replacing Avenger-Class ships with 

unmanned underwater vehicles (UUVs) until the LCS MCM Mission Module is ready. 

This solution is viable, but needs large numbers of UUVs and operators from partnering 

nations around the world. 

1. Threats 

While mines are designed to inflict significant damage to ships, even strategically 

placed mines are not necessary intended to strike any vessel in particular. The threat 

alone attains the desired outcome. They prevent the flow of marine traffic. They can be 

used to prevent enemy forces from entering a coastal nation’s waters. Naval mines can 

also be used offensively by blocking another coastal nation from entering and leaving 

their own port. This tactic is not a permanent solution, but mining can give the mining 

nation valuable time to prepare other military forces (U.S. Joint Chiefs of Staff, 2011, 

p. II-7). 

Naval mines exist on a broad spectrum of sophistication. The most simple naval 

mine is the contact mine. These mines are moored to the ocean floor and are suspended in 

the water. They detonate on impact with a ship. There is no internal logic or sensor. Due 

to their simplicity, they are the cheapest, but also the easiest to remove. Influence mines 

are more complex than contact mines. They have different types of sensors that can target 

specific types of ships. Sensors can react to vibration, magnetism, and pressure. They 

generally sit on the ocean floor and wait for ships to pass over them. Every ship class is 

unique and each engineering plant creates different mechanical vibrations. The different 

amount of metal generates a different magnetic signature. Each ship’s hull produces a 

different wake. The influence mines can be tuned to target specific ship classes. 

Minesweeping is a mine countermeasure operation that aims to destroy mines 

without knowing exactly where the mines are located. The de-mining ships or aircraft 

drag equipment that emits the specific magnetic signature, vibration, or pressure in order 

to mimic military ships. The goal is to trigger the mines along a certain path so that the 
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real ships can pass through a cleared area. Minesweeping is quick and easy, but easy to 

dodge. Smarter mines are equipped with ship-counters, which is a built-in function that 

counts the number of ships that pass above. It allows the minelayer to deceive the 

demining force by not detonating on the first few passes. It will detonate only after a pre-

determined number of passes. This mine counter-countermeasure creates ambiguity for 

the de-mining nation, and the resulting uncertainty prevents the assurance of safe 

passage. Therefore, minesweeping is a very effective last resort countermeasure, but is 

not the primary means to clear a minefield. The only way to clear mined waters is to find 

all mines in a path and destroy them (U.S. Joint Chiefs of Staff, 2011, p. IV-8). 

2. Defense 

Finding and destroying mines is the process known as mine hunting. Unlike 

minesweeping, mine hunting uses sensors to search an entire region of water. Bottom 

objects are detected. If during the classification process, an object’s sonar echo is mine-

like in shape, but assumed not to be a mine, the object is then categorized as a non-mine 

mine-like bottom object (NOMBO). If the object shape is mine-like, then the object is 

classified as a mine-like contact (MILCO). That contact is then carefully inspected, either 

with camera, lasers, side-scan sonar, or explosive ordinance disposal (EOD) divers. If the 

visual inspection identifies a mine, then it can be neutralized, usually by a controlled 

detonation. 

Mine hunting is a very tedious procedure. It takes a lot of time and effort. Even if 

the search area is completely covered, there is still a chance that some mines will not be 

found. To minimize the chance of missing mines, a higher level of effort is required to 

raise the percentage of clearance. In order for the mine threat to be considered cleared, 

there must be a high confidence that all mines are removed. Sometimes a desired 

clearance level is not possible due to environmental conditions. This is usually 

determined by the amount of bottom clutter and type of seabed. A heavy bottom clutter 

and a rocky bottom lower detection and classification rates. A hard seafloor reflects more 

sound than a soft bottom; this echo diminishes the SONAR clarity and makes detection 
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challenging. A highly cluttered bottom makes classification difficult and leads to 

incorrectly classifying non-mines as MILCOs and mines as NOMBOs. Conversely, fewer 

bottom objects and a soft bottom make detections and classification easier.  

The MCM force is composed of three subgroups: Air MCM (AMCM), Surface 

MCM (SMCM), and Underwater MCM (UMCM). AMCM uses MH-53E helicopters to 

conduct minesweeping and minehunting operations. UMCM uses EOD divers, marine 

mammals, and unmanned underwater vehicles (UUV) to conduct clearance and 

neutralization operations. SMCM is composed of the Avenger-Class ships. SMCM 

provides the most sustainable platform to conduct all forms of MCM. The Avenger-Class 

ships are also equipped to deploy some UMCM assets. Additionally, the ships are 

equipped with the manpower to remain on task during extended operations, day and night 

(U.S. Joint Chiefs of Staff, 2011, pp. E-2 - E-4). 

The Avenger-Class ships conduct minehunting operations by first entering a 

minefield with high-definition sonars pointed in the forward direction. This approach 

allows sonar operators to scan the water directly in front of the ship before advancing. 

This keeps the ship safe from potential mine detonations. If a mine is detected, it can then 

be identified and neutralized. When directed to identify and neutralize a mine-like 

contact, the ships deploy the mine neutralization system, either the AN/SLQ-48 Mine 

Neutralization Vehicle or the SeaFox. Both systems are remotely operated and guided to 

the mine-like contact using their sonar reflections. Each system has a built in camera used 

to visually inspect the contact. The object can only be identified as a non-mine after 

visual inspection. If it is positively identified as a mine, or uncertainty exists as to 

whether it is or is not a mine, then the AN/SLQ-48 will place an explosive package next 

to the mine. The vehicle is then recovered and the package and mine are detonated. The 

difference between the AN/SLQ-48 and the SeaFox system is that the SeaFox will 

detonate itself along with the mine. It is both a sensor and a munition. Both of these 

systems are very effective in conducting mine clearance (Federation of American 

Scientists, 1999). 
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The future surface MCM platform is the MCM mission module for the Littoral 

Combat Ship. This system conducts the full detect-to-engage (DTE) sequence for bottom 

influence mines. Included in the MCM module is the Remote Minehunting System 

(RMS). It is composed of the Remote Multi-Mission Vehicle (RMMV) and the AQS-20 

sonar. The RMS navigates to the area of interest and drives tracks while the ship remains 

outside of the minefield. Once its mission is complete, the RMS is recovered and its data 

are downloaded for post-mission playback. This playback is referred to as post-mission 

analysis (PMA). An operator inspects the sonar data, looking for mine-like contacts. All 

contacts are reported and neutralized later by the embarked airborne assets. 

The MCM mission module is currently scheduled to be available in 2015; 

however, most recent testing suggests otherwise. Early in fiscal year (FY) 2015, several 

key issues were identified with the RMS. The mean time between operational failures is 

34.6 hours, rendering the system officially unreliable. The failure is described as erratic 

and undesired movements. Additionally, the Independence Class LCS is having problems 

recovering the RMMV. The RMMV is not the only system failing to meeting 

performance benchmarks. The AQS-20B is scheduled to replace the AQS-20A in 2015. 

This upgrade includes replacing the side-scan sonar with forward-looking sonar and 

synthetic aperture sonar (SAS). These improvements increase resolution and diminish 

altitude distortion caused by irregular sonar echoes. This program is also having issues, 

and may not be completed in 2015. Until the RMMV and AQS-20B issues are resolved, 

the RMS operational test cannot be completed onboard LCS (Seligman, 2015). 

These poor results were followed by Congress’ decision to zero out the RMS 

budget for FY-2015. There is speculation that this decision may be grounds to abandon 

the current RMS program and start fresh. With all of the issues plaguing the MCM 

mission module, is not likely that an MCM capable LCS will be available in the 

foreseeable future. Therefore, the Avenger-Class ships will remain the main MCM 

platform (Seligman, 2014). 

The Avenger-Class ships are approaching the end of their service lives. Due to the 

urgent operational needs of combatant commanders, the decommissioning date will likely 
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be postponed indefinitely, and legacy systems will continue to be funded and upgraded as 

necessary (Allen, 2013). Though this ad hoc approach is temporary, it will become 

increasingly costly as the ships and systems age. Eventually, the ships and equipment will 

degrade beyond the capability of feasible repair, at which point they will be forced to be 

retired. The big question with this plan is if it can be sustained long enough for a 

sufficient number of LCS ships to relieve the MCMs. 

3. Potential Resolution 

The inevitable retirement of the Avenger-Class fleet and the slow rollout of LCS 

ships create a potential capability gap. Combatant commanders must rely on the UMCM 

force to fill this gap. The EOD teams are able to conduct minehunting operations using 

the MK18 Mod 1 REMUS 100 and the MK18 Mod 2 REMUS 600 UUVs. They are both 

equipped with side-scan sonar, which records imagery of the ocean bottoms. The MK18 

Mod 2 is shown on a rigid hull inflatable boat in Figure 1. After a mission, the UUV 

sonar data is downloaded and analyzed to find mines. While very effective, this process is 

very time intensive and is relatively manpower heavy. EOD mobile units are not able to 

scale up their efforts to match the capability of the SMCMs. A solution to this manpower 

shortage is incorporating UUVs and EOD dive teams from other nations.  

International Mine Countermeasures Exercises (IMCMEX) in 2012 and 2013 

were large-scale exercises hosted by U.S. Naval Forces Central Command (NAVCENT). 

The two exercises showed growing interest in supporting combined MCM operations. 

IMCMEX 2012 observed over 30 participating nations, and IMCMEX 2013 had over 40 

participants. Not only did the exercises show combined support, they also highlighted 

several areas of difficulty. In 2012, one of the problems was the difficulty in merging 

UUV information from newly participating countries. Following a UUV mission, the 

operators would conduct an analysis of the sonar data and report their findings. Since the 

United States and the United Kingdom normally operate together in Fifth Fleet, their 

findings were automatically reconciled. Other participant abilities were less familiar. 

There was no method to verify the quality of their results, and therefore, the MCM 
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Commander was not able to use their results. This problem is one of the most substantial 

out of all lessons learned. If data collected by other nations’ UUVs cannot be used, then 

many of these countries will be discouraged from participating in future operations 

(Naval Mine and Anti-Submarine Warfare Command, 2013). 

 

Figure 1.  Sailors deploying the MK 18 Mod 2 Swordfish UUV in FIFTH 
FLEET during IMCMEX 2014 (from Midnight, 2014). 

B. SCOPE 

This study identifies operational factors that have the greatest influence on mine 

clearance levels and completion times. It investigates the advantages and disadvantages 

of incorporating less capable UUVs into large-scale MCM operations. It also develops a 

baseline procedure for tasking UUVs with different abilities. 

This study uses a simulation model and a state-of-the-art design of experiments to 

determine the best approach to conduct combined mine clearance operations using UUVs 
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in Fifth Fleet. Chapter II is a literature review that identifies current research and 

development of UUVs. It also illustrates the importance of this research topic. Chapter III 

discusses the methodology. It examines the model structure, variables, constraints, 

limitations, and assumptions, and provides details about the design of experiments used 

to explore the simulation model. Chapter IV explains the analysis process using a robust 

design. Chapter V is the conclusion, where recommendations and future work are 

described. 
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II. LITERATURE REVIEW 

Mine clearance operations are extremely dangerous. Humans are often required to 

enter a minefield in order to render mines safe. Fortunately, as more advanced unmanned 

systems come online, the need to have humans in mined waters decreases. Current mine 

countermeasures research is dominated by UUV design and autonomy. On-the-spot 

autonomous detection is one area of interest. Synthetic aperture sonar (SAS) is becoming 

the new standard for UUV sonars. It is replacing the side-scan sonar. This upgrade allows 

UUVs to collect imagery that has significantly higher resolution, which is better suited 

for target recognition algorithms. For more information, see Sternlicht, Fernandez, and 

Marston (2013). 

A. AUTONOMOUS DETECTION AND CLASSIFICATION 

The ocean floor is highly varied environment. Without traveling too far, the 

bottom can change from sand to rock, smooth to rough, shallow to deep, or even clean to 

cluttered. These changes present a significant challenge for autonomous detection 

software. Bottom conditions influence how instruments are calibrated. Current 

recognition software requires sensors to be carefully tuned prior to conducing searches. If 

bottom conditions change, then the sensors and software will not be as effective. These 

algorithms are so sensitive that small sand ripples can throw off detection and 

classification rates. They need a uniform surface in order to be successful. This constraint 

is not realistic, which is why new software is designed to adapt to changing 

environments. Algorithms are being developed that focus on objects’ shapes rather than 

their contrast to the surroundings, but this new software is limited to what it can see. The 

side-scan sonars are extremely sensitive to altitude change and speed changes. Tiny speed 

changes or altitude shifts will cause blurring that will throw off these algorithms. The 

high-resolution picture of the SAS is far more resistant to speed changes and altitude 

shifts, and can map a clearer picture of the bottom and bottom objects. The SAS produces 
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sharp shadows behind the bottom objects, which are then used to determine if the object 

is a mine or not (Leier, Fandos, & Zoubir, 2015, p. 71). 

Previous autonomous algorithms were designed to process images with fewer 

pixels. Image processing slows down after integrating the high resolution SAS imagery 

with the old detection algorithms. New algorithms are being developed and refined to 

speed image processing for near-real-time detection and classification (Maurelli, Patron, 

& Cartwright, 2011). 

Ocean currents sometimes push sand on top of mines. The sand acts as a shield, 

making the mine invisible to sonar. The Marine Mammal System is the only MCM asset 

in the US Navy that can detect buried mines. These mammals are not always available, so 

there is demand for UUVs to also provide this capability. Current research is studying the 

ability to detect buried mines using an array of magnetic, acoustic, and electro-optic 

sensors. The aim is to search an area with a UUV and collect data with all three of these 

sensors. The fusion of these data streams then feeds into the autonomous detection 

software. As is the case with other autonomous research, results are environmentally 

dependent. Poor water visibility decreases performance (Sulzberger et al., 2009). 

B. REACQUISITION AND NEUTRALIZATION 

Sonar imagery from side-scan sonars and SAS provides sufficient detail to 

identify contacts without having to make a visual confirmation. The UUVs drive star-like 

patterns above contacts in order to capture multiple aspects needed to make the 

identification. This technique is being adapted for autonomous identification. UUVs will 

calculate their own path and conduct a star pattern for each contact.  This approach can 

be redundant in densely littered minefields, where multiple star patterns overlap. One 

current research goal is to develop algorithms for smarter path planning. The Multiple 

Aspect Coverage pattern is one of these algorithms, shown in Figure 2. The performance 

of this algorithm was analyzed using a Monte Carlo simulation and compared to the 

performance of standard pattern. Results show that the Multiple Aspect Coverage pattern 
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requires 29% less travel distance than standard patterns for reacquiring and identifying 

MILCOs as mines in densely packed clusters of mines (Bays, 2014). 

 

  

Figure 2.  Standard pattern (left) and Multiple Aspect Coverage pattern (right) 
(from Bays, 2014). 

C. MINE NEUTRALIZATION 

Detection and classification are not the only areas of research activity. 

Neutralization is another area of focus. Current doctrine directs MCM units to detonate 

mines, because defusing mines is too risky. An inadvertent mine detonation could kill 

operators. There is no risk to human life if UUVs are conducting the neutralization. 

Therefore, UUVs can neutralize mines’ threats by deactivating them instead of blowing 

them up. This functionality requires mechanical arms to interact with the mines. Kemp et 

al. (2011) conducted research to find the optimal position to mount these arms to improve 

functionality and reduce drag. This study also identifies the thrust requirements to 

maintain overall stability and position.  

UUVs capable of autonomous detection, classification, identification, and 

neutralization nearly complete the detect-to-engage sequence. The final piece to a fully 

autonomous system is communications. Since the DTE sequence cannot be completed by 

just one UUV, an updated list of targets would need to be maintained at a command 
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center. Search UUVs would upload their results to the command center. The target data 

would then be forwarded to other UUVs to be neutralized. Techniques for transferring 

data are being developed using underwater lasers and electromagnetic wave propagation. 

Initial studies show that this method of data exchange is possible and is also very fast, but 

further research is needed to account for long distance missions and poor ocean visibility 

(Song & Chu, 2014). 

D. REFINE CURRENT TACTICS 

Research suggests that UUVs will soon replace other MCM assets. Autonomous 

detection will improve clearance times and reduce the number of human operators. But 

until these systems are available, UUVs will be delivered and recovered by human 

operators. Humans will parse sonar data, searching for mines, and EOD teams will 

manually neutralize mines. This process is manpower heavy and will require tremendous 

support from the international community. But in order to task these other partners, the 

MCM Commander needs to know their capabilities. Simulating the performance of 

UUVs in a mine clearing scenario will provide insight on how best to task UUVs. 

Several others have addressed various aspects of the mine clearing problem. Allen 

(2004) and Allen, Buss, and Sanchez (2004) looked at search and detection—one of the 

primary roles of UUVs in the U.S. Navy. They used a discrete event simulation to 

analyze a UUV’s ability to detect mines in an environment that causes navigation error. 

The results suggested that the inaccuracy of the dead reckoning function in the UUV, 

along with currents that introduce additional navigation error, reduce the post-mission 

analyst’s ability to detect mines. This study found that hunting along the direction of the 

current reduces error, and using a transducer to help the UUV navigate underwater, 

produces better detection results.  

Not all searches are done underwater with an unknown number of targets. Search 

and rescue operations are sprawling search problems on the surface of the ocean. These 

operations generally involve one target, aerial search assets, and a surface vessel to 

recover the person. Ashpari (2012) created a spreadsheet model to examine the ability of 
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aerial vehicles to locate the person, while the surface vessels must race to recover him or 

her. The model uses the inverse cube law to calculate probabilities of detection for the 

aerial search. The results find that the most influential factor in successful search and 

rescue is a fast ship. The second biggest contributor is the number of unmanned aerial 

vehicles. This research shows that multiple search assets can improve the ability to detect 

objects. 

Sometimes it does not pay to have better detection capabilities. A simulation 

study by Kim (2002) investigated a ship’s ability to safely sail through a minefield using 

onboard sensors that detect the presence of mines. The results showed that the mine 

detection systems would give multiple false alarms in a minefield with high bottom 

clutter. These false alarms forced the ships to change course, which increased their time 

in the minefield and increased their risk of detonating a mine. These results highlight the 

importance of classifying bottom objects. By not attempting to distinguish between mines 

and non-mines, the detection system assumes everything is a mine and recommends a 

more dangerous path through the minefield. 

Team Mine Warfare (MIW), from the Naval Postgraduate School’s Systems 

Engineering department, developed a discrete event model in ExtendSim8 to compare 

current MCM systems against the future LCS MCM Mission Module (Blandin, et al., 

2014). The DTE process for LCS is similar to the DTE for UUVs and EOD dive 

platoons. The RMS conducts the search and the MH-60S conducts identification and 

neutralization. This simulation is useful for studying UUV performance, but regrettably, 

has issues that make it unsuitable for the application in this thesis. The first issue is that 

they chose to use a cookie cutter sensor, and set the search sensor range equal to the track 

spacing. This does not reflect reality. Sensors are less effective as distance increases, and 

narrow track spacing allows for overlapping sensor opportunities and thus better 

detection. The second issue is an apparent software glitch, which was revealed after 

running the simulation through a large design of experiments (512 carefully chosen 

excursions, called “design points”). Inputs with fewer than 15 mines and 30 non-mines 

produce no output—and this represented one third of the design points. This may not 
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have affected the results in Team MIW’s study because their excursions involved 

hundreds or thousands of mines, but it does suggest that further V&V on their model is 

needed before the results are used for making actionable recommendations.  Finally, 

Team MIW’s analysis was based on a single replication of each design point.  In this 

study, we are specifically interested in examining the variability associated with the 

MCM outcomes, in order to better understand the potential risks involved, and seek 

solutions that are robust to variability in the operating environment.  

The more international partners participating in an MCM operation, the more 

UUVs will be available to conduct searches. With proper tasking, these UUVs may help 

reduce completion times while maintaining proper clearance levels. In order to provide 

this tasking, MCM Commanders need guidance on how to employ these international 

partners. This study aims to provide that guidance. 
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III. METHODOLOGY 

The simulation developed for this thesis models a real life MCM scenario using 

UUVs in an open ocean environment. Though EOD Unmanned Systems Platoons are 

structured to operate in a very shallow water (VSW) zones, the simulation uses their 

VSW procedures in a large-scale open ocean operation. 

A. THE SCENARIO 

In order to create a suitable simulation, it is important to first create a suitable 

conceptual scenario to use as a baseline. While there is no precedent for executing large-

scale MCM operations with only UUVs, the procedure would likely follow a similar 

method as a smaller operation in VSW. The main difference would be the increased 

number of UUVs needed to clear the area.  

1. Planning 

The first phase in conducting an MCM operation is planning. The MCM 

Commander decides on a course of action that best matches the situation. For the 

purposes of this study, we assume the area being cleared is a generic Q-route, which is a 

channel 30 nautical miles (NM) long and 0.9 NM wide, that designates the area to be de-

mined. Figure 3 shows a picture of the Q-route. The Commander is located outside of the 

minefield onboard the base ship. We also assume there are a total of 30 UUVs available 

from the U.S. and several allied countries, and 10 experienced EOD platoons. These 

numbers are for illustration purposes, but our approach can serve as a template for 

investigating scenarios involving other numbers and types of UUVs. First, the UUVs are 

used to search the entire area. The mines identified are later be neutralized by EOD 

platoons. 

The Q-route is broken down into five rows. The first and fifth rows are 0.1 NM 

wide, the second and fourth rows are 0.2 NMs wide, and the middle row is 0.3 NM wide. 

Each row is divided into five smaller areas. The total number of individual areas is 30, 
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with six areas per row. Each UUV is tasked to hunt in one of these areas. The purpose of 

using areas of different sizes is to give the MCM Commander the option of putting less 

capable UUVs on the outside of the area, perhaps with lower track spacing, and keeping 

the more proficient UUVs in the middle. We compare our results to those that would be 

achievable if the only available UUVs and EOD teams were U.S. Navy assets. 

2. Search 

The platoon delivers each UUV to its designated search area via a rigid hull 

inflatable boat (RHIB). Once deployed, the UUV conducts a lawnmower search pattern, 

as shown in Figure 3. Each UUV starts its search from the southwest corner of its region, 

and initially heads east. Each UUV starts every mission with fully charged batteries. It 

can then search for a predetermined amount of time before it must be recharged. If the 

UUV runs out of battery life, it finishes its current track, is recovered by the RHIB, and 

brought back to the base ship. Sonar data are downloaded and the batteries are recharged. 

The post-mission analyst reviews the sonar imagery from the mission, looking for mine-

like objects. If objects are detected, they are classified as mine-like contacts (MILCOs) or 

a non-mine mine-like bottom objects (NOMBOs). The MILCO positions are forwarded 

to the MCM Commander, where they are added to the list of other contacts. If the UUV 

was not able to complete its search on the previous mission, it will redeploy back to the 

Q-route to continue where it left off. This process is repeated for all UUVs until the entire 

area has been searched. If it does complete the search before the battery life expires, it 

returns to the RHIB. It is recovered and brought back to the ship. The data are again 

downloaded and post-mission analysis is conducted. The batteries are charged to prepare 

it for its follow-on mission of reacquisition and identification. 
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Figure 3.  Illustration of the Q-route and the search areas and direction of 
search tracks. 

3. Reacquisition and Identification 

Once the search phase is complete, the UUVs conduct further investigation to 

categorize MILCOs as non-mines or mine. The UUV is transported back to the search 

area where it performs a star pattern search above all MILCOs. It records sonar data and 

visual video. The dual data streams provide sufficient information to identify the MILCO 

contact as a mine or a non-mine. This process is called reacquisition and identification. 

4. Neutralization 

Once reacquisition and identification is complete, the EOD platoons are tasked to 

neutralize all mines. The platoons travel through the minefield via RHIBs to the locations 

of each mine. They dive on top of the mine, place an explosive neutralizer around the 

mine, and detonate it. The explosion destroys the mine. 
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B. THE SIMULATION 

The simulation is a stochastic discrete-event model implemented as a Python 

program. The logic and structure of the model follows the scenario described earlier in 

this chapter. The flowchart in Figure 4 shows the sequence of events for the model. 

 

Figure 4.  Flowchart showing the broad logic scheme of the simulation model. 
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The first part of the simulation is constructing the Q-route. Area objects are 

created for each UUV. The areas are then stacked together to form a large Q-route area 

object. The bottom objects are generated and uniformly scattered throughout the Q-route. 

Some of the objects are mines and some are non-mines. Figure 5 explains the logic for 

this phase. 
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Figure 5.  Flowchart showing the logic of the scenario setup. 

2. Conducting the Search 

Thirty UUV objects are created and paired with an area within the Q-route. Every 

UUV starts the scenario with fully charged batteries. It will drive tracks in its assigned 

area until the coverage is complete. The detection and classification are done during the 

post-mission analysis (PMA), after a mission has been completed. The results from the 

PMA are based on the probabilities of detection and classification are computed for each 

target, and recalculated for every pass made by the UUV. These probabilities are 

calculated using the inverse cube law, which is a cumulative detection probability 

function that calculates the probability of detecting or classifying each target at least once 

per track (Chung, 2014). The equations for detecting and classifying mines are: 

 P detect   1 e

2detRateAaltitude

searchSpeed altitude2distance2   (1) 

 P classify as MILCO detect   1 e

2milcoRateAaltitude

searchSpeed altitude2distance2   (2) 

 P classify as MILCO   P detect  P classify as MILCO detect . (3) 

Similarly, the equations for detecting and classifying non-mines are: 
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searchSpeed altitude2distance2   (4) 

 P classify as NOMBO detect   1 e

2nombosRateAaltitude
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 P classify as NOMBO   P detect  P classify as NOMBO detect  (6) 
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where P(detect) is the probability of detecting each object at least one time per pass, 

P(classify NOMBOs) is the probability of classifying each non-mine as a NOMBOS at 

least one time per pass, and P(classify MILCOs) is the probability of classifying each 

mine as a MILCO at least one time per pass. The exponent in these equations describes 

the detection or classification rates for each target. A is the area of the target, altitude is 

the height of the UUV from the ocean bottom, searchSpeed is the speed of the UUV, 

distance is closest point of approach (CPA) from the UUV to the target, and detRate, 

nombosRate, and milcoRate are shape parameters that describe the post-mission analyst’s 

ability to detect and classify mines and non-mines. These shape parameters also scale the 

detection rate to a size that is applicable to minehunting, as opposed to a vast aerial 

search and rescue operations. They also allow us to model different classification 

behaviors. For example, countries less sure of their capabilities might be more inclined to 

report objects that they are uncertain about as MILCOs regardless of their true type, in 

order to avoid the risk of missing mines. These shape parameters, with the rest of the 

inputs, create the probabilities to each bottom object. 

The inverse cube law is suitable for modeling detection from UUVs because 

UUVs search from above while moving forward at a certain velocity. The UUVs look 

down and outward, searching for objects on the ground where closer targets are easier to 

detect and classify than farther targets. For example, suppose a UUV has a detection rate 

of 0.05, an altitude of eight meters, and a search speed of four meters per hour. It will 

detect a mine that is 22 meters away with a probability of 0.50 and it will detect a mine 

that is 10 meters away with a probability of 0.90. 

After the probabilities are calculated, a uniform random number is generated for 

each target. The target is detected when the random number is less than the calculated 

detection probability. Otherwise, the target is undetected. Classifying a target is only 

possible if it is first detected. Therefore, correct classifications require the random 

number to be less than the product of the detection and classification probabilities. 

Otherwise, the target is falsely classified. However, if a target is undetected or falsely 

classified during the first pass, it can be reassessed on the next pass. A target is not 
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reassessed if it has already been correctly classified. Figure 6 shows the flowchart for this 

phase. 

 

Figure 6.  Flowchart showing the logic of the search phase. 
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3. Reacquisition and Identification 

The next phase in the scenario is reacquiring and identifying all MILCOs. The 

UUVs are deployed at the closest MILCO in their areas. The UUV conducts a star pattern 

inspection and then moves to the next closest MILCO. Each star pattern consists of 20 

five-meter tracks. This model uses the standard pattern, not the modified pattern 

described in Chapter II. The UUV is not capable of inspecting multiple MILCOs in one 

star pattern. Every MILCO requires its own inspection. PMA is conducted once the UUV 

is recovered and returned to the ship. This process determines which MILCOs are mines 

and which are false positives. Figure 7 shows the flowchart for this phase. 

 

Figure 7.  Flowchart showing the logic of the reacquisition and identification 
phase. 
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4. Neutralization 

The final phase of the scenario is the neutralizing all detected mines. Ten EOD                            

dive platoons objects are created and deployed to the Q-route. All EOD dive platoons are 

paired with the Q-route area object. They do not operate in the smaller search areas, like 

the UUVs. Instead, they have the ability to operate anywhere in the Q-route. To prevent 

multiple EOD platoons from operating in the same region, the platoons are assigned a 

starting position within the Q-route. These starting positions are based on the number of 

EOD assets and the length of the Q-route. This evenly spreads the EOD platoons across 

the Q-route. From its starting position, each platoon, in turn, is assigned to neutralize the 

closest mine that has not yet been neutralized or assigned to another platoon. Once the 

mine is destroyed, the platoon moves to the next closest mine. The platoon returns to the 

base ship when it has exhausted its supply of neutralizers or if the maximum time limits 

are reached. The team rests and resupplies and returns to the Q-route. This process is 

repeated for all EOD dive platoons until all mines are destroyed. All EOD dive platoons 

can neutralize mines without incident.  Figure 8 shows the flowchart for this phase. 
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Figure 8.  Flowchart showing the logic of the mine neutralization phase. 

 

 

 

 

 

End 
Need to rest 
or resupply 

Advance EOD 
platoon clock 

Construct EOD dive 
platoon objects 

Assign horizontal starting  position for each 
EOD platoon 

 
 
 
 

platoon ID number

number of platoons
 Q  route length

Next 
platoon 

Are there 
mines to 

neutralize? 

Transit to the mine that is closest 
to the starting position 

Neutralize Mine 

Starting a 
new sortie? 

Transit to the mine that is 
closest from current position 

Return to the 
base ship for rest 

and resupply 

Set EOD platoon 
clocks to 0  

No 

No 

Yes 

Yes 

Yes 

No 

Remove mine from list of 
mines requiring 
neutralization  



 25

C. FACTORS AND RANGES 

The simulation has 66 input variables, or factors, that are explored. Four of those 

variables describe EOD platoon attributes. Two specify the mine density and the clutter 

density. The remaining sixty characterize the UUVs. While each UUV object requires 

only twelve inputs, the scenario incorporates five different types of UUVs, one for each 

row in the Q-route. Each type requires its own set of twelve inputs. The EOD dive 

platoons require four factors and the Q-route requires two. 

These factors are described in Table 1. The high and low levels are 

approximations made by the author and a subject matter expert. The search area 

parameters are developed based on the author’s previous experience as an MCM 

warfighter. 
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Table 1.   Factors and ranges used in the simulation experiment. 

  

 

 

 

 

Input Variables Description Min Values Max Values

densityMines Number of mines per square mile 1 10

densityNonMines Number of non‐mines per square mile 10 40

sortieTime
Length of time an EOD dive platoon can remain in the Q‐

route
6 hrs 8 hrs

restTime
Length of time an EOD dive platoon must rest before 

returning to the Q‐route
8 hrs 10 hrs

timeMine Time spent neutralizing a mine 1 hr 2 hrs

resupply Number of neutralizers per sortie 3 6

transitSpeed 1‐5 Speed of the RHIB that is tansporting the UUV 10 kts 25 kts

deploy 1‐5 Time spent deploying the UUV for a mission 2 min 10 min

recover 1‐5 Time spent recovering the UUV after a mission 2 min 10 min

searchSpeed 1‐5 The speed of the UUV during a mission 3 kts 5 kts

searchTime 1‐5 Length of time the UUV can conduct a mission 4 hrs 10 hrs

sensor 1‐5 Sensor range of the side scan sonar 150 meters 300 meters

passes 1‐5 Number of passes per track 1 3

spacing 1‐5 Distance in between search tracks 30 meters 100 meters

altitude 1‐5 The height above the ocean bottom that the UUV 
searches

2 meters 10 meters

detRate 1‐5 The ability of the PMA to detect targets 0.05 0.1

milcoRate 1‐5 The ability of the PMA to correctly classify mines as 
MILCOs

0.05 0.1

nombosRate 1‐5 The ability of the PMA to correctly classify non‐mines as 
NOMBOs

0.05 0.1
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D. ASSUMPTIONS  

The model uses nine assumptions in order to reasonably scope the problem. They 

are numbered and listed below. 

1. UUVs in each row share similar search capabilities. 

2. All mines are Manta Mines (diameter of 0.98 meters). 

3. Weather conditions are perfect. There is no sea state, wind, or current. 

This assumption is valid because UUVs are not generally deployed in bad 

weather. 

4. The water depth is greater than 40 feet, but shallow enough for divers to 

safely swim to the bottom.  

5. The search area is a rectangular Q-route. 

6. The time it takes the UUV to turn around for another search track is 

negligible, and therefore can be treated as instantaneous within the 

simulation. 

7. EOD dive teams perform perfect neutralization operations. The probability 

of destroying mines is 1.0. 

8. The detection and classification rates are shape parameters for the lateral 

range curve. They do not represent actual attributes, but they are effective 

in modeling the ability of a post mission analyst. 

9. The scenario is a continuous operation. Assets are able to operate at night. 
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E. LIMITATIONS 

The model follows the events of a real-life scenario; however, not all aspects are 

represented in the model. These limitations are numbered and listed below. 

1. The person conducting the PMA does not experience fatigue. In reality, 

post mission analysis is a long and tedious job. It is reasonable to assume 

the operator’s alertness declines over time. This model does not account 

for such a decrease in alertness. 

2. There is a RHIB for every UUV. There is enough room to hold 30 UUVs, 

but not 30 RHIBs. In reality, there would probably be one RHIB for 

multiple UUVs. This limitation should not have a substantial affect on 

MCM mission completion times, because the time spent traveling back 

and forth with RHIBs is small relative to the total time of the operation. 

F. DESIGN OF EXPERIMENTS 

The design of experiments uses the Nearly Orthogonal Nearly Balanced  

Mixed Design (Vieira, NOB_Mixed_512DP_template_v1.xls Design Spreadsheet.)  

The high and low values for 66 factors of Table 1 are entered into the 

NOB_Mixed_512DP_template_v1.xls design spreadsheet; “passes1-5” factors are 

discrete-valued with three levels, “resupply” factors are discrete-valued with four levels, 

and the rest are continuous. The columns of inputs are then copied and pasted into a 

comma separated values (CSV) file. Each design point is then replicated 100 times. 

Orthogonal design allows each factor to independently contribute to the response 

variables (Vieira Jr., 2013, pp. 1–4). Nearly orthogonal designs allow a very small 

amount of correlation in order to achieve better space-filling behavior.  This facilitates 

trade-off analysis. 
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IV. ANALYSIS 

Clearing a minefield takes a tremendous amount of hard work—and despite the 

effort, there is no guarantee all mines will be removed. Reducing this risk while 

maintaining a reasonable timeline is the primary objective for all MCM operations. The 

intent of this chapter is to examine how to accomplish this objective using only UUVs 

with different abilities, and to describe the process of analysis used in generating this 

solution. First, we specify the measures of effectiveness. Using these criteria, we examine 

the data in order to verify that the software is free of glitches and the output appears 

reasonable. The next part of the analysis is generating a robust metamodel design. We use 

this metamodel to predict UUV attributes that increase clearance levels and reduce 

completion time. Finally, we re-run the simulation at the suggested new configuration 

and evaluate the performance of the predictions. All graphs and metamodels are 

generated using JMP Version 11. 

A. MEASURES OF EFFECTIVENESS 

MCM plans are designed to achieve a certain clearance ratio within a desired 

amount of time. Therefore the measures of effectiveness, which best characterize these 

concerns are: the proportion of objects undetected, the number of misclassified targets, 

and MCM mission completion time. 

B. EXAMINING THE DATA 

We begin by examining the distribution and summary statistics of the three 

measures of effectiveness. The histogram shapes and the summary statistics are 

scrutinized to see if there are any interesting behaviors, in order to verify that the model 

is behaving properly and that there are no obvious errors. 
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1. Proportions of Undetected Objects 

Figure 9 shows the results for the proportion of undetected mines. The 

distribution has mean of 0.128 and a positive skewness. The proportion of objects ranges 

from 0.0144 to 0.394. This indicates that every experiment has some undetected objects, 

and that the proportion is quite high for some cases and low for others. This range 

variation shows that the model appears to be worth investigating further to determine 

how much of the changes in output are due to changes in factor levels. 

 

Figure 9.  The distribution and summary statistics of the proportion of mines 
undetected. 

2. Misclassified Targets 

Figure 10 shows that no mines are misclassified as NOMBOs during the UUV 

search. If a mine is detected, it is almost certainly going to be classified correctly. 

Misclassification appears to be a rare event for all conductions. Similarly, there are no 

non-mines misclassified as MILCOs during the UUV search. These measures of 

performance need no further analysis in this thesis, although future experiments could 

investigate larger ranges of PMA capabilities to see the resulting variation in the primary 

performance measures. This finding corroborates subject matter expert’s previous 

observations that if objects are detected, misclassification is rare. 
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Figure 10.  The distribution and summary statistics of the number of 
misclassified targets. 

3. MCM Mission Completion Time 

Figure 11 shows the distribution and summary statistics for the scenario 

completion times. The distribution is very wide, indicating a lot of variability. Some  

of this variability is caused because there are many factors that can extend or reduce  

the timeline. The mean is 238 hours (9.92 days). The standard deviation is 77 hours  

(3.21 days).  

 

Figure 11.  The distribution and summary statistics of the completion time of the 
scenario. 
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C. ROBUST DESIGN 

The proportions of undetected objects and completion times are dependent on two 

types of attributes: decision factors and noise factors. Decision factors are variables that 

are controllable by the MCM Commander. These factors are “spacing,” “altitude,” 

“searchSpeed,” and “resupply.” Noise factors represent variables that cannot be 

controlled in actual MCM operations. These variables describe the environmental 

circumstances, such as the number of bottom objects, and the capabilities of UUVs and 

EOD platoons. A robust design is an analysis technique that identifies ideal decision 

factor levels that produce acceptable results and are resilient to uncontrollable variation in 

a system (Sanchez, 2000, p. 70). We use a robust design in this analysis to find ideal 

factor levels that perform well for two primary measures of effectiveness: the proportion 

of undetected objects, and MCM mission completion times. 

1. Summarizing the Data 

The model uses a design of experiments with 512 design points and 100 

replications. The results are saved into a 51,200 row dataset. This dataset is then 

condensed into a 512 row dataset by summarizing all 100 replications for each design 

point into a single row, and calculating the mean and standard deviation for each of the 

measures of effectiveness. We exclude the noise factors from further analysis because the 

influence of the noise factors is indirectly captured by the measures. This allows us to 

focus on the factors that we control in order to find a robust solution. 

The distribution of the summarized proportion of undetected objects is shown in 

Figure 12. The “Mean(prop undetected)” is the distribution of the mean proportion of 

undetected objects. Its histogram has the same shape as the distribution of proportion of 

undetected objects in the original dataset. The wide range of outcomes shows the high 

variation for this response. The average of mean proportions is 0.1279, which is much too 

high to consider the Q-route safe for transit. The standard deviation of the means is 0.054. 

This is a high amount of variation. A quarter of the design points produced proportions of 

undetected objects greater than 0.14. These results are not desirable. The MCM 
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Commander would not consider the Q-route to be clear without conducting follow-on 

operations. 

 

Figure 12.  Distribution and summary statistics for the summarized proportions 
of undetected objects. 

The “Std Dev(prop undetected)” shows how much the proportions of undetected 

objects can changes when all of the variables are the same. These standard deviations 

range from 0.0059 to 0.0244. This variation is not large, but it is also not small enough to 

ignore, particularly at the upper end. This means that the performance of the MCM force 

is not completely predictable. Some operations will yield better results than others, even 

if the conditions are unchanged. 

The distribution of the mean completion times is shown in Figure 13. The mean 

completion times are extremely varied, ranging from 70 hours (2.92 days) to 474.9 hours 

(19.79 days).  The average completion time is 238.3 (9.93 days) with a standard deviation 
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of 77 hours (3.21 days). The measure is so varied that it cannot be used to accurately 

predict the completion time. This is understandable, because the mine density dictates the 

completion time. There is more work to do in a scenario with more mines. Without 

intelligence of enemy operations, it is impossible to know a priori how many mines are 

in the water. 

 

Figure 13.  Distribution and summary statistics for the summarized completion 
times. 

The standard deviation of times is much smaller than the variation of the means, 

but it is still quite large. The maximum standard deviation is about 19 hours, meaning an 

experiment could have up to 57 hours of variability. 

It is assumed in the MCM community that balancing completion times and search 

efforts is a tradeoff; operations focused on conducting a more thorough search will take a 

long time, while operations constrained by a quick timeline may leave more objects 
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undetected. Figure 14 is a scatter plot of average mission completion time versus the 

average proportion of undetected objects for each design point. The red arrow shows a 

generally negative relationship between the two measures, as anticipated. The blue oval 

shows that there are some scenarios where the completion time and the proportion of 

undetected objects are both low. These experiments show that it is possible to find 

combinations of decision factors so that both performance measures are close to their 

respective ideal values.  

 

Figure 14.  Scatter plot of the mean proportions of undetected objects vs. the 
mean completion time.  The circled design points shows experiments 

with low proportions of undetected objects and low MCM mission 
completion times. 
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2. Loss Functions 

The condensed dataset summarizes the proportion of undetected objects and 

completion times into means and standard deviations. The loss function quantifies the 

performance of the system by assessing the means and standard deviations with reference 

to a target value. The goal is to achieve an expected solution close to the target output 

value, while reducing variability of the outcomes. One common loss function is the 

quadratic, shown below. The equation for this function is written in the following form: 

l Y   Y  2

E loss    Y
2  Y  2

 

where l Y   is quadratic loss, E loss   is expected loss, Y  is the measure of effectiveness, 

 Y  is the standard deviation, and   is the target value (Sanchez, 2000, p. 71). The target 

value for the proportion of undetected objects is zero, because the goal is to detect 

everything. Selecting a target for completion times is not as simple. It makes sense to set 

the target to zero because it would eliminate the possibility of penalizing completion 

times that are below the target, but this target does not work well because of the quadratic 

loss function. The loss of completion times with an accurate range would be too huge to 

be considered in an analysis. A realistic target for this scenario is one week (168 hours). 

To prevent penalizing times below one week, we use a modified loss function: 

expected loss Y  
0 if Y 168 hrs

 Y  Y 168 2
otherwise






 

where the loss is 0 if the completion time is less than one week, and quadratic otherwise. 

3. Metamodels for Expected Loss of Proportion of Undetected Objects 

Now that the expected losses are calculated, it is possible to fit metamodels. The 

general approach includes all main effects, all two-way interaction terms, and all  

quadratic terms for the decision factors as potential explanatory terms. These factors are 
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used to conduct a stepwise Bayesian information criterion (BIC) regression to find the 

appropriate subset of terms that best predict the expected loss. The remaining predictors 

are then fit to a least squares regression model. Then decision predictors with p-values 

less than 0.01 are considered significant. We remove predictors that are above 0.01 one at 

a time, until all predictors are significant. The exception to this rule is if an interaction or 

quadratic term is significant, but its main effect is not. In that case, we leave the main 

effect in the model.  

Before examining the results and discussing their implications, we recall from 

Chapter III, Section A, Subsection 1, that the Q-route is divided into five rows. Rows 1 

and 5 are on the outside and are the most narrow. Inside rows 1 and 5 are rows 2 and 4. 

Row 3 consists of the middle, widest row.  

We first construct a metamodel of the expected loss associated with the 

proportion of undetected objects. The resulting regression summary is shown in Figure 

15, and the sorted parameter estimates are shown in Figure 16. Figure 16 includes 

numerals within the factor names to indicate the row number, such as “spacing3” for  

row 3 or “altitude5” for row 5. Also, the hyphenated numbers following the factor names 

for interaction and quadratic factors are centering values. For example, “(spacing3-

65)*(spacing3-65)” represents the quadratic effect for spacing3, and its average level 

across all design points is 65 meters. These centering values are for numerical stability 

purposes, and we will not discuss them further.   
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Figure 15.  The regression summary for expected loss of proportion of 
undetected objects. 



 39

 

Figure 16.  Sorted parameter estimates for the loss of the proportion of 
undetected objects. 

This model is statistically significant with an F-statistic of 66. The t-statistics and 

p-values verify that all predictors are significant. The Actual by Predicted Plot in Figure 

15 shows our model is not capturing the amount of nonlinearity in the data as well as it 

might, particularly as the loss increases. This means the model is only partially accurate 

at predicting the loss, which explains why the R2 is not higher. The R2 value of 0.85 still 

quite high, and the lack of fit is not a problem within this study because the objective is 
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not to predict outcomes. The purpose is to identify significant variables in order to create 

a robust system design. 

We would expect the decision factors for row 3 to be more influential because the 

mines are uniformly distributed throughout the space, which means that row 3 has a 

disproportionately high object count and factors that strengthen the search in this row 

should prevail over others. The sorted parameter estimates in Figure 16 show all 

metamodel factors sorted in order of significance. As expected, the search efforts in row 

3 are, indeed, the most influential in determining the loss of proportion of undetected 

objects. Next are rows 2 and 4, and then rows 1 and 5. Within each row, the most 

significant decision factor is spacing. As spacing increases, the loss increases. The next 

most significant factors are UUV altitude and number of passes per track. As these 

factors increase, the loss decreases. The least influential, but still significant factor, is the 

search speed. As search speed increases, the loss increases. 

Partition trees are also well suited for identifying influential factors; they may be 

easier to explain to non-technical audiences, and they may do a better job than regression 

at fitting response surfaces. Figure 17 shows the partition tree for the loss of proportion of 

undetected objects and Figure 18 shows the leaf report. We use trees to predict responses 

by starting at the top and following the path down to the leaves based on applicable factor 

splits. This tree has twenty splits. Each leaf is color-coded. Green leaves represent 

favorable results, where the mean loss is less than 0.01. Yellow represents mediocre 

results where the mean loss is between 0.01 and 0.02. Red represents undesirable results 

where the mean loss is greater than 0.02. The R2 is lower than that of the regression 

model. This tree is not ideal for prediction, but it does identify influential factors. The 

most practically important factors are the ones that follow the path to a green leaf. These 

factors are “altitude3,” “spacing3,” “altitude4,” “altitude2,” “spacing2,” “spacing4,” 

“altitude1,” “passes3,” and “passes4.” In general, it appears that higher UUV altitudes, 

smaller track spacing, and more passes, all help reduce the number of undetected objects. 

The overall findings are similar to those of the regression model. Row 3 variables 

are the most influential. The big difference is the order of significant decision factors. 
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The first split is altitude for row 3 and the second split is spacing for row 3. This differs 

slightly from the regression model, where spacing for row 3 is most significant and the 

altitude is the second most significant. Another difference is that row 5 has no splits. This 

finding does not disagree with the regression model, although the regression showed row 

5 factors to be far less important than the other rows. Rows 1 and 5 are the same size and 

they share similar UUV attributes from the design of experiments. We expect their 

performance to be comparable. 
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Figure 17.  Partition tree model for the expected loss of proportion of undetected 
objects. 
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Figure 18.  Leaf report of the partition tree for the expected loss of proportion of 
undetected objects; this provides the leaf description, along with the 

mean proportion of undetected mines and the number of design points 
associated with each leaf. 

4. Metamodels for Expected Loss of Completion Times 

The analysis of completion times follows the same processes as the analysis for 

the proportion of undetected objects. We generate metamodels in order to observe trends 

and identify important decision variables. First, a stepwise BIC regression model is fit 

with all two-way interaction and second-degree polynomials for the decision factors. The 

insignificant (or less significant) factors are filtered out, resulting in a parsimonious 

model with statistically significant factors and interactions. Figure 19 shows the 

regression summary table and Figure 20 shows the sorted parameter estimates. 
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Figure 19.  The regression summary for expected loss of MCM mission 
completion times. 

The p-value for the F ratio confirms that the model is statistically significant, but 

the R2 is extremely low. The Actual by Predicted Plot in Figure 20 illustrates the poor 

prediction power of this metamodel. The regression line does not appear to follow the 

data. The plot also shows the high amount of variability in the expected losses because 

the data are more spread out. 

Nonetheless, the regression shows that the decision factors that have the greatest 

influence over the loss of completion times are track spacing and the number of passes 

per track. These results follow the same trend as the proportion of undetected objects. 

The decision factors in Row 3 are the most influential. The main difference in trends is 

that rows 1 and 5 have no statistically significant terms in the model. This finding is very 

important. It infers that completion times are not restrained by UUV searches in rows 1 

and 5. Less capable UUVs can be tasked to search in these rows. However, if the center 

row is too large, more UUVs must be assigned to it, as one is not sufficiently capable. 
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Figure 20.  Sorted parameters estimates for the expected loss of MCM mission 
completion times. 

Next, we create a partition tree for the loss of completion times, and compare its 

results to those from the corresponding regression metamodel. This tree has 20 splits 

(Figure 21). The R2 is 0.53, which is considerably higher than the R2 for the regression 

model, but still not high enough to be an accurate predictor. Again, this is not a bad thing, 

as the model is not being used to predict outcomes. It is identifying influential factors and 

attempting to find levels that will reduce loss. This tree follows a similar color scheme as 

the tree for proportion of undetected objects. Green is used when the mean loss is less 

than 5,000. Yellow indicates the mean loss is between 5,000 and 10,000. Red shows a 

mean loss of greater than 10,000. 

Many of the findings coincide with those from the regression metamodel for 

expected loss. Row 3 is the most influential row. In general, the number of passes, track 

spacing, and search speed are the most influential types of factors. However, there are 

some interesting differences. The loss metamodels include factors from row 5 in the 

partition tree; row 5 was strangely insignificant in the analysis of the proportion of 

undetected objects. These results show that row 5 is a significant contributor to MCM 

mission completion times. 

Currently, the model does not output times for conducting reacquisition and 

identification. In order to estimate how long this phase takes, we made a rough 

calculation using several assumptions. A mine density of 10 in the center row produces 

15 mines. It should take no longer than 10 minutes to drive from one MILCO to the next 
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and conduct a star pattern. The UUV completes all star patterns inspections and finishes 

at the opposite end of the area. It might take just over an hour to travel five NM back to 

the RHIB. The total time in the water should be no longer than 2.75 hours. The transit 

time to and from the base ship is one hour. The PMA is then another 2.75 hours. These 

times add up to 6.5 hours. This is not a long time relative to average times of completion. 

We can assume that this phase is not creating a bottleneck because it is a relatively fast 

process. 

 

Figure 21.  Partition tree for the expected loss of MCM mission completion 
times. 
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Figure 22.  Leaf report of the partition tree for the expected loss of MCM 
mission completion times. 

5. Analyze Odd Behavior 

Row 5 UUVs appeared to be less significant than the other rows. This is evident 

in the detection loss regression metamodel, where row 1 factors showed higher 

significance than row 5 factors. It can also be seen in the detection loss tree, where row 1 

factors were split twice and row 5 factors did not split at all. This occurrence seems 

especially odd, considering that in the conceptual model, rows 1 and 5 were essentially 

the same, and the UUV factor ranges for rows 1 and 5 were the same for the experiment. 

To better examine this result we inspect the bivariate fits for track spacing for rows 1 and 

5 against the expected loss of the proportion of undetected objects (Figure 23). 
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Figure 23.  Bivariate fits for track spacing for rows 1 and 5 against the expected 
loss of the proportion of undetected objects. 

The metamodel for row 5 is less significant with an F Ratio of 4.3 and a p-value 

of 0.039. This shows that row 5 is less important. After running a few exploratory 

simulations with the model, we determined why this occurs. Figure 24 is presented to 

explain this behavior.  In this simplified example, every search row is one NM wide and 

thirty NM long. Green circles are neutralized mines. Grey circles are NOMBOs. Red 

circles are un-neutralized mines and yellow circles are undetected non-mines. The results 

show the product of UUV search conducted only by the UUVs in rows 1 and 5; UUVs 

for the inner rows 2–4 are disabled. The reader will notice that the searchers in rows  

1 and 5 have secondary contributions to the inner rows based on track geometry. In our 

model, searches are conducted in the horizontal direction. They start at the bottom left 
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corner and work their way up. Their last track typically does not line up perfectly with 

the top border. Therefore, in order to attain full coverage in their own area, they extend 

one track outside of their areas and into the next row. This extra search track contributes 

to the search effort in the adjacent row. The amount of extra coverage is dependent on 

track spacing. Wider tracks allow the UUV to extend further into the adjacent area. This 

does not happen for row 5 because the last track is conducted outside of the Q-route. 

Therefore aggregate performance is less sensitive to spacing in row 5, and its 

contributions are lower than row 1’s contributions. The little search effort that row  

5 contributes to row 4 happens because the UUV start conducts its first track on the lower 

border of their search area—and this contribution is independent of track spacing. An 

operational implication of this is that the anchor point for track demarcation should likely 

be placed on the inner border of the row in (or close to it) to take advantage of this 

additional swept area rather than having it overlay ocean floor outside the Q-route south 

of row 1 or north of row 5. 

 

Figure 24.  Plot of the Q-route after an exploratory simulation. 

This finding demonstrates the important side-benefit of using a large-scaled 

designed experiment. Behavior that might not have been evident from a single set of 

Row 5 

Q-route 

Row 4 

Row 2 

Row 3 

Row 1 
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simulation runs (design point) was revealed by the experiment. We were able to track the 

problem down and use it to refine our model and our insights. 

6. Significance of Noise Factors 

The robust design allows us to center the analysis on the controllable factors. 

After examining the R2 for the metamodel, it was apparent that some noise factors might 

be influential. Their absence in the metamodels may have had a considerable effect on 

the predictive ability of the metamodel. To see how influential these factors might be, we 

look at partition trees for both measures of effectiveness. To include the noise factors we 

must revert back to the original output dataset. Figure 25 shows the tree for MCM 

mission completion times. In ten splits we see mine density splitting twice. This is not a 

surprise, because the greater number of mines requires more effort from the MCM force. 

The other noise factor that is split is the time it takes for an EOD platoon to neutralize a 

mine. This factor is only practically important in high-density minefields. If the MCM 

Commander has intelligence that the minefield is heavily mined, he or she could request 

extra EOD platoons to help neutralize all of the mines. 

 

Figure 25.  Partition tree for MCM mission completion time with all variables. 
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Figure 26 shows the partition tree for proportion of undetected objects including 

all noise factors. This tree is very similar to the tree in Figure 18. There are no noise 

factors present in the first ten splits. This tells us that we have the ability to control the 

detection and classification efforts with good planning. 

 

Figure 26.  Partition tree for proportion of undetected objects with all variables. 

7. Baseline Design 

In order to evaluate the performance of the ideal design, we must conduct a 

baseline experiment. We can then compare the two designs and measure the 

improvement associated with the robust design. The baseline uses factor settings that 

support fast finish times, but not necessary effective searching. We then separate the 

UUVs based on capability where detection rates, MILCO classification rates, and 

NOMBO classification rates are equal for all UUVs per row. UUVs in rows 1 and 5 are 

poor performers, UUVs in rows 2 and 4 are mediocre performers, and UUVs in row 3 are 

expert performers. The noise factor levels remain untouched from the original design of 

experiments. We run this design with ten replications. The results are shown in Figure 27. 
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The MCM mission completion times are quite low. The MCM commander could finish 

the operation in 5.19 days, but would not be able to send any ships through, because the 

Q-route is not clear. 

 

Figure 27.  Distributions and summary statistics of the measures of  
effectiveness for the baseline design. 

8. Ideal Decision Factor Settings for the Robust Design  

The ideal design uses the same scenario as the baseline design, but uses robust 

decision factor settings. These settings are selected by inspecting the favorable leaf paths 

described in Figures 19 and 23. Even though row 5 is statistically less significant than 

row 1, both rows hunt with essentially the same capability. They are equivalent in size 

and have UUVs with similar abilities; therefore, decision factors selected for one row are 

implied for the other row. The same process is applied to rows 2 and 4. Table 2 shows the 
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recommended factor ranges from both partition trees, as well as the selected robust 

settings.  

We decide the final settings based on the UUVs’ search capability. UUVs in row 

3 are the highly capable, so we assign them settings that support faster mission 

completion times. Rows 2 and 4 UUVs are mediocre searches, so we assign them mid-

level settings. Rows 1 and 5 are the least capable UUVs, and are assigned settings that 

favor low proportions of undetected objects. 

Table 2.   Decision factors levels for the robust design. 

 

 

9. Results for the Robust Design 

The results are displayed in Figure 28. The mean MCM mission completion time 

for the robust design is 56.6% longer than the baseline design, which is an additional four 

days. This is not surprising: although the baseline design covered the area faster, the 

quality of search was so poor that no ships would be able to sail through the Q-route. 

Therefore, the baseline would require follow-on operations and would ultimately take 

much longer. Conversely, the robust design was successful at achieving a low mean 

Decision Factor Recommended Levels Selected Levels
altitude 1 and 5 > 4.4 meters 8 meters
spacing 1 and 5 NA 45 meters

passes 1 and 5 NA 3 passes
searchSpeed 1 and 5 NA 3.5 kts
altitude 2 and 4 > 3.7 8 meters

spacing 2 and 4 < 74 meters 68 meters

passes 2 and 4 < 3 passes 2 passes
searchSpeed 2 and 4 3.3 ‐ 5 kts 4 kts

altitude3 > 3 meters 8 meters

spacing3 56 ‐ 74 meters 73 meters

passes3 1 ‐ 3 passes 1 pass
searchSpeed3 > 4.3 kts 4.3 kts

resupply < 6 neutralizers 5 neutralizers
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proportion (0.06) of undetected objects. The variability was also small (standard 

deviation = 0.01), indicating that the missions detect objects quite consistently. This is an 

acceptable clearance level, without resulting in an excessively long mission completion 

time. The robust design approach worked, by balancing its ability to meet both 

performance criteria.  This experiment shows that with careful planning, UUVs with 

different abilities can contribute to MCM operations in a variety of minefield conditions. 

  

Figure 28.  Distributions and summary statistics of the measures of effectiveness 
for the robust design. 

10. Results from a U.S.–Only Scenario 

For the previous two simulations, we arranged UUVs so that the most 

experienced ones are in the center row of the Q-route. These UUVs represent U.S.-owned 

assets. In order to model a scenario with U.S. assets only, we adjusted the code slightly. 

The dimensions of the Q-route remain the same (30 NM long, 0.9 NM wide), but it is not 

split into rows. There is only one row composed of six smaller areas and six UUVs. The 
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rest of the scenario remains the same. The inputs are taken from the new design. The U.S. 

will use the same ideal settings previously identified. Figure 29 shows the distribution 

and summary statistics for the MCM mission completion time and proportion of 

undetected objects. When compared to the robust design, we see that the MCM Mission 

completion increase dramatically. The mean completion time is 60% higher. 

Interestingly, the proportion of undetected objects increased by 366%. This is unexpected 

because the U.S. UUVs have the highest detection rate. This result shows having multiple 

UUVs hunting side-by-side improves detection. It could also show that because the 

robust design settings were determined for all UUVs operating together, they are not as 

effective if conducted individually. Another possibility is that the UUVs in the U.S. 

scenario did not conduct enough passes. An additional pass could reduce the mean 

proportion of undetected objects from 0.22 to 0.22   0.22   0.048 . Therefore in 

conducting a second search, the search times could be delayed roughly as long as twice 

the mean, 732 hours.  
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Figure 29.  Distributions and summary statistics of the measures of effectiveness 
of the simulation with ideal settings. 

D. DISCUSSION 

This analysis demonstrates that combined MCM using UUVs from different 

countries and with different experience levels can be employed to produces favorable 

results. The robust design shows us that UUV altitude, track spacing, number of passes 

per track, and search speed influence the proportion of undetected objects. Since it 

appears that altitude has no effect on MCM mission completion times, it should always 

be adjusted to the ideal height. Also, if there is no follow-on mission, then the MCM 

Commander should increase the number of passes per track, decrease track spacing, and 

slow search speeds. This will further increase the UUV's abilities to detect bottom 

objects. This is not always possible. Follow-on missions may require MCM Commanders 

to conduct MCM operations quickly. This situation highlights the need for fast, but 



 57

reliable operations. Analyzing the MCM mission completion times, we found that the 

decision factors that influence mission completion times are: search speeds, number of 

passes, and track spacing. By balancing all of the factors, we found that MCM 

Commanders can conduct effective MCM operations, while minimizing mission 

completion times. This involves choosing factor settings that satisfy both ideal designs. 

The results from the test case are evidence that this can be completed. Therefore, MCM 

Commanders should consider a plan where UUVs are assigned to hunt rows in the Q-

route. Less experienced UUVs should remain on the outside of the Q-route and have 

skinnier search areas. More experienced UUVs should stay on the inside rows and have a 

wider search area. MCM Commanders are also recommended to consider the decision 

factors levels from Table 4 when making their MCM plans. 

We also examine ability of the U.S. to conduct an MCM scenario alone using 

UUVs. The results shown in Figure 29 show that the U.S. Navy is not capable of 

producing efficient results with six UUVs in this scenario. The average completion time 

increases by 7.7 days, the standard deviation increases by 6 days, and the maximum 

possible mission completion time increases by two months. While a better MCM plan 

may improve the results using only six UUVs, the side-by-side comparison is compelling. 

A combined UUV effort with a range of abilities still outperforms a force of six highly 

effective UUVs.  

Along with the side-by-side comparison of U.S. and coalition performances, we 

also examine the importance of all factors. The metamodels in the robust design do not 

include noise factors. This allows us to focus on the factors that we can change. Yet, we 

learned from Figure 26 that the most influential factor in MCM mission completion times 

is the density of mines. This figure also shows that high mine densities and low mine 

densities split on UUV decision factors first. This shows that UUVs are always the 

greatest cause of delays. The time to neutralize a mine is also significant. EOD 

neutralizations that take longer than 1.3 hours in mine-dense minefields further delay 

timelines; however, since neutralization times cannot be controlled by the MCM 

Commander, the only way to minimize this delay is to recruit more EOD platoons. This 
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would allow more neutralizations to be conducted simultaneously. These extra assets 

should reduce the bottleneck caused by high numbers of mines. 

Another element that could help MCM operations is the contribution of partner 

nations. The U.S. Navy is continuously conducting bilateral and multilateral MCM 

exercises. Therefore, performance of these partners should be evaluated at every 

opportunity. This information will provide MCM Commanders with valuable information 

about how and where to employ these partner assets. Exercise evaluators should record 

mission times, deployment times, recovery times, transit speeds, and general procedures 

or doctrine that influence they way they conduct their operations. The most important 

thing to note is their performance. Assigning UUVs areas within the Q-route is important. 

If they have a low detection rate, then they should be placed in an outer row. 

Placing less capable UUVs on the outside of the Q-route does not imply that they 

contribute less. In fact, the comparison of the robust design and the U.S.-only design 

suggests the opposite. We expected both minehunting efforts to be comparable. Instead, 

the robust design, with less capable UUVs, outperformed the U.S.-only scenario. Some of 

this can be attributable to the total number of UUVs available (30 for the robust design 

scenario, 6 for the U.S.-only scenario). We can also see the importance of less capable 

UUVs by inspecting Figure 25. Although a single UUV is assigned to a single search 

area, its final search area still extends into the adjacent areas, improving the overall 

detection performance. Figure 25 also reveals that search efforts are being partially 

wasted in row 5, because the UUVs are searching outside of the Q-route. A more 

efficient employment tactic would have all searchers start their searches on the outside of 

the Q-route and work their way inside. This will make use of every search track and 

improve performance. 

E. MODEL ENHANCEMENTS 

This study proves that a combined UUV force can successfully clear a minefield. 

We have also gained key insight on how to improve operations in different conditions. 

Though this study is a successful proof of concept, it does not provide MCM 
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commanders with a tool that they can use to plan operations. Further enhancements need 

to be made in order to make this model usable. In building this model, we know how to 

change it in order to better fit the problem. This is not likely a feasible option for the 

deployed units during operational planning. Therefore this model should be modified to 

incorporate a large variety of scenarios. It should also make use of a more intuitive input 

to measure abilities. Probability of detection and classification make sense to most 

people, more so than a shape parameter. Another necessary improvement would be to 

automate the process of running a designed experiment, conducting initial follow-on 

analysis. This is necessary in order to make the program usable in an operational setting. 

Another improvement would be to build a graphical user interface (GUI) for the 

model to make it user-friendlier. This GUI should include an internal data handling 

process, so that the user would not have to create csv files. Everything would be done 

internally. This GUI could also include a database of different MCM assets and their 

attributes, like sensor ranges, mission times, speeds. The user would select the equipment 

from a list and the GUI would fill in the information automatically. Then after the 

program has been executed, the GUI will display the answer in an intelligible manor that 

the MCM Commander can use to make his or her plans. One possibility would be the use 

of a dashboard, such as that described in that allows trade-offs and feasible alternatives to 

be visualized graphically. 
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V. CONCLUSION AND RECOMMENDATIONS 

The Avenger-Class fleet will soon retire. The MCM Mission Module progress is 

at a standstill and the future of MCM is uncertain. Commanders need a practical strategy 

to ensure the safety of our ships globally. Autonomous vehicles will eventually fulfill this 

need, but in the meantime, the United States can rely on international partners to help fill 

this void. A combined UUV force can be used to conduct effective MCM clearance 

operations in an acceptable timeframe. 

A. SUMMARY 

This study used a Python-based simulation model and a design of experiments to 

generate data. The robust design was performed, and the data was summarized according 

to a loss function and analyzed using linear regression and partition tree metamodels. 

Influential decision factors were identified and robust factor levels selected. The design 

of experiments was modified to reflect these findings, and the scenario was re-run to 

evaluate the effectiveness of the new mine clearing plan. All measures of effectiveness 

improved with the new plan. The completion times were reduced by days, and the 

proportion of undetected objects also drastically declined. This research is evidence that 

an efficient design can incorporate UUV platoons with a wide range of experience and 

abilities into a combined force. The outcomes will be effective and efficient MCM 

operations that can establish the safety of ports and passages worldwide. 

B. RECOMMENDATIONS 

This study provides evidence that large-scale MCM operations can be 

successfully completed using only UUVs. With proper tasking, UUVs with lesser ability 

levels can be used appropriately and still produce valid results. This study concludes that 

the following decision factors are influential in conducting clearance efforts: search 

altitude; track spacing; number of passes. The following decision factors are influential in 

completion times: track spacing; number of passes per track, search speed, and resupply. 
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The use of robust decision factor settings could serve as a standard for operational 

testing and developing formal doctrine for tasking new partner in a large-scale UUV 

operation. The scenario should follow a similar tasking plan where the Q-route is divided 

into multiple rows. If the tasking follows this plan and adheres to the operator parameters 

described in Table 2, then the result will likely be an organized and successful and 

efficient MCM clearance operation. 

C. FOLLOW ON WORK 

The simulation model examines just one scenario. It may be beneficial to explore 

other scenarios with different types of tasking, new methods, and conceptual platforms. 

Autonomous UUV systems will soon enter the service. While these systems are safer and 

faster, there is no precedence established on how to task them. A future project could 

adapt the code from this project in order to model autonomous capacities and evaluate 

their performance. This research could give tacticians key insight about how to employ 

these new systems. 

Another follow-on project could examine and compare scenarios where the 

reacquisition and identification process is eliminated. Figure 10 shows there were no 

misclassifications during the initial design. If an MCM operation had to be conducted in a 

short time period, then it may be beneficial to slow the search down to ensure better 

classification. The likelihood of misclassifying a non-mine as a MILCO would be 

minimal, as would the expected time loss due to neutralizing false targets is minimal. 

This might allow MCM Commanders to eliminate the entire reacquisition and 

identification phase from the operation. 
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APPENDIX A. MCM SIMULATION MODEL IN PYTHON 

import numpy as np 
import matplotlib.pyplot as plt 
 
 
############################## 
# General Functions and Variables 
############################## 
 
#cartesian calculator 
def distCalculator(x1, y1, x2, y2): 
    """x1: vector of x coordinates 
    y1: array of y coordinates 
    x2: array of x coordinates 
    y2: array of y coordinates""" 
    return np.sqrt((x1-x2)**2 + (y1-y2)**2) #returns a vector of the distance of the two 
points 
     
def listStructure(myList): 
    #this function takes the array of targets and refits the vectors to their intended 
data types 
    #x[0], y[1], targetType[2], size[3], detected[4], classified[5], neutralized[6], 
actionNeeded[7]    
    myList[0].astype(float) 
    myList[1].astype(float) 
    myList[2].astype(int) 
    myList[3].astype(float) 
    myList[4].astype(int) 
    myList[5].astype(int) 
    myList[6].astype(int) 
    myList[7].astype(int) 
    return myList 
 
 
############################## 
# Search Area Class 
############################## 
 
class area(object): 
    """Object to build Search Area 
    length: length of the area on the x-axis(float type) 
    width: width of the area on the y-asis (float type) 
    refX: x coordinate of the bottom right corner (float type) 
    refY: y coordinate of the bottom right corner (float type) 
    encompass: set of all areas that made an area (set)""" 
     
    id = 0 #number of areas created 
       
    def __init__(self, length, width, refX=0, refY=0, encompass=set()): 
         
        self.length = float(length) #length of area in miles (float type) 
        self.width = float(width) #width of area in miles (float type) 
        self.refX = refX #latitude of bottom left corner 
        self.refY = refY #longitude of bottom left corner 
        area.id += 1  # increment the counter         
        self.id = area.id #id number of the assigned instance 
        self.encompass = encompass | set([self.id]) #the set of all encompassing sets 
 
             
    def __repr__(self): 
        #the instance representation 
        print self.encompass 
        return "len=%.2f, wid=%.2f, position=(%.2f, %.2f), id=%d, encompassing\ 
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        areas:" % (self.length, self.width, self.refX, self.refY, self.id) 
         
 
    #places mines and non-mines (assuming only Manta bottom mines) 
    def mining(self, densityMines, densityNonMines, targets, sizeMine=0.98, meanSize=1, 
stdSize=0.5): 
        """densityMines: mines per square mile 
        densityNonMines: non-mines per square mile 
        sizeMine: diameter of mines (meters) 
        meanSize: mean diameter of non-mines (meters) 
        stdSize: standard deviation of non-mine diameter (meters) 
        targets is array of targets""" 
 
        #Generating the targets and randomly positioning them within the search area 
        areaSize = self.length * self.width  #area of search area 
        numMines = int(densityMines * areaSize)  #number of mines in the area 
        numNonMines = int(densityNonMines * areaSize)  #number of non-mines in the area 
        total = numMines + numNonMines 
        x = np.random.uniform(0, self.length, total)  #array of random x coordinates for 
each target 
        y = np.random.uniform(0, self.width, total)  #array of random y coordinates for 
each target 
         
        #Determining whether the objects are mines or non-mines 
        nonMineType = np.zeros(numNonMines, dtype=bool)  #array of 0s to represent number 
of non-mines 
        mineType = np.ones(numMines, dtype=bool)  #array of 1s to represent number of 
mines 
        targetType = np.concatenate((nonMineType, mineType))  #combined array of the 0 
array and 1 array 
        np.random.shuffle(targetType)  #scrambling the array of mines and non-mines 
         
        #calculating the area of target 
        size = np.ones(total) * sizeMine #array where all sizes are set to mine shaped 
diameter 
        size = np.where(targetType, size, np.random.normal(1,0.3,total))  #logical array 
        #if NOMBOS, then reassigns the diameter to a normal random number 
        size = np.pi * (size/2.0)**2 #array converting all diameters to areas 
         
        #initializes all shapes to be undetected, unclassified and unneutralized 
        detected = np.zeros(total, dtype= bool)  #array of Falses to represent undetected 
targets 
        classified = np.zeros(total, dtype= bool)  #array of Falses to represent 
unclassified targets 
        identified = np.zeros(total, dtype= bool)  #array of Falses to represent 
unidentified targets 
        neutralized = np.zeros(total, dtype=bool) #array of Falses to represent 
unneutralized targets 
         
        #populates the scenario mine list into an 8 dimensional array 
        newTargets = np.vstack((x, y, targetType, size, detected, classified, identified, 
neutralized)) 
         
        #concatenates the old targets with the new targets 
        targets = np.hstack((targets,newTargets)) 
         
        listStructure(targets) #reformating the targets list 
        return targets 
             
     
    #combines areas    
    def builder(self, adjoining, dictionary, addLength): 
        """adjoining: area to be positioned next to or below the subject area 
        dictionary: the areas dictionary 
        #addLength: combine "other" left (True) or below (False)""" 
   
        #if the stationary area has no length or width attributes 
        if self.length == 0 and not addLength:  #if also adding to the width 
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            self.length = dictionary[adjoining].length  #set the equal to the adjoining 
area 
        if self.width ==0 and addLength:   #if adding to the length 
             self.width = dictionary[adjoining].width #set it equal to the adjoining area     
         
        #updating the reference points of the adjoining area       
        offsetX = self.refX + self.length * addLength #offset in x direction for the 
other area 
        offsetY = self.refY + self.width * (not addLength) #offset in y direction for the 
other area 
         
        #for each area in the encompassing set of areas in the adjoining area 
        for item in dictionary[adjoining].encompass: 
            #try because not all encompassing areas exist due to combining areas using 
the same name 
            try: 
                dictionary[item].refX += offsetX #adding to the x position if adding to 
the length 
                dictionary[item].refY += offsetY #adding to the y position if adding to 
the width 
            except: 
                pass 
  
        #updating the length and width of the new area 
        #new length is addition of previous two lengths if adding length 
        updateLen = self.length + dictionary[adjoining].length * addLength 
        #new width is addition of previous two widths  
        updateWid = self.width + dictionary[adjoining].width * (not addLength)  
             
        #union of the sets of encompassing areas for both areas 
        encomp = self.encompass | dictionary[adjoining].encompass 
 
        #returning a new area object with new parameters 
        return area(length=updateLen, width=updateWid, refX=self.refX,  
                    refY=self.refY, encompass = encomp) #returns new area 
 
 
    #plotting an area 
    def plotArea(self, target): 
        """This function plots the search area 
        light grey:  undetected targets 
        blue:          MILCOs 
        red:           false negatives 
        green:       NOMBOS 
        yellow:      false positives 
        green:       prosecuted""" 
         
         
        targets = listStructure(target) 
 
        #x[0], y[1], targetType[2], size[3], detected[4], classified[5], neutralized[6], 
actionNeeded[7] 
        #arrays 
        x = targets[0] 
        y = targets[1] 
        targetType = targets[2] 
        size = targets[3] 
        detected = targets[4] 
        classified = targets[5] 
        neutralized = targets[6] 
               
       #subsetting certain objects in order to colorcode them 
        size = size * 20  #setting the size of target markers 
        undetected = np.ma.masked_where(detected, size)  #masking everything that has 
been detected 
        milco = np.ma.masked_where(targetType * detected * classified==False, size)  
#masking non-mines and false-negatives         
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        falseNeg = np.ma.masked_where(targetType * detected * 
np.logical_not(classified)==False, size)  #masking non-mines and MILCOs 
        nombos  = np.ma.masked_where(np.logical_not(targetType)  * detected * 
classified==False, size)  #masking mines and false-positives 
        falsePos  = np.ma.masked_where(np.logical_not(targetType) * detected * 
np.logical_not(classified)==False, size)  #masking mines and NOMBOS 
        prosecuted = np.ma.masked_where(neutralized==False, size)  #masking everything 
that hasn't been prosecuted 
 
        #plotting 
        plt.close()  #clear any old plots 
        plt.subplot(111, axisbg='lightblue')  #plotting one subplot to make the 
background lightblue 
        plt.xlim(0, self.length)  #setting x limits 
        plt.ylim(0, self.width)  #setting y limits 
        plt.scatter(x, y, s=undetected, marker='o', c="lightgrey", linewidth='0.5', 
hold='on')  #plotting undetected targets 
        plt.scatter(x, y, s=milco, marker='o', c="blue", linewidth='0.5', hold='on')  
#plotting MILCOs# 
        plt.scatter(x, y, s=falseNeg, marker='o', c="red", linewidth='0.5', hold='on')  
#plotting false negs 
        plt.scatter(x, y, s=nombos, marker='o', c="green", linewidth='0.5', hold='on')  
#plotting NOMBOS 
        plt.scatter(x, y, s=falsePos, marker='o', c="yellow", linewidth='0.5', hold='on')  
#plotting false pos 
        plt.scatter(x, y, s=prosecuted, marker='o', c="green", linewidth='0.5')  
#plotting prosecuted targets 
        plt.axis('scaled') 
        plt.show() 
 
############################## 
# 
#    UUV Class 
# 
############################## 
 
class uuv(object): 
    """transitSpeed (kts) 
        deploy (min) 
        recover (min) 
        searchTime (hrs) 
       searchTime (hrs) 
        altitude (meters) 
        spacing (meters) 
        passes (1, 2, ...) 
        sensor (meters) 
        setRate (0 - 50) 
        milcoRate (0-50) 
        nombosRate (0-50) 
       originX (-inf, 0) 
       originY (-inf, 0) 
        """  
    id = 0   
     
    def __init__(self, transitSpeed=15, deploy=10, recover=10,  
    searchSpeed=4, searchTime=4, altitude=5, spacing=90, passes= 1,  
    sensor=3000, detRate=50, milcoRate=50, nombosRate=50, originX=0, originY=0): 
        
        #UUV attributes 
        self.transitSpeed = float(transitSpeed)  #transit speed from base to search area 
on RHIB 
        self.deploy = deploy/60.0  #time to deploy UUV (converted to hrs) 
        self.recover = recover/60.0  #time to recover UUV after mission (converted to 
hrs) 
        self.searchSpeed = float(searchSpeed)  #speed of UUV during search 
        self.searchTime = float(searchTime)  #time of missions 
        self.altitude = altitude * 0.0005399568  #altitude of UUV during search 
(converted to NM) 
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        self.spacing = spacing * 0.0005399568  #track spacing (converted to NM) 
        self.passes = int(passes)  #number of passes per track 
        self.sensor = sensor * 0.0005399568  #track spacing (converted to NM) 
        self.detRate = detRate  #detect rate (lateral range curve shape parameter) 
        self.milcoRate= milcoRate  #classification rate MILCO (lateral range curve shape 
parameter) 
        self.nombosRate = nombosRate  #classification rate NOMBOS (lateral range curve 
shape parameter) 
        self.originX = originX  #staging area x-coordinate 
        self.originY = originY  #staging area y-coordinate 
        uuv.id += 1  # increment the counter         
        self.id = uuv.id 
 
        #working variables 
        self.currentTrack = 0  #which track is the UUV searching 
        self.currentPass = 0  #current pass for given track 
        self.currentX = self.originX 
        self.currentY = self.originY 
        self.missionClock = 0  #clock per mission 
        self.numMissions = 0 #number of missions 
        self.clock = 0  #time of completion of last mission 
        self.isActive = True #is UUV still searching 
 
         
    #calculates the probability using inverse square law 
    def probability(self, area, targets, ability): 
 
        yCoord = area.refY + self.currentTrack * self.spacing  #determines y coordinate 
based on current search track 
        y = targets[1] #array of y coordinate of the target 
        size = targets[3] #array of the sizes of the target 
        cpa = distCalculator(0, yCoord, 0, y)  #array of closest points of approach to 
all mines per track  
        probability = 1-np.exp(((-2)* ability * size * self.altitude)/ 
                (self.searchSpeed*(self.altitude**2+cpa**2)))  #array of probabilities 
based on inverse cube law 
        probability = np.where(cpa < self.sensor, probability, 0) #array setting 
probabilities to 0 if out of range 
        return probability  #returns array of probabilities 
         
    #conducts search on a track 
    def searchTrack(self, area, targets):        
         
        #calculates probabilities to each target for each  
        P_d = self.probability(area, targets, self.detRate)  #P{detect} 
        P_milco = self.probability(area, targets, self.milcoRate)  * P_d  #P{classify as 
MILCO}*Pd 
        P_nombos = self.probability(area, targets, self.nombosRate) * P_d #P{classify as 
NOMBOS} 
                     
        #x[0], y[1], targetType[2], size[3], detected[4], classified[5], identified[6], 
neutralized[7] 
        #arrays 
        targetType = np.array(targets[2]) 
        detected = targets[4] 
        classified = targets[5] 
        identified = targets[6] 
         
        #post mission analysis - looking at sonar data 
        look = np.random.uniform(0, 1, len(targetType))   #random numbers of each mine   
        #take a look if not classified     
        targets[4] = np.where(classified, detected, look<P_d) #array 
        #classifies MILCO or false negative 
        targets[5] = np.where(np.logical_and(targetType==True, classified==False), 
look<P_milco, classified) #array 
        #classifies NOMBOS or false positive 
        targets[5] = np.where(np.logical_and(targetType==False,classified==False), 
look<P_nombos, classified)#array 
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        #which targets are MILCOS and which are false positives 
        #recalculates after search 
        detected = targets[4] #array 
        #recalculates after search 
        classified = targets[5] #array 
        #determines if MILCO or false positive 
        isMILCO = targetType * detected * classified #array 
        isFalsePos = np.logical_not(targetType) * detected * np.logical_not(classified) 
         
        #updates whether identification is needed 
        targets[6] = np.where(np.logical_or(isMILCO, isFalsePos),True , identified) 
#array 
                                 
        #increment number of passes per track and adds time to the clock 
        self.currentPass += 1 
        self. clock += area.length / self.searchSpeed 
                
        return targets 
 
    def mission(self, area, targets): 
 
        #Checks if the mission possible with this UUV 
        #UUV must be able to make it down and back in one mission 
        possible = (self.searchSpeed * self.searchTime) > (2 * area.length)   
        if not possible: 
            print "Track too long for this UUV" 
            self.isActive = False #finishes up the the UUV's tasking 
            return 
         
  
        #determines how many search tracks are in an area 
        totalTracks = int(area.width / self.spacing) + 2 #continues outside of area to 
ensure all area is covered         
         
        #Is the mission needed 
        self.isActive = (self.currentTrack <= totalTracks) #is the search complete 
        if not self.isActive: 
            return targets 
         
        #counts number of missions conducted 
        self.numMissions += 1   
         
 
        #UUV mission 
         
        #transit to search area 
        yCoord = area.refY + self.currentTrack * self.spacing  #determines y coordinate 
based on current search track 
        self.clock += distCalculator(self.originX, self.originY, 0, yCoord) / 
self.transitSpeed  #transiting to search area 
 
        #deploying UUV 
        self.clock += self.deploy  #time to deploy UUV 
        tracksThisMission = 0   #current number of tracks searched 
         
        #conduct search 
        #assuming the operators recover UUV from same side deployed 
        timePerTrack = area.length / self.searchSpeed #time to conduct one search track 
        while (self.missionClock + 2 * timePerTrack) < self.searchTime:  #continue if 
next 2 tracks don't take too long 
                self. missionClock += 2 * timePerTrack  #adding the time of 2 tracks 
                tracksThisMission += 2 
        self.clock += self.missionClock #adds mission time to the active clock 
         
        #recovering UUV and returning to ship         
        self.clock += self.recover  #time to recover UUV 
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        yCoord = (tracksThisMission/self.passes) * self.spacing #integer division to 
determine current track 
        self.missionClock += distCalculator(self.originX, self.originY, 0, yCoord) / 
self.transitSpeed  #transiting back to ship       
 
        #charging UUV batteries 
        self.missionClock = 0 #assumes UUV and team is ready for another mission 
immediately after PMA 
 
 
        #Post Mission Analysis        
        for i in range(tracksThisMission): 
            targets = self.searchTrack(area, targets) #doing the PMA for this track 
            self.clock += timePerTrack #adding time of PMA for this track 
                       
            #after a track is compelte  
            if self.currentPass == self.passes: 
                self.currentTrack += 1 
                self.currentPass = 0  #which track is the UUV searching 
       
        return targets 
         
         
    def reacquisitionIdentify(self, area, targets): 
         
        #determines if contacts are in the search area 
        inRangeX = np.logical_and(targets[0] > area.refX, targets[0] < area.refX + 
area.length) 
        inRangeY = np.logical_and(targets[1] > area.refY, targets[1] < area.refY + 
area.width) 
        inArea = np.logical_and(inRangeX, inRangeY) 
 
        #time to conduct R&ID "star pattern" with 20 passes at 5 meters per pass 
        rID = (20 * 5 * 0.0005399568) / self.searchSpeed #0.0005399568 is the conversion 
from meters to NM 
         
        #finds closest mine for first R&ID mission                        
        dist = distCalculator(targets[0], targets[1], self.currentX, self.currentY)  
#array of distances to all targets 
        dist = np.where(np.logical_and(targets[6], inArea), dist, 10000000)  #distance is 
set to infinity if already identified or out of area 
        closest = np.argmin(dist)  #finds the index of the closest mine 
 
        #Reacquisition and identify next target as long as time remains in the mission 
        while min(dist) < 10000:  #if distance is less than infinity 
              
            #if first target on mission 
            if (self.currentX == self.originX) and (self.currentY == self.originY): 
                self.currentX = xRHIB = targets[0][closest] #the UUV and the RHIB is at 
the location of the closest target 
                self.currentY = yRHIB = targets[1][closest] 
                self.clock += dist[closest] / self.transitSpeed #clock is advanced to 
account for transit          
                self.clock += self.deploy #advance the clock for deploying UUV 
                self.missionClock += rID #advancing the mission clock for conducting 
first star pattern     
                 
                #marks the target as identified 
                targets[6][closest] = 0 
 
            else: 
                 
                #is there enough time to conduct another R&ID and make it back to RHIB 
                distNextTarg = distCalculator(targets[0][closest], targets[1][closest], 
self.currentX, self.currentY) #dist to next target 
                distBackToRHIB = distCalculator(targets[0][closest], targets[1][closest], 
xRHIB, yRHIB) #dist from next targ back to RHIB 
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                prosecuteTimeNextTarg = (distNextTarg + distBackToRHIB)/self.searchSpeed 
+ rID #time to do next R&ID and drive back to RHIB 
                 
                #if there is enough time for next R&ID 
                if (prosecuteTimeNextTarg + self.missionClock) < self.searchTime: 
                    self.currentX = targets[0][closest] #the UUV and the RHIB is at the 
location of the closest target 
                    self.currentY = targets[1][closest] 
                    self.missionClock += distNextTarg/self.searchSpeed + rID #advancing 
the mission clock for conducting first star pattern 
                 
                    #mark the target as identified 
                    targets[6][closest] = 0 
                 
                #if there is not enough time, then return to ship to recharge    
                else: 
                    distToRHIB = distCalculator(self.currentX, self.currentY, xRHIB, 
yRHIB) #distance to the RHIB 
                    self.clock += distToRHIB/self.searchSpeed #time to transit back to 
RHIB 
                    self.clock += self.recover #recovery time of the UUV 
                    distToShip = distCalculator(xRHIB, yRHIB, self.originX, self.originY) 
#dist back to HQ ship 
                    self.clock += distToShip / self.transitSpeed #time to transit back to 
HQ ship 
                    self.currentX = xRHIB = self.originX #update x position once back 
onboard the HQ ship 
                    self.currentY = yRHIB = self.originY #update y position once back 
onboard the HQ ship 
                    self.clock += self.missionClock * 2 #advancing clock to account for 
the mission plus the post mission analysis/battery charge 
                     
             
            #recalculate distances 
            dist = distCalculator(targets[0], targets[1], self.currentX, self.currentY)  
#calculates distance to all mines 
            dist = np.where(np.logical_and(targets[6], inArea), dist, 10000000)  
#distance is set to infinity if already prosecuted or out of area 
            closest = np.argmin(dist)  #finds the index of the closest mine 
 
        return targets 
             
   
############################## 
# EOD Dive Team Class 
############################## 
 
class diveTeam(object): 
     
    id = 0 
     
    def __init__(self, speed=25, resupply=5, sortieTime=8, restTime=10, originX=0, 
originY=0, timeMine=2, timeNonMine=1, isSegment=True, clock=0): 
       #EOD Team Attributes 
        self.speed = speed #transit speed between mines 
        self.speed = float(self.speed) #converts to a float - because not able to 
initially assign as float 
        self.resupply = resupply  #number of explosives per sortie 
        self.sortieTime = float(sortieTime)  #max time allowed per sortie 
        self.restTime = float(restTime)  #time between sorties 
        self.originX = float(originX)  #staging area x-coordinate 
        self.originY = float(originY)  #staging area y-coordinate 
        self.timeMine = float(timeMine)  #mean prosecution time of a mine 
        self.timeNonMine = float(timeNonMine)  #mean prosecution time of a mine 
        self.isSegment = isSegment #is the dive team assigned to a segment of an area 
        self.clock = clock #time of last prosecution     
        diveTeam.id += 1 
        self.id = diveTeam.id 
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        #Working variables 
        self.currentX = self.originX  #current position x-coord 
        self.currentY = self.originY  #current position x-coord 
        self.neutOnboard = resupply  #remaining bombs on current sortie 
        self.missionClock = 0  #time until next prosecution 
        self.isActive = True 
         
                
    #returns the index of the closest mine shape 
    def nearestObject(self, area, targets): 
 
        #x[0], y[1], targetType[2], size[3], detected[4], classified[5], identified[6], 
neutralized[7] 
        #arrays 
        x = targets[0] 
        y = targets[1] 
        targetType = targets[2] 
        classified = targets[5] 
        neutralized = targets[7] 
        remainingMInes = targetType * classified * np.logical_not(neutralized) 
         
         
        #determines if the team is on a mission or back at HQ                       
        isResting = (self.currentX==self.originX)  and (self.currentY==self.originY) 
         
        #gives commander the option dividing the area into segments  
        #True: assigns segments based on teams id number 
        #       -prevents multiple teams from traveling long distances 
        #False: has all teams calculate next closest target based on distance 
        #       -near end of scenario, all teams will be going far distances 
        #       -longer timeframe 
        #       -safer option in case of emergency  
        xRef = self.currentX #if on a mission, then the reference point to its current 
location 
         
        #if the dive teams are assigned to specific sections 
        if self.isSegment:    
            if isResting: #if at HQ - sets x reference to the segment 
                #the segments are assigned based on number of teams and the dive teams 
                xRef = (self.id - 1)* area.length / diveTeam.id 
         
        #arrays of the distances to all objects based on reference point 
        dist = distCalculator(x, y, xRef, self.currentY)  #calculates distance to all 
mines 
        dist = np.where(remainingMInes, dist, 10000000)  #distance is set to remaining 
mines - infinity if already prosecuted or not a mine 
         
        #finds the closest mine 
        closest = np.argmin(dist)  #finds the index of the closest mine 
        if isResting: #recalculates the distance based on current location 
            dist = distCalculator(x, y, self.currentX, self.currentY) 
        distance = dist[closest]  #captures the distance to the closest mine 
         
        #does dive team have tasking 
        if sum(remainingMInes)==0:  #if not then does nothing 
            self.isActive = False 
             
        return distance, closest  #returns a tuple to be used in prosecute function 
         
         
    #function to drive to the next mine and prosecute it 
    def prosecute(self, area, targets): 
                 
        #transit to next closest target 
        nearest = self.nearestObject(area, targets)  #identifies next nearest object 
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        #does nothing if no targets to prosecute 
        if not self.isActive: #if no MILCOS or false positives, then sit and wait 
            return targets 
             
        #if need to return to ship and rest 
        isTimeOut = self.missionClock >= self.sortieTime  #is there time left in mission 
        noBombs = self.neutOnboard == 0 #are there any bomblets onboard 
         
        if isTimeOut or noBombs: #return to base if time is out or no more bombs 
            timeToShip = distCalculator(self.currentX, self.currentY, self.originX, 
self.originY)/self.speed 
            self.missionClock += timeToShip 
            self.currentX = self.originX  #changes location to base 
            self.currentY = self.originY 
            self.missionClock += self.restTime  #advance the clock to account for rest 
time 
            self.clock += self.missionClock  #adds the time of mission to the team clock 
             
            #rest and resupply 
            self.missionClock = 0 #resets the clock 
            self.neutOnboard = self.resupply  #resets number of bomblets 
             
 
         
        if not self.isActive: #if no MILCOS or false positives, then sit and wait 
            return targets 
             
        distance = nearest[0]  #distance to next closest 
        closest = nearest[1]  #index of next closest 
        self.missionClock += distance/self.speed  #updates the time taken to transit to 
mine 
         
        #conducts prosecution 
        underwater = np.random.normal(self.timeMine, 0.5) #adds the time taken to 
prosecute a mine (normally distributed with sigma=.5) 
        self.missionClock += underwater  #adds to the clock 
        self.neutOnboard -= 1 #accounts for the used neutralizer 
 
        #marks the targets as being prosecuted 
        targets[7][closest] = 1 #marks the mine as prosecuted 
         
        #update dive team's position  
        self.currentX = targets[0][closest]   
        self.currentY = targets[1][closest] 
 
        #adds the time of the mission to the clock 
        self.clock += self.missionClock 
 
        return targets 
 
 
 
############################## 
# the scenario 
############################## 
 
 
def secnarioRunner(row): 
    """The row should be read in from a csv reader with pre-ordered values""" 
     
    #makes a copy of the input data 
    data = list(row) #list 
    #pops items from the list to feed into the class instances 
       
    #x, y, target type, size, detected, classified, identified, neutralized 
    targets = np.array([[],[],[],[],[],[],[],[]]) 
 
    #Dictionary of areas, UUVs and dive teams: keys=id number, values= objects 
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    areas = {} 
    uuvs = {} 
    divers = {} 
     
    #resets the class id attribute 
    area.id = 0 
    uuv.id = 0 
    diveTeam.id = 0 
 
 
    #planning process 
    numUUVs = 30 #number of UUVs available (must be divisible by 5) 
    numDivers = 10 #number of dive teams 
    QRouteLength = 30  #length of q-route 
    rowNames = ["a", "b", "c", "d", "e"] #names of the 5 rows 
    rowWidths = [.1, .2, .3, .2, .1] #the sizes of the areas  
 
    #the HQ ship is just outside of the q-route in safe waters 
    xHQ = 1 #NM 
    yHQ = sum(rowWidths)/2.0  #half the distance up on the y-axis 
 
    #scenario data 
    UUVsPerRow = int(1.0 * numUUVs/len(rowWidths)) #UUVs per row in the q-route 
    areaLen = (1.0 * QRouteLength) / UUVsPerRow #length of each UUV search area 
     
    #creates each individual search area 
    for i in rowWidths: 
        for j in range(UUVsPerRow): 
            areas[area.id] = area(areaLen, i) 
 
    #combining the areas 
    i = 1 
    for name in rowNames: 
        #builds an empty area for each row 
        areas[name] = area(length=0, width=0, encompass=set(name)) 
         
        #adds smaller areas to the end of the row area 
        for j in range(UUVsPerRow): 
            areas[name] = areas[name].builder(i, areas, True) 
            i += 1 
 
 
    #creates the combined mine threat area 
    areas["MTA"] = area(0,0) #creates an empty area for t 
     
    #adds rows to the MTA 
    for name in rowNames: 
        areas["MTA"] = areas["MTA"].builder(name, areas, False) 
 
 
    #mining the area 
    densityNonMines = int(data.pop()) 
    densityMines = int(data.pop()) 
    targets = areas["MTA"].mining(densityMines, densityNonMines, targets) 
     
     
    #building the UUV objects 
    for i in range(5): 
        transitSpeed= float(data.pop()) 
        deploy = float(data.pop()) 
        recover = float(data.pop()) 
        searchSpeed = float(data.pop()) 
        searchTime = float(data.pop()) 
        altitude = float(data.pop()) 
        spacing = float(data.pop()) 
        passes = int(data.pop()) 
        sensor = float(data.pop()) 
        detRate = float(data.pop()) 
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        milcoRate = float(data.pop()) 
        nombosRate = float(data.pop())  
         
        #each UUV in a row is built off of the same inputs 
        #detRate, milcoRate, and nombosRate are random uniforms numbers +/- .01 
        for j in range(UUVsPerRow): 
            uuvs[uuv.id] = uuv(transitSpeed=transitSpeed, deploy=deploy,  
                                recover=recover, searchSpeed=searchSpeed,  
                                searchTime=searchTime, altitude=altitude,  
                                spacing=spacing, passes=passes, sensor=sensor,  
                                detRate=np.random.uniform(detRate-.01,detRate+.01),  
                                milcoRate=np.random.uniform(milcoRate-.01,milcoRate+.01),  
                                nombosRate=np.random.uniform(nombosRate-.01, 
nombosRate+.01), 
                                originX=xHQ, originY=yHQ) 
 
    #initializes the clock to 0 
    completionTime = 0  
     
    #UUVs search their entire areas    
    for UUV in uuvs: 
         
        #detect, classify and localize 
        while uuvs[UUV].isActive: 
            targets = uuvs[UUV].mission(areas[UUV],targets) 
         
        #reaquire and identify     
        targets = uuvs[UUV].reacquisitionIdentify(areas[UUV],targets) 
         
        #waits until all UUV searches and identifications are complete before starting 
neutr 
        if uuvs[UUV].clock > completionTime: 
            completionTime = uuvs[UUV].clock #the longest search sets the clock 
 
 
    #Making the dive team objects 
    resupply = int(data.pop())           
    timeNonMine = float(data.pop()) 
    timeMine = float(data.pop()) 
    restTime = float(data.pop()) 
    sortieTime = float(data.pop())  
     
    #builds the dive team object 
    for i in range(numDivers): 
        #time for all teams is the completion time of the last UUV search 
        divers[diveTeam.id] = diveTeam(timeNonMine=timeNonMine,  
                resupply=resupply, timeMine=timeMine,  
                restTime=restTime, sortieTime=sortieTime, originX=xHQ,  
                originY=yHQ, clock=completionTime) 
     
  
    #dive teams conduct prosecution until no MILCOs and false positives are left       
    while divers[numDivers].isActive: 
        #each team conducts 1 prosecution before looping back through 
        for team in divers: 
            targets = divers[team].prosecute(areas["MTA"],targets)              
             
            #last mine neutralized sets the clock 
            if divers[team].clock > completionTime: 
                completionTime = divers[team].clock 
     
    #calculates output statistics 
    totalTargets = len(targets[1]) 
    numMines = sum(targets[2]) 
    numNonMines = sum(np.logical_not(targets[2])) 
    numUndetected = sum(np.logical_not(targets[4])) 
    numDetected = sum(targets[4]) 
    numClassified = sum(targets[4] * targets[5]) 
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    numMILCOS = sum(targets[2]*targets[4]*targets[5]) 
    numNOMBOS = sum(np.logical_not(targets[2])*targets[4]*targets[5]) 
    numNotClassified = sum(targets[4] * np.logical_not(targets[5])) 
    numFalseNeg = sum(targets[2] * targets[4]*np.logical_not(targets[5])) 
    numFalsePos = sum(np.logical_not(targets[2]) * targets[4]*np.logical_not(targets[5])) 
     
    return row + [totalTargets, numMines, numNonMines, numUndetected,  
                  numDetected, numClassified, numMILCOS, numNOMBOS,  
                  numNotClassified, numFalseNeg, numFalsePos, completionTime] 
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APPENDIX B. PYTHON SCRIPT USED TO RUN THE DESIGN OF 

EXPERIMENTS 

import sys 
import csv 
from UUV_Simulation import * 
 
#experiment design 
document = 'test.csv'  #name of DOE file 
replications = 100  #number of replications per experiment 
 
#opening an outfile 
out_file = open("outters.csv", 'wb') #opening an output write file 
owriter = csv.writer(out_file, delimiter=',') #creating a csv writer object 
 
#Parsing the DOE data 
in_file = open(document, 'rU')  #opening the file 
in_reader = csv.reader(in_file)  #creating a csv reader object 
 
#copying the headers and printing them to the outfile 
headers = in_reader.next() 
headers = headers + ["totalTargets", "numMines", "numNonMines", "numUndetected",  
                     "numDetected", "numClassified", "numMILCOS", "numNOMBOS",  
                     "numNotClassified", "numFalseNeg", "numFalsePos", "completionTime"]                 
owriter.writerow(headers) #writing the headers plus the names of the other  
 
#parsing the data                 
for row in in_reader:  #examining each row or disaster from the entire data set 
    for i in range(replications):  #replicating each experiment 
        temp = secnarioRunner(row) #running the scenario 
        owriter.writerow(temp) #writing the data to the outfile 
in_file.close() 
out_file.close()  
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