Channel blocking in a satellite communication system model

Gaver, Donald Paul; Lehoczky, John P.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/29750

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun
CHANNEL BLOCKING IN A
SATELLITE COMMUNICATION SYSTEM MODEL

by

D. P. GAVER

and

J. P. LEHOCZKY

October 1978

Approved for public release; distribution unlimited.
This report was prepared by:
REPORT DOCUMENTATION PAGE

1. REPORT NUMBER
 NPS55-78-025

2. GOV'T ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)
 Channel Blocking in a Satellite Communication System Model

5. TYPE OF REPORT & PERIOD COVERED
 Technical

6. PREPARING ORG. REPORT NUMBER

7. AUTHOR(s)
 D.P. Gaver and J.P. Lehoczky

8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION NAME AND ADDRESS
 Naval Postgraduate School
 Monterey, California 93940

10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS
 Naval Postgraduate School
 Monterey, California 93940

12. REPORT DATE
 October 1978

13. NUMBER OF PAGES
 37

14. MONITORING AGENCY NAME & ADDRESS (If different from Controlling Office)

15. SECURITY CLASS. (of this report)
 Unclassified

15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)
 Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and Identify by block number)
 Satellite Communication,
 Service Systems,
 Telephone Traffic

20. ABSTRACT (Continue on reverse side if necessary and Identify by block number)
 A model is constructed for a communication system that involves a single satellite and many ground stations. The probability that messages are blocked is studied.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Formulation of the Problem</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Analysis</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Blocking Probabilities</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Numerical Results for Three and Four Stations...</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>16</td>
</tr>
</tbody>
</table>
1. Formulation of the Problem

Consider a communication system consisting of \(r \) stations, each of which must be able to communicate with all the others. The communication is conducted via an intermediate satellite. Since each station has, realistically, a finite capacity to handle messages simultaneously in progress, and since the satellite itself has limited capacity, the system will sometimes be congested, and a message applying for transmission will be blocked, i.e. effectively given a busy signal. We wish to calculate the probability that a message will be blocked, or delayed. The reader familiar with telephone system congestion theory, see Syski [1960], or Cooper [1972], will recognize this as a more complicated version of the situation for which the "Erlang B" formula—a truncated Poisson—holds. Essentially we assume that blocked calls are lost. For a model describing the more realistic "re-try" situation, see Gaver and Lehoczky [1976].

* D. P. Gaver and J. P. Lehoczky acknowledge the research support of the Office of Naval Research at the Naval Postgraduate School. We are grateful for helpful discussions with Dr. Martin Fischer of the Defense Communications Agency.
Specifically, we assume that station i ($1 \leq i \leq r$) has c_i channels, and the satellite has c_s channels. We assume that a message initiated at station i and intended for station j (i to j for short) requires a free channel at i, one at the satellite, and one at j before transmission may begin. If no channel is available at one of these three locations, blockage occurs. We assume the satellite offers direct access, thus if any channel is available in the satellite a user will not be blocked at that point. Furthermore we assume that a channel in use is not available to any other user. That is, there is no possibility of simultaneous transmission by another user on an occupied channel and consequent message spoilage. The possibility of message destruction apparently exists for some existing satellite communication systems; see Kleinrock [1975], and Gaver and Lehoczky [1977]. Finally, direct access structure is apparently not yet available in practice, according to our information. Our study pertains to conceptual systems.
2. **Analysis**

Suppose that attempts to transmit messages from \(i \) to \(j \) arrive according to a homogeneous Poisson process with rate \(\lambda_{ij} \), the rate of message termination, when the call is from \(i \) to \(j \), is \(\mu_{ij} \), and holding times are independently exponential. Let \(\rho_{ij} = \lambda_{ij}/\mu_{ij} \), and \(\eta_{ij} = \rho_{ij} + \rho_{ji} \). Let \(X_{ij}(t) \) be the number of messages or calls in progress from \(i \) to \(j \) at time \(t \). It is clear from our formulation that \(X = \{X_{ij}(t), 1 \leq i < j \leq n\} \) is a multivariate Markov process in continuous time.

Steady-State Solution

Note that \(X \) satisfies inequality constraints \(C \) which occur because the channel capacity is limited at the various stations.

\[
C: X_{12}(t) + X_{13}(t) + \cdots + X_{1r}(t) + X_{21}(t) + \cdots + X_{r1}(t) \leq C_1,
\]

and in general,

\[
\sum_{j \neq i} X_{ij}(t) + \sum_{j \neq i} X_{ji}(t) \leq c_i, \quad 1 \leq i \leq n
\]

(2.1)

\[
\sum_{i=1}^{r} \sum_{j \neq i} X_{ij}(t) \leq c_s.
\]

3
If the constraints were not present \((c_i = \infty, c_s = \infty)\) then \(X_{ij}(t)\) is an infinite server, Poisson arrival queueing process (termed M/M/\(\infty\)) for every station pair \(i, j\), and the stationary distribution is then Poisson:

\[
\lim_{t \to \infty} P\{X_{ij}(t) = n_{ij}\} = e^{-\rho_{ij}} \frac{\rho_{ij}^{n_{ij}}}{n_{ij}!}, \quad n_{ij} = 0, 1, 2, \ldots \quad (2.2)
\]

Furthermore, the number of calls in progress between all pairs of stations are independent. It may even be stated that the above, \((2.2)\), is true for the arbitrary service time situation. If the constraints are seldom binding, that is if blocking is a rare event, then \((2.2)\) provides a useful approximation.

In the case that the constraints are imposed, the above result is also very nearly true, as is seen from the following:

Result. The stationary joint distribution of \(X_{ij}\) is Poisson constrained to the region \(C\). That is,

\[
\lim_{t \to \infty} P\{X_{ij}(t) = n_{ij}\} \equiv \lim_{t \to \infty} P\{X_{12}(t) = n_{12}, \ldots, X_{r,r-1}(t) = n_{r,r-1}\} = \prod_{i \neq j} e^{-\rho_{ij}} \frac{\rho_{ij}^{n_{ij}}}{n_{ij}!}, \quad n_{ij} \in C, \text{ and is zero otherwise.} \quad (2.3)
\]
\[n_{12} + n_{13} + \cdots + n_{1r} + n_{21} + \cdots + n_{r1} \leq c_1 \]

even as in (2.1).

Discussion. In order to justify the solution (2.3) we consider the balance equations for the steady state probabilities \(\pi \). These have the following form at state values away from the boundaries, the latter being defined by the constraint set \(C \).

\[
\pi(n_{12}, \ldots, n_{1r}, n_{21}, \ldots, n_{2r}, \ldots, n_{rl}, \ldots, n_{r1}, \ldots, n_{r,r-1})
\times \left[\lambda_{12} + \cdots + \lambda_{r,r-1} + \sum_{i \neq j} n_{ij} \mu_{ij} \right]
\]

\[= \sum_{i \neq j} \pi(\ldots, n_{ij} + 1, \ldots)[(n_{ij} + 1) \mu_{ij}]
+ \sum_{i \neq j} \pi(\ldots, n_{ij} - 1, \ldots) \lambda_{ij}. \quad (2.4) \]

These equations state that the rate of departure from the state \(\pi \) equals the rate at which that state is entered. Actually, there is local balance: if \(\pi(n_{ij}) \) denotes marginal distribution of calls in progress between \(i \) and \(j \), then in the unconstrained case we can see that local balance holds: if

\[\pi(n) = \prod_{i \neq j} \pi(n_{ij}) \quad (2.5) \]
and
\[\pi(n_{ij}) = e^{-\rho_{ij}} \frac{\rho_{ij}^{n_{ij}}}{n_{ij}!}. \] (2.6)

Then, termwise in (2.4) for all \(i \neq j \),
\[\pi(\ldots, n_{ij}, \ldots)[\lambda_{ij} + n_{ij} \mu_{ij}] = \pi(\ldots, n_{ij} + 1, \ldots)(n_{ij} + 1) \mu_{ij} + \pi(\ldots, n_{ij} - 1, \ldots) \lambda_{ij} \] (2.7)
since
\[e^{-\rho_{ij}} \frac{(\rho_{ij})^{n_{ij}}}{n_{ij}!} \lambda_{ij} = e^{-\rho_{ij}} \frac{(\rho_{ij})^{n_{ij}+1}}{(n_{ij}+1)!} (n_{ij}+1) \mu_{ij} \] (2.8a)
\[e^{-\rho_{ij}} \frac{\rho_{ij}^{n_{ij}}}{n_{ij}!} n_{ij} \mu_{ij} = e^{-\rho_{ij}} \frac{\rho_{ij}^{n_{ij}-1}}{(n_{ij}-1)!} \lambda_{ij}. \] (2.8b)

This shows that the product from solution (2.5) holds for \(n \) strictly within \(C \). Now suppose \(n \) is a boundary point. This means that some transition rates which were \(\lambda_{ij} > 0 \) in the unconstrained case must be equal to zero, in order to keep the \(X \) process within \(C \), i.e. on the left hand side of the balance equations (2.4) these terms now involve zeros
for λ_{ij}. But examination of (2.7) shows that if $\lambda_{ij} = 0$
then adding one to n_{ij} results in $n_{ij} + 1$—a state outside
C. Consequently, we define $\pi(\ldots, n_{ij} + 1, \ldots) = 0$. But
according to (2.8b), balance still holds. Consequently, the
solution in the constrained case is just the product form
(2.5), constrained to fall within C, as expressed by (2.3).

Example. Suppose that two stations communicate via satellite.
The constraint set, C, is

$$
\begin{align*}
n_{12} + n_{21} &\leq c_1 \\
n_{21} + n_{12} &\leq c_2 \\
n_{12} + n_{21} &\leq c_3 .
\end{align*}
$$

(2.9)

In this case the smallest channel capacity, be it at station 1,
2, or satellite, determines C. The balance equations are

$$
\pi(n_{12}, n_{21})[\lambda_{12} + \lambda_{21} + n_{12} \mu_{12} + n_{21} \mu_{21}]
\begin{align*}
= \pi(n_{12} + 1, n_{21}) (n_{12} + 1) \mu_{12} + \pi(n_{12}, n_{21} + 1) (n_{21} + 1) \mu_{21} \\
+ \pi(n_{12} - 1, n_{21}) \lambda_{12} + \pi(n_{12}, n_{21} - 1) \lambda_{21} .
\end{align*}
$$

(2.10)

Clearly, we define $\pi(n_{12}, n_{21}) = 0$ if $n_{12} + n_{21} > \min(c_1, c_2, c_3)$.
Now inside C the balance equations (2.10) are satisfied by the product form

$$\pi(n_{12}, n_{21}) = \left(e^{-\rho_{12} \frac{n_{12}}{n_{12}!}} \right) \left(e^{-\rho_{21} \frac{n_{21}}{n_{21}!}} \right)$$

$$= \pi(n_{12}) \pi(n_{21}) \quad (2.11)$$

Now suppose $n_{12} + n_{21} = \min(c_1, c_2, c_3)$, i.e. is on the boundary of C. Then $\lambda_{12} + \lambda_{21}$ must be set equal to zero. But, correspondingly $\pi(n_{12}+1, n_{21}) = \pi(n_{12}, n_{21}+1) = 0$. By local balance, the product form solution continues to hold on the boundary. Write for $n_{12} + n_{21} =$ boundary point

$$\left(e^{-\rho_{12} \frac{n_{12}}{n_{12}!}} \right) \left(e^{-\rho_{21} \frac{n_{21}}{n_{21}!}} \right) [0 + 0 + n_{12} \mu_{12} + n_{21} \mu_{21}]$$

$$= 0 + 0 \left(e^{-\rho_{12} \frac{n_{12}-1}{(n_{12}-1)!}} \right) \left(e^{-\rho_{21} \frac{n_{21}}{n_{21}!}} \right) \lambda_{12}$$

$$+ \left(e^{-\rho_{12} \frac{n_{12}}{n_{12}!}} \right) \left(e^{-\rho_{21} \frac{n_{21}-1}{(n_{21}-1)!}} \right) \lambda_{21} \quad (2.12)$$

and cancel off common factors; the balance is obvious. It is only necessary to normalize the product form over the constraint region, as dictated by (2.3).
3. Blocking Probabilities

The probability that a call originating at station i is blocked, essentially receiving a busy signal, is calculated in principle from (2.3). It is convenient to define

\[Y_{ij}(t) = X_{ij}(t) + X_{ji}(t) \quad \text{for} \quad 1 \leq i, j \leq r, \quad i \neq j \quad \text{and} \]

\[Y_{ii}(t) = 0. \]

Here \(Y_{ij}(t) \) represents the total number of calls in progress between stations i and j. In steady state \(Y_{ij} \) are independent Poisson random variables with parameter \(\eta_{ij} = \rho_{ij} + \rho_{ji} \), constrained by \(C \):

\[
\sum_{j=1}^{r} Y_{ij} \leq c_i, \quad 1 \leq i \leq r
\]

\[
\frac{1}{2} \sum_{i} \sum_{j} Y_{ij} < c_s.
\]

Now observe that a call from i to j can be blocked in three ways:

1) At the originating station, if Station i is full. This is event \(E_i = \{ \sum_{j=1}^{r} Y_{ij} = c_i \} \).

2) If the satellite channels are full, the event \(E_s = \{ \sum_{i} \sum_{j} Y_{ij} = 2c_s \} \).

3) If the destination station, Station j, is full. This is event \(E_j \).

The probability an i to j or j to i transmission is blocked somewhere is given by
Each of the above probabilities can be represented in terms of the Y_{ij} random variables. The value of each of these probabilities can be easily found by summing terms of the form (2.3), the steady state distribution, over a boundary portion of C. For example

$$P(E_i) = \sum_{y \in C} \frac{\prod_{k < l} \eta_{k,l}}{\sum_{y \in C} \prod_{k < l} \eta_{k,l}} \cdot \sum_{j \neq i} Y_{ij} = c_i$$

while other terms in (3.2) can be computed by changing the numerator to reflect a change in the boundary conditions.

It is clear that the calculation of each of the terms in (3.2) is in principle straightforward as it involves merely the calculation of a well-defined ratio. Unfortunately, the problem may be nearly computationally infeasible if the c_i's, c_s, and k are large. For example if $c_i = c_s$, $1 \leq i \leq r$, then C includes
distinct points. If $c_s = 50$, then for $k = 3, 4$, and 5 this quantity is 2.3426×10^4, 3.2468×10^7, and 7.5394×10^{10} respectively. Many interesting cases are essentially computationally infeasible.

Computer programs have been written for the cases of $r = 3$ and 4 ($r = 2$ can be done with the Erlang B formula). It is possible to reduce the computations necessary in (3.3) as follows. Let $c_{\text{min}} = \min(c_1, \ldots, c_r, c_s)$. The denominator (and numerator) can be rewritten as

$$\left(\begin{array}{c} c_s + \binom{k}{2} \\ \binom{k}{2} \end{array} \right)$$

$$= \sum_{n=0}^{c_{\text{min}}} S_n + \sum_{n=c_{\text{min}}+1}^{c_s} S_n \cdot$$

(3.4)

Now using the multinomial theorem

$$\sum_{n=0}^{c_{\text{min}}} S_n = \sum_{n=0}^{c_{\text{min}}} \sum_{\sum k < \ell \eta_{k\ell} = n} \frac{Y_{k\ell}}{y_{k\ell}!} = \sum_{n=0}^{c_{\text{min}}} \sum_{\sum k < \ell \eta_{k\ell} = n} \frac{Y_{k\ell}}{y_{k\ell}!}$$

$$= \sum_{n=0}^{c_{\text{min}}} \left(\sum_{k < \ell \eta_{k\ell}} \right)^n \cdot$$

(3.5)
The last term is simply computed. This observation removes

\[(c_{\min} + \binom{k}{2})\]

\[\binom{k}{2}\]

can reduce the computations required substantially. Nevertheless, for interesting values of \(k, c_s, \) and \(c_i, 1 \leq i \leq r,\) the number of terms needed to be computed may render the method to be infeasible. Research directed toward finding a tractable approximation useful for large networks is presently under way.
4. **Numerical Results for Three and Four Stations**

We now present a few numerical results that have been obtained for the situation in which three or four ground stations communicate via satellite. The computer programs used for obtaining these numbers is available upon request. It calculates the probabilities using enumeration of the multinominal terms. Three stations require a relatively small number of computations. For the case of four stations, the reduction (3.5) is utilized.

We are interested in cases where the blocking probabilities are small, say less than .10. We wish to see if in such circumstances probability of blocking \(P(E_i \cup E_j \cup E_s) \) can be estimated assuming independence. Specifically, we wish to determine if \(P(E_i \cup E_j \cup E_s) \) can be approximated by \(1 - P(E_i) P(E_j) P(E_s) \). If such an approximation is reasonable, it reduces the amount of computation required in the problem. In looking over the following tables, it appears that this approximation is usefully accurate, especially for the cases of small (less than .1) block probability.
Probability a 1 to 2 or 2 to 1 Message is Blocked
Given System Specifications

Case 1. $r = 3, c_1 = c_2 = c_3 = 10, c_s = 12, \eta_{12} = \eta_{13} = \eta_{23} = \eta$

<table>
<thead>
<tr>
<th>η</th>
<th>Exact $(P(E_1 \cup E_2 \cup E_s))$</th>
<th>Approximate $(1 - P(E_1)P(E_2)P(E_s))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>.014</td>
<td>.017</td>
</tr>
<tr>
<td>3.0</td>
<td>.090</td>
<td>.108</td>
</tr>
<tr>
<td>4.0</td>
<td>.206</td>
<td>.241</td>
</tr>
<tr>
<td>5.0</td>
<td>.316</td>
<td>.361</td>
</tr>
</tbody>
</table>

Case 2. $r = 4, c_1 = c_2 = c_3 = 10, \eta_{ij} = 1.0$

<table>
<thead>
<tr>
<th>c_s</th>
<th>Exact</th>
<th>Approximate</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>.0431</td>
<td>.0432</td>
</tr>
<tr>
<td>12</td>
<td>.0119</td>
<td>.0155</td>
</tr>
<tr>
<td>14</td>
<td>.0030</td>
<td>.0033</td>
</tr>
<tr>
<td>16</td>
<td>.0017</td>
<td>.0017</td>
</tr>
<tr>
<td>18</td>
<td>.0016</td>
<td>.0016</td>
</tr>
<tr>
<td>20</td>
<td>.0016</td>
<td>.0016</td>
</tr>
</tbody>
</table>
Case 3. \(r = 4, c_1 = c_2 = c_3 = 10, \eta_{ij} = 2.0 \)

<table>
<thead>
<tr>
<th>(c_s)</th>
<th>Exact</th>
<th>Approximate</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>.3019</td>
<td>.3023</td>
</tr>
<tr>
<td>12</td>
<td>.1991</td>
<td>.2038</td>
</tr>
<tr>
<td>14</td>
<td>.1226</td>
<td>.1335</td>
</tr>
<tr>
<td>16</td>
<td>.0805</td>
<td>.0916</td>
</tr>
<tr>
<td>18</td>
<td>.0683</td>
<td>.0733</td>
</tr>
<tr>
<td>20</td>
<td>.0674</td>
<td>.0692</td>
</tr>
</tbody>
</table>

Case 4. \(r = 4, c_1 = c_2 = c_3 = 10, \eta_{ij} = 3.0 \)

<table>
<thead>
<tr>
<th>(c_s)</th>
<th>Exact</th>
<th>Approximate</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>.493</td>
<td>.494</td>
</tr>
<tr>
<td>12</td>
<td>.402</td>
<td>.408</td>
</tr>
<tr>
<td>14</td>
<td>.319</td>
<td>.339</td>
</tr>
<tr>
<td>16</td>
<td>.254</td>
<td>.286</td>
</tr>
<tr>
<td>18</td>
<td>.221</td>
<td>.242</td>
</tr>
<tr>
<td>20</td>
<td>.216</td>
<td>.223</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DISTRIBUTION LIST</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATISTICS AND PROBABILITY PROGRAM
OFFICE OF NAVAL RESEARCH
COCÉ 436
ARLINGTON
VA 22217</td>
<td>1</td>
</tr>
<tr>
<td>OFFICE OF NAVAL RESEARCH
NEW YORK AREA OFFICE
715 BROADWAY - 5TH FLOOR
ATTN: DR. ROGER GRAFTE
NEW YORK, NY 10003</td>
<td>1</td>
</tr>
<tr>
<td>DIRECTOR
OFFICE OF NAVAL RESEARCH ERANCH OFF
536 SOUTH CLARK STREET
ATTN: DEPUTY AND CHIEF SCIENTIST
CHICAGO, IL 60605</td>
<td>1</td>
</tr>
<tr>
<td>LIBRARY
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO
CA 92152</td>
<td>1</td>
</tr>
<tr>
<td>NAVY LIBRARY
NATIONAL SPACE TECHNOLOGY LAB
ATTN: NAVY LIBRARIAN
BAY ST. LOUIS
MS 39522</td>
<td>1</td>
</tr>
<tr>
<td>NAVAL ELECTRONIC SYSTEMS COMMAND
NAVELEX 32C
NATIONAL CENTER NO. 1
ARLINGTON
VA 20360</td>
<td>1</td>
</tr>
<tr>
<td>DIRECTOR NAVAL RESEARCH LABORATORY
ATTN: LIBRARY (ONRL)
COCÉ 2025
WASHINGTON, D.C. 20375</td>
<td>1</td>
</tr>
<tr>
<td>DEFENSE DOCUMENTATION CENTER
CAMERON STATION
ALEXANDRIA
VIRGINIA 22314</td>
<td>2</td>
</tr>
<tr>
<td>TECHNICAL INFORMATION DIVISION
NAVY RESEARCH LABORATORY
WASHINGTON, D.C. 20375</td>
<td>1</td>
</tr>
</tbody>
</table>
OFFICE OF NAVAL RESEARCH
SAN FRANCISCO AREA OFFICE
760 MARKET STREET
SAN FRANCISCO CALIFORNIA 94102

TECHNICAL LIBRARY
NAVAL CROVANCE STATION
INDIAN HEAD MARYLAND 20640

NAVAL SHIP ENGINEERING CENTER
PHILADELPHIA
DIVISION TECHNICAL LIBRARY
PHILADELPHIA PENNSYLVANIA 19112

BUREAU OF NAVAL PERSONNEL
DEPARTMENT OF THE NAVY
TECHNICAL LIBRARY
WASHINGTON D. C. 20370

LIBRARY CCCE 0212
NAVAL POSTGRADUATE SCHOOL
MONTEREY CALIFORNIA 93940

PROF. M. AECEL-HAMEED
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF NORTH CAROLINA
CHARLOTTE NC 28223

PROF. T. W. ANDERSON
DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305

PROF. F. J. ANSCOMBE
DEPARTMENT OF STATISTICS
YALE UNIVERSITY
NEW HAVEN CONNECTICUT 06520

PROF. L. A. ARCIAN
INSTITUTE OF INDUSTRIAL ADMINISTRATION
UNION COLLEGE
SCHENECTADY, NEW YORK 12308
FRCF. C. R. BAKER
DEPARTMENT OF STATISTICS
UNIVERSITY OF NORTH CAROLINA
CHAPEL HILL,
NORTH CAROLINA
27514

FRCF. R. E. BECHHOFER
DEPARTMENT OF OPERATIONS RESEARCH
CORNELL UNIVERSITY
ITHACA
NEW YORK 14850

FRCF. N. J. BERSHAD
SCHOOL OF ENGINEERING
UNIVERSITY OF CALIFORNIA
IRVINE,
CALIFORNIA
92664

P. J. BICKEL
DEPARTMENT OF STATISTICS
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA
94720

PROF. F. W. BLOCK
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF PITTSBURGH
PITTSBURGH
PA
15260

PROF. JOSEPH BLUM
DEPT. OF MATHEMATICS, STATISTICS
AND COMPUTER SCIENCE
THE AMERICAN UNIVERSITY
WASHINGTON
DC
20016

PROF. R. A. BRADLEY
DEPARTMENT OF STATISTICS
FLORIDA STATE UNIVERSITY
TALLAHASSEE, FLORIDA 32306

PROF. R. E. BARLOW
OPERATIONS RESEARCH CENTER
COLLEGE OF ENGINEERING
UNIVERSITY OF CALIFORNIA
BERKELEY
CALIFORNIA 94720

MR. C. N. EBBETT
NAVAL COASTAL SYSTEMS LABORATORY
CCDE P161
PANAMA CITY,
FLORIDA
22401
No. of Copies

1

I. L. N. BHAT
COMPUTER SCIENCE / OPERATIONS
RESEARCH CENTER
SOUTHERN METHODIST UNIVERSITY
DALLAS, TEXAS 75275

1

W. R. ELISCHKE
DEPT. OF QUANTITATIVE
BUSINESS ANALYSIS
UNIVERSITY OF SOUTHERN CALIFORNIA
LOS ANGELES, CALIFORNIA 90007

1

J. DERRILL J. BORDELON
NAVAL UNDERWATER SYSTEMS CENTER
COCE 21
NEWPORT
RI
02840

1

J. E. BRYER JR
DEPT. OF STATISTICS
SOUTHERN METHODIST UNIVERSITY
DALLAS, TX
75275

1

J. CHANDRA
U. S. ARMY RESEARCH
P. O. BOX 12211
RESEARCH TRIANGLE PARK, NC
27709

1

H. CHERNOFF
DEPT. OF MATHEMATICS
MASS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS 02139

1

C. C. GERMAN
DEPARTMENT OF CIVIL ENGINEERING
AND ENGINEERING MECHANICS
COLUMBIA UNIVERSITY
NEW YORK
10027

1

R. L. DISNEY
VIRGINIA POLYTECHNIC INSTITUTE
AND STATE UNIVERSITY
DEPT. OF INDUSTRIAL ENGINEERING
AND OPERATIONS RESEARCH
BLACKSBURG, VA
24061

1

J. DOWLING
DEFENSE LOGISTICS STUDIES
INFORMATION EXCHANGE
ARMY LOGISTICS MANAGEMENT CENTER
FORT LEE, VIRGINIA 20390

20
FRCF. P. A. W. LEWIS
DEPT. OF OPERATIONS RESEARCH AND
ADMINISTRATIVE SCIENCES
NAVAL FCST GRADUATE SCHOL
MONTEREY, CALIFORNIA
93940

FRCF. G. LIEBERMAN
STANFORD UNIVERSITY
DEPARTMENT OF OPERATIONS RESEARCH
STANFORD CALIFORNIA 94305

DR. JAMES R. MAAR
NATIONAL SECURITY AGENCY
FORT MEADE, MARYLAND
20755

FRCF. R. H. MAESEN
DEPARTMENT OF STATISTICS
UNIVERSITY OF MISSOURI
COLUMBIA
MO 65201

DR. N. R. MANN
SCIENCE CENTER
ROCKWELL INTERNATIONAL CORPORATION
P.O. BOX 108
THOUSAND CYAKS,
CALIFORNIA 91360

DR. W. F. MARLOW
PROGRAM IN LOGISTICS
THE GEORGE WASHINGTON UNIVERSITY
707 22ND STREET, N. W.
WASHINGTON, D. C.
20037

PROF. E. MASRY
DEPT. APPLIED PHYSICS AND
INFORMATION SERVICE
UNIVERSITY OF CALIFORNIA
LA JOLLA
CALIFORNIA 92037

CF. BRUCE J. MCDONALD
SCIENTIFIC DIRECTOR
SCIENTIFIC LIAISON GROUP
OFFICE OF NAVAL RESEARCH
AMERICAN EMBASSY - TOKYO
AFC SAN FRANCISCO 96503

PROF. J. A. McLKSTADT
DEPT. OF OPERATIONS RESEARCH
CORNELL UNIVERSITY
ITHACA, NEW YORk
15850

23
DR. JANET M. MYHRE
THE INSTITUTE OF DECISION SCIENCE
FOR BUSINESS AND PUBLIC POLICY
CLAREMONT MEN'S COLLEGE
CLAREMONT
CA 91711

MR. F. NISSELSCH
BUREAU OF THE CENSUS
ROOM 2025
FEDERAL BUILDING 3
WASHINGTON,
D. C. 20533

MISS B. S. CRLEANS
NAVAL SET SYSTEMS COMMAND
(SEA 03F)
FM 10508
ARLINGTON VIRGINIA 20360

FRCF. C. E OWEN
DEPARTMENT OF STATISTICS
SOUTHERN METHODIST UNIVERSITY
DALLAS
TEXAS
75222

PROF. E. PARZEN
STATISTICAL SCIENCE DIVISION
STATE UNIVERSITY OF NEW YORK
AT BUFFALO
AMHERST
NEW YORK 14226

DR. A. PETROSOVITS
RCCM 207B, FOOD AND CRLG BLDG.
TUNNEY'S PASILRE
OTTOWA, ONTARIC K1A-CL2,
CANADA

FRCF. S. L. PHEINIX
SIBLEY SCHOOL OF MECHANICAL AND
AEROSPACE ENGINEERING
CORNELL UNIVERSITY
ITHACA
NY 14850

DR. A. L. POWELL
DIRECTOR
OFFICE OF NAVAL RESEARCH BRANCH OFF
495 SUMMER STREET
BOSTON
MA 02210

MR. F. R. FRICFI
CODE 224 OPERATIONAL TEST AND EVALUATION FORCE (OPTEVFOR)
FORT FOLK,
VIRGINIA
20360
No. of Copies

1

PROF. M. L. PURI
DEPT. OF MATHEMATICS
P.O. BOX F
INDIANA UNIVERSITY FOUNDATION
ELECTRONICA
IN 47401

1

PROF. H RCEBINS
DEPARTMENT OF MATHEMATICS
COLUMBIA UNIVERSITY
NEW YORK,
NEW YORK 10027

1

PROF. M ROSENBLATT
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA SAN DIEGO
LA JOLLA
CALIFORNIA 92038

1

PROF. S. W. ROSS
COLLEGE OF ENGINEERING
UNIVERSITY OF CALIFORNIA
BERKELEY
CA 94720

1

PROF. I RUBIN
SCHOOL OF ENGINEERING AND APPLIED
SCIENCE
UNIVERSITY OF CALIFORNIA
LOS ANGELES,
CALIFORNIA 90024

1

PROF. I. R. SAVAGE
DEPARTMENT OF STATISTICS
YALE UNIVERSITY
NEW HAVEN,
CONNECTICUT 06520

1

PROF. L. L. SCHEARF JR
DEPARTMENT OF ELECTRICAL ENGINEERING
COLORADO STATE UNIVERSITY
FT. COLLINS,
COLORADO 80521

1

PROF. R. SERFLING
DEPARTMENT OF STATISTICS
FLORIDA STATE UNIVERSITY
TALLAHASSEE FLORIDA 32306

1

PROF. W. R. SCHLCANY
DEPARTMENT OF STATISTICS
SOUTHERN METHODIST UNIVERSITY
DALLAS,
TEXAS 75222

1
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Name and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M. A. Ackerman, ADVANCED PROJECTS GROUP</td>
</tr>
<tr>
<td>1</td>
<td>E. J. K. Navy Research Lab.</td>
</tr>
<tr>
<td>1</td>
<td>W. G. Sykes, ARTHUR C. LITTLE, INC.</td>
</tr>
<tr>
<td>1</td>
<td>J. R. Thompson, DEPARTMENT OF MATHEMATICAL SCIENCE</td>
</tr>
<tr>
<td>1</td>
<td>H. A. Thompson, DEPARTMENT OF STATISTICS</td>
</tr>
<tr>
<td>1</td>
<td>F. A. Tillman, DEPT. OF INDUSTRIAL ENGINEERING</td>
</tr>
<tr>
<td>1</td>
<td>J. W. Tukey, DEPARTMENT OF STATISTICS</td>
</tr>
<tr>
<td>1</td>
<td>A. F. Veinott, DEPARTMENT OF OPERATIONS RESEARCH</td>
</tr>
<tr>
<td>1</td>
<td>Daniel H. Wagner, STATION SQ. ONE</td>
</tr>
<tr>
<td>1</td>
<td>Grace Wahba, DEPARTMENT OF STATISTICS</td>
</tr>
</tbody>
</table>

The document contains a list of names and addresses, each associated with a number of copies. The list includes various institutions and individuals, such as universities, research labs, and private companies, along with their respective states and ZIP codes.
<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>C8540</td>
</tr>
<tr>
<td>$3940</td>
</tr>
<tr>
<td>93940</td>
</tr>
<tr>
<td>20015</td>
</tr>
<tr>
<td>ENGLAN</td>
</tr>
<tr>
<td>22314</td>
</tr>
<tr>
<td>602 C1</td>
</tr>
<tr>
<td>602 01</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

PPCF. PETER ELLCMFIELD
STATISTICAL DEPT.
PRINCETON UNIVERSITY
PRINCETON, N. J.

PPCF. G. G. BROWN
DEPT. OF OR
NAVAL POSTGRADUATE SCHOOL
MONTEREY CALIFORNIA

R. W. BUTTERWORTH
SYSTEMS EXPLORATION
WEBSTER ST.
MONTEREY CALIFORNIA

DR. JAMES CAPRA
7218 CELLMFIELD STREET
CHEVY CHASE MARYLAND

CR. C. R. CCX
DEPT. OF MATHEMATICS
IMPERIAL COLLEGE
LONDON SW7

DEFENSE DOCUMENTATION CTR.
CAMESA STATION
ALEXANDRIA VIRGINIA

ECCN. AND NAT. SCI. CTR.
NORTHEASTERN UNIV.
EVANSTON ILLINCIS

MAN. SCE. RES. CTR.
FACULTY OF COM. AND BUS. ADMIN.
UNIV. OF BRITISH COLUMBIA
VANCOUVER BRITISH COLUMBIA V6T 1W5 CANADA

DR. M. CHASS
MATN. DEPT.
NORTHEASTERN UNIV.
EVANSTON ILLINCIS
No. of copies
1

PROF. K. T. WALLENIUS
DEPARTMENT OF MATHEMATICAL SCIENCES
CLEMSON UNIVERSITY
CLEMSON,
SOUTH CAROLINA 29631

1

PROF. G. S. WATSON
DEPARTMENT OF STATISTICS
PRINCETON, N. J. 08540

1

PROF. BERNARD WIDRICH
STANFORD ELECTRONICS LAB
STANFORD UNIVERSITY
STANFORD
CA 94305

1

PROF. G. I. WHITEGURSE
CEPT. OF INDUSTRIAL ENGINEERING
LEHIGH UNIVERSITY
BETHLEHEM
PA 18015

1

PROF. S. ZACKS
DEPT. OF MATHEMATICS AND STATISTICS
CASE WESTERN RESERVE UNIVERSITY
CLEVELAND, OHIO 44106

1

PROF. M. ZIA-HASSAN
DEPARTMENT OF INDUSTRIAL AND
SYSTEMS ENGINEERING
ILLINOIS INSTITUTE OF TECHNOLOGY
CHICAGO
IL 60616

1

HEAD, MATH. SCI SECTION
NAT. SCIENCE FOUNDATION
1800 G STREET, N.W.
WASHINGTON, D.C. 20550

1

PROF. A. F. ANCRUS
DEPT. OF CP
NAVAL POSTGRADUATE SCHOOL
MONTEREY
CALIFORNIA 93940

1

PROF. C. R. BARR
DEPT. OF CP
NAVAL POSTGRADUATE SCHOOL
MONTEREY
CALIFORNIA 93940

1
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Name</th>
<th>Address</th>
<th>City, State, Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CR. R. ELASHOFF</td>
<td>BIONMATMATICS UNIV. OF CALIF. LOS ANGELES</td>
<td>90024</td>
</tr>
<tr>
<td>1</td>
<td>PROF. GEORGE S. FISHMAN</td>
<td>UNIV. OF NORTH CAROLINA CUR. IN OR AND SYS. ANALYSIS PHILIPS ANNEX CHAPEL HILL, NORTH CAROLINA</td>
<td>20742</td>
</tr>
<tr>
<td>1</td>
<td>DR. R. GAANAGESIKAN</td>
<td>ELL TELEPHONE LAB HOLMDEL, N. J.</td>
<td>07733</td>
</tr>
<tr>
<td>1</td>
<td>DR. A. J. GCLERMAN</td>
<td>CHIEF, CR DIV. 2C5.C2, ADMIN, A42E L.S. DEPT. OF COMMERCE WASHINGTON, D.C.</td>
<td>20234</td>
</tr>
<tr>
<td>1</td>
<td>DR. H. FICINIS</td>
<td>53: BONN 1, POSTFACH 589 NÄSSESTRASSE 2</td>
<td>WEST GERMANY</td>
</tr>
<tr>
<td>1</td>
<td>DR. P. I. HOLMES</td>
<td>DEPT. OF MATH. CLEMSON UNIV. CLEMSON SOUTH CAROLINA</td>
<td>29631</td>
</tr>
<tr>
<td>1</td>
<td>DR. R. J. HOCKE</td>
<td>MATH. DEPT. WESTINGHOUSE RES. LABS CHURCHILL B&FC PITTSBURGH, PENNSYLVANIA</td>
<td>15235</td>
</tr>
<tr>
<td>1</td>
<td>CR. D. L. IGLEHART</td>
<td>DEPT. OF C&I. STANFORD UNIV. STANFORD CALIFORNIA</td>
<td>94305</td>
</tr>
</tbody>
</table>
DR. PATRICIA JACOBS
CR. DEPT.
NAVAL POSTGRADUATE SCHOOLS
MONTEREY
CALIFORNIA
93940

DR. H. KOBAYASHI
IBR
YORKTOWN HEIGHTS
NEW YORK
10598

DR. JOHN LEHOCZKY
STATISTICS DEPARTMENT
CARNEGIE-MELLON UNIVERSITY
PITTSBURGH
PENNSYLVANIA
15213

LIBRARY
CEE 55
NAVAL POSTGRADUATE SCHOOLS
MONTEREY
CALIFORNIA
93940

DR. A. LEMOTINE
1020 GUINCA ST.
FALO ALT C.
CALIFORNIA
94301

DR. J. MACCUSEN
UNIV. CF CALIF.
LOS ANGELES
CALIFORNIA
90024

FFCF. K. T. MARSHALL
DEPT. CF CF
NAVAL POSTGRADUATE SCHOOLS
MONTEREY
CALIFORNIA
93940

DR. M. MAZUMCAR
MATH. DEPT.
ESTINGHOUSE RES. LABS
CHURCHILL BCFC
PITTSBURGH
PENNSYLVANIA
15235

DR. LEON F. MCGINNIS
SCHOOLS CF INC. ANE SYS. ENG.
GEORGIA INST. OF TECH.
ATLANTA
GEORGIA
30332

No. of Copies
DR. PAUL SCHWEITZER
THOMAS J. WATSON RESEARCH CTR9
PCST OFFICE BOX 218
YORKTOWN HEIGHTS
NEW YORK 10598

DR. RICHARD SCRENSON
CODE 303 NPRDC
271 CATALINA BLVD.
SAN DIEGO
CALIFORNIA 92152

PROF. M. G. SOVEREIGN
DEPT. CF OR
NAVAL POSTGRADUATE SCHOOL
MONTEREY
CALIFORNIA 93940

DR. V. SRINIVASAN
GRADUATE SCHOOL CF BUSINESS
STANFORD UNIVERSITY
STANFORD
CALIFORNIA 94305

DR. R. M. STARK
STATISTICS ARE COMPUTER SCI.
UNIV. CF DELAWARE
NEWARK
DELAWARE 19711

PROF. RICHARD VANSLYKE
RES. ANALYSIS CCRP.
BEECHWOOD
CLD TAPPEN FJJC
GLEN COVE, NEW YORK 11542

PROF. JOHN W. TUKEY
FINE HALL
PRINCETON UNIV.
PRINCETON
NEW JERSEY 08540

CR. TECHMAS C. WARLEY
OFFICE OF NAVAL RESEARCH
CODE 434
ARLINGTON
VA 22217

PROF. G. WATSON
FINE HALL
PRINCETON UNIV.
PRINCETON
NEW JERSEY 08540

33

No. of Copies
Dr. Roy Welsch
M.I.T., Sloan School
Cambridge, MA 02139

Dean of Research 012
Naval Postgraduate School
Monterey, Ca. 93940

Professor D. P. Gaver
Code 55Bv
Naval Postgraduate School
Monterey, Ca. 93940

R. J. Stampfel
Code 55
Naval Postgraduate School
Monterey, Ca. 93940

No. of Copies

1
1
20
1