
�&�D�O�K�R�X�Q�����7�K�H���1�3�6���,�Q�V�W�L�W�X�W�L�R�Q�D�O���$�U�F�K�L�Y�H

�'�6�S�D�F�H���5�H�S�R�V�L�W�R�U�\

�1�3�6���6�F�K�R�O�D�U�V�K�L�S �7�K�H�V�H�V

��������������

�,�Q�W�H�U�R�S�H�U�D�E�L�O�L�W�\���D�Q�G���V�H�F�X�U�L�W�\���V�X�S�S�R�U�W���I�R�U

�K�H�W�H�U�R�J�H�Q�H�R�X�V���&�R�W�V���*�R�W�V���O�H�J�D�F�\

�F�R�P�S�R�Q�H�Q�W���E�D�V�H�G���D�U�F�K�L�W�H�F�W�X�U�H

�7�U�D�Q�����7�D�P���0�������$�O�O�H�Q�����-�D�P�H�V���2��

�0�R�Q�W�H�U�H�\�����&�D�O�L�I�R�U�Q�L�D�����1�D�Y�D�O���3�R�V�W�J�U�D�G�X�D�W�H���6�F�K�R�R�O

�K�W�W�S�V�������K�G�O���K�D�Q�G�O�H���Q�H�W����������������������

�'�R�Z�Q�O�R�D�G�H�G���I�U�R�P���1�3�6���$�U�F�K�L�Y�H�����&�D�O�K�R�X�Q

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

INTEROPERABILITY AND SECURITY SUPPORT FOR
HETEROGENEOUS COTS/GOTS/LEGACY

COMPONENT-BASED ARCHITECTURE

Tam M. Tran
James 0. Allen

September 2000

Thesis dvisor : ,uq
Thesis Co-Advisor: Mantak Shing

Approved for public release; distribution is unlimited.

ZOO01031 066 Reproduced From
Best Available Copy

REPORT DOCUMENTATION PAGE

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

September 2000

Form Approved I OMB NO. 0704-0188

3. REPORT TYPE AND DATES COVERED
Master's Thesis

12a. DISTRIBUTION I AVAILABILITY STATEMENT

Approved for public release, distribution is unlimited.

~~

4. TITLE AND SUBTITLE
Interoperability and security support for
heterogeneous COTS/GOTS/Legacy component-based
architecture

Tran, Tam M. and Allen, James 0.
6. AUTHOR(S)

12b. DISTRIBUTION CODE

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

14. SUBJECT TERMS
COTS, GOTS, Application Wrapper, Security Model, Network

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

15. NUMBEROF
PAGES

5. FUNDING NUMBERS

17. SECURITY CLASSIFICATION OF 8' SECURITY PAGE CLASSIFICATloN OF 19. SECURITY CLASSIFICATION OF
REPORT ABSTRACT

Unclassified Unclassified Unclassified

8. PERFORMING
ORGANIZATION REPORT
NUMBER

20. LIMITATION

UL
ABSTRACT

10. SPONSORING I
MONITORING

AGENCY REPORT NUMBER

This thesis researches existing open standards solutions to the
distributed component integration problem and proposes an
application framework that supports application wrappers and a
uniform security policy external to the components. This
application framework adopts an Object Request Broker (ORB)
standard based on Microsoft Distributed Component Object Model
(DCOM) . Application wrapper architectures are used to make
components conform to the ORB standard. The application
framework is shown to operate in a common network architecture.

Architecture, Component Interface, Open Standards F 16. PRICE CODE

I I I

Standard Form 298 (Rev. 2-89) USN 7540-01-280-5500
Prescribed by ANSI Std. 239-18

i

Approved for public release; distribution is
unlimited -

INTEROPERABILITY AND SECURITY SUPPORT FOR HETEROGENEOUS
COTS/GOTS/LEGACY COMPONENT-BASED ARCHITECTURE

Tam M. Tran
B.S., San Diego State University, 1996

James 0. Allen
B.A., University of California Los Angeles,

Submitted in partial fulfillment of the
Requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE

from the

ENGINEERING

1970

Authors :

NAVAL POSTGRADUATE SCHOOL
September 2000

Tam M. Tran

Approved by:
Luqi, Mesis Advisor

esis Co-Advisor

hudi, Chairman -

gineering Curriculum L
D a u o g e r , Chairman//

Department of Computer SMence

- I

iii

ABSTRACT -

There is a need for Commercial-off-the-shelf (COTS),

Government-off-the-shelf (GOTS) and legacy components to

interoperate in a secure distributed computing environment

in order to facilitate the development of evolving

applications.

This thesis researches existing open standards

solutions to the distributed component integration problem

and proposes an application framework that supports

application wrappers and a uniform security policy external

to the components. This application framework adopts an

Object Request Broker (ORB) standard based on Microsoft

Distributed Component Object Model (DCOM) . Application

wrapper architectures are used to make components conform to

the ORB standard. The application framework is shown to

operate in a common network architecture.

A portion of the Naval Integrated Tactical

Environmental System I (NITES I) is used as a case study to

demonstrate the utility of this distributed component

integration methodology (DCIM) .

V

TABLE OF CONTENTS
I . INTRODUCTION ... 1

I1 . EXISTING SOLUTIONS TO THE INTEROPERABILITY PROBLEM 5

A . GENERIC SECURITY SERVICE APPLICATION PROGRAM INTERFACE (GSS-API) 5
B . KERBEROS ... 5
c . A SECURE EUROPEAN SYSTEM FOR APPLICATIONS IN A MULTI-VENDOR ENVIRONMENT
(SESAME) ... 7
D . DISTRIBUTED COMPUTING ENVIRONMENT (DCE) 7
E . KRYPTOKNIGHT .. 8
F . WINDOWS NT SECURITY MODEL .. 8

1 . Local User Logon Process 9
2 . Security Reference Monitor 9
3 . Audit Security Subsystem 11

G . DCOM ... 12
H . JAVA ... 14
I . CORBA .. 15

K . SECURE HYPERTEXT TRANSFER PROTOCOL (S-HTTP) 16
L . IP SECURITY (IPSEC) .. 16

I11 . GENERIC WRAPPER FOR SYSTEM COMPONENTS 19

A . REQUIREMENTS OF THE GENERIC WRAPPER FOR SYSTEM COMPONENTS 19

2 . Environment .. 21
B . SPECIFICATION OF THE GENERIC WRAPPER FOR SYSTEM COMPONENTS 22

1 . X M L Standard ... 23
a) Security ... 24
b) Namespaces .. 25
c) Document Type Definitions (DTDs) 25
d) Document Object Model (DOM) ... 25
e) XML Specification ... 25

2 . COTS Application exposes API 26
3 . Standard file naming and directory conventions for component
determination .. 28
4 . Command line input support for COTS COMPONENTS Invocation 29

IV . ARCHITECTURAL DESIGN PATTERN 31

A . ARCHITECTURAL DESIGN ... 31
B . NITES IMPLEMENTATION ... 32

1 . Using Architectural Design Pattern 32
2 . Thin Client Technology 33
3 . Push Technology .. 33

C . NETWORK ARCHITECTURE .. 35
1 . Intranet Security .. 37
2 . Internet Security .. 37
3 . Dial-in Security ... 37

V . CASE STmlY ... 39

A . CASE STUDY OVERVIEW .. 39
1 . App .. 39
2 . App Wrapper .. 39
3 . System Monitor ... 40
4 . System Controller .. 40

J . SECURE SOCKETS LAYER (SSL) .. 16

1 . General Description .. 19

5 . Storage Directory .. 40
6 . Application (IMGEDT) ... 40
7 . Glue Component ... 40
8 . Database ... 40

B . PRODUCE PRODUCTS TO DIRECTORY: IMAGE EDITOR (IMGEDT) 43
C . DISPLAY PRODUCTS: CONTINUOUS BRIEF 46

1 . Continuous Brief Initialization 47
2 . Continuous Brief Update 50
3 . User Interface ... 53

vii

4 . Brief Interfaces .. 53
a) Image Interface .. 5 3
b) Images Interface ... 54
c) Show Interface ... 54

D . DCOM DEPLOYMENT INSTRUCTIONS 55

VI . CONCLUSIONS .. 59

A . DCOM SOLUTION .. 59
B . ARCHITECTURAL DESIGN .. 59
C . WRAPPERS ... 60
D . SECURITY ... 61
E . IMGNT .. 61
F . FUTURE TRENDS .. 61

LIST OF REFERENCES ... 63

BIBLIOGRAPHY ... 65

APPENDIX A . GSS-API VERSION 2 FUNCTION CALLS 67

APPENDIX B . SESAME CRYPTOGRAPHIC SUPPORT FACILITY (CSF) APIS 69

INITIALIZATION APIS .. 69
RANDOM NUMBER GENERATION API 73
SET-UP AND CONFIGURATION ... 74

APPENDIX C . SESAME ARCHITECTURE 77

A . PROTOCOL NOTATIONS .. 77
B . USER SPONSOR FUNCTIONS .. 78
C . AUTHENTICATION PRIVILEGE ATTRIBUTE CLIENT (APA) 78
D . APPLICATION CLIENT .. 78

1 . Authentication Server (AS) Functions 78
E . PRIVILEGE ATTRIBUTE SERVER (PAS) FUNCTIONS 79
F . KEY DISTRIBUTION SERVER (KDS) 79
G . PRIVILEGE ACCOUNT CERTIFICATE (PAC) VALIDATION FACILITY (PVF) FUNCTIONS ... 79
H . PUBLIC KEY MANAGEMENT (PKM) FUNCTIONS 80

APPENDIX D . SaELETON VB CODE FOR DESIGN PATTERN 81

A . MONITOR COMPO "T .. 81
1 . Modules .. 81

a.Module 1 .. 81
2 . Classes .. 81

a.Monitor ... 81
b.Monitor Connector ... 82

B . CONTROLLER COMPONENT ... 83
1 . Modules .. 83

a . Module 1 .. 83
2 . Classes .. 83

a . Controller .. 83
b . Controller Connector .. 84

C . GLUE COMPONENT .. 85
1 . Classes ... 85

a . Glue .. 85
D . APPLICATION WRAPPER COMPONENT .. 85

1 . Forms .. 85

APPENDIX E . XML VOCABULARIES ... 87

APPENDIX F . SYSTEMS REQUIREMENTS SPECIFICATION 93

1 . SCOPE ... 95

1.1 INTRODUCTION ... 9 5

1.3 BACKGROUND .. 96
1.2 PURPOSE ... 9 5

viii

1.4 REFERENCES .. 97

2 . GENERAL DESCRIPTION ... 98

2 . 1 ARCHITECTURE GOALS .. 98
INTEROPERABILITY ... 98
ADOPTED FRAMEWORK TECHNOLOGY .. 99
SECURITY ... 100
NETWORK SECURITY .. 102
NETWORK COMMUNICATIONS .. 103
DEVELOPMENT LANGUAGE ... 103
2.2 ASSUMPTIONS AND DEPENDENCIES 103

3 . TARGET ARCHITECTURE FUNCTIONS 105

SECURITY ... 105
GRAPHICAL USER INTERFACE (G U I) .. 106
EXTERNAL SYSTEM INTERFACES .. 106
MIDDLEWARE TECHNOLOGY .. 106

4 . ARCHITECTURE ATTRIBUTES ... 108

4.1 PERFORMANCE REQUIREMENTS .. 108
4 . 2 RELIABILITY REQUIREMENTS .. 108
4.3 DESIGN CONSTRAINTS ... 109

APPENDIX G . SYSTEM DESIGN SPECIFICATION 111

1 . SYSTEM ARCHITECTURE ... 112

1.1 SYSTEM ARCHITECTLIRE DIAGRAM 112
1.2 INTER-TASK COMMUNICATION .. 117
MONITOR/ CONTROLLER ... 117
CONTROLLER/GLUE COMPONENT .. 118
CBWRAPPER/CONTROLLER ... 118
CBWRAPPER/GLUE COMPONENT ... 118

2 . SUBSYSTEM DESCRIPTION ... 119

MONITOR .. 119
CONTROLLER ... 119

CBWRAPP ER .. 119
INITIALIZATION GUI .. 120
CONFIGURATION GUI ... 121
NAMING CONVENTION .. 121
THIN CLIENT TECHNOLOGY ... 122
PUSH TECHNOLOGY ... 122

Figure 3 - Wrapper 8 Glue Code Object Diagram 123
OMF ... 124

Table 1.11 . OM!? Attributes for the TAF Element 147

APPENDIX H . VISUAL BASIC IMPLEMENTATION 159

1 . Conf igura t ion GUI (CBcfg) 159
2 . App l i ca t i on Wrapper (CBWrapper) 166
3 . Object Components (Continuous B r i e f) 179

a) Global Variable Declarations 179
b) Timer .. 180
c) Controller .. 181
d) Controller Connector ... 185
e) Monitor ... 186
f) Monitor Connector ... 192
g) Glue ... 193

INITIAL DISTRIBUTION LIST ... 195

GLUE COMPONENT ... 119

ix

X

ACKNOWLEGEMENT

The authors wishes to thank
Dr. Valdis Berzins and Dr. Mantak Shing

for their guidance in this project.

xi

I. INTRODUCTION -

There is a need for Commercial-off-the-shelf (COTS),

Government-off-the-shelf (GOTS) and legacy components to

inter-operate in a secure distributed computing environment

in order to facilitate the development of evolving

applications.

This thesis researches existing open standards

solutions to the distributed component integration problem

and proposes an application framework that supports

application wrappers and a uniform security policy external

to the components. This application framework adopts an

Object Request Broker (ORB) standard based on Microsoft

Distributed Component Object Model (DCOM) . Application

wrapper architectures are used to make components conform to

the ORB standard. The application framework is .shown to

operate in a common network architecture.

A portion of the Naval Integrated Tactical

Environmental System I (NITES I) is used as a case study to

demonstrate the utility of this distributed component

integration methodology (DCIM) . The System Requirement

Specification (SRS), System Design Specification (SDS) and

Visual Basic Implementation, found in the appendices, 'are

the results of a collaborative effort with graduate students

Karen Gee and Thomas Nguyen.

1

Unified Modeling Language (UML) methodology is used -in
-

the formal specification of the system.

The Joint C4ISR Battle Center (JBC) Study considered

several approaches to solving the interoperability problem,

including wrappers, messaging, data mediators, data

replicators, data translators, and ORBs, and evaluated each

approach using the following criteria: performance,

reliability, speed to field, cost, extendibility, COTS

support, security and standards. The empirical scores for

each criterion of each approach are plotted on a Kiviat

graph. The JBC Study, published at the Naval Post Graduate

School in 1999, recommends a solution in the context of

ORBs, but with caveats. Re-evaluation is needed, as new

products are available. Background and training of

personnel is an important consideration in selecting a

solution. [Ref. 11 This thesis also recommends the ORB

approach and focuses on Microsoft Distributed Component

Object Model (DCOM) with emphasis on setting security policy

external to the component. Legacy applications are made DCOM

compliant by wrapping the application within a DCOM

component. Custom applications wrappers need to be

designed, which is consistent with the findings of the JBC

study .

This thesis is organized into the following chapters:

2

Chapter I1 researches existing solutions to the
-

distributed component integration problem.

0 Chapter I11 proposes a methodology that can be

used to transform desktop legacy applications into

distributed web based applications.

Chapter IV presents a design pattern application

framework encompassing security and wrappers that

is applied to the case study.

Chapter V discusses the portion of the NITES

system used as case study to validate the

usefulness of the proposed methodology.

0 Chapter VI presents the lessons learned and

conclusions from the case study.

3

THIS PAGE IS INTENTIONALLY LEFT BLANK

4

11. EXISTING SOLUTIONS TO THE INTEROPERABILITY PROBLEM

A, GEMERIC SECURITY SERVICE APPLICATION PROGRAM INTERFACE
(GSS -API)

GSS-API is emerging as an Internet standard for

securing applications. GSS-API is embedded in Common Object

Request Broker Architecture (CORBA), Kerberos, Distributed

Computing Environment/Remote Procedure Call (DCE/RPC),

Sequence Packet Exchange (SPX), KryptoKnight, and SOCKS

[Ref. 21. GSS-API is popular because it is an interface

specification that is independent of implementation

mechanism, independent of placement, and independent of

communication protocol. The interface specification is a

product of the IETF Common Authentication Technology Working

Group. Version 2 of GSS-API has 37 function calls broken

down into 4 categories: Credential Management, context-

level, per-message and support.

GSS-API assumes the application establishes a

connection to a service, messages are transferred to and

from the service, and the service will not request another

external service on behalf of the user.[Ref. 21

B, KERBEROS

Kerberos was developed in the 1980's at MIT to provide

additional security for the Athena system. The primary

goals were to provide single logon to a network of

5

application servers and protect authentication from

masquerading attacks. Kerberos is an implementation

mechanism for GSS-API. Kerberos assumes the client, network

and server cannot be trusted and that a third party key

distribution center (KDC) is needed to store secret keys.

The KDC is composed of two logical entities, the

authentication server (AS) and the ticket-granting server

(TGS). The AS is responsible for authenticating the user

and providing the user a ticket to access the TGS. The user

sends its identity, server and nonce. A nonce is a randomly

generated one-time value that is used to counter a replay

attack. The AS responds with a session key, server and

nonce encrypted using the user’s secret key and a ticket

encrypted with the server’s secret key. The TGS is

responsible for granting the user a ticket to access the

requested server for a limited period of time. The user

sends to the server an authenticator encrypted with the

session key and the ticket obtained from TGS. The server

decrypts the ticket to obtain the session key which in turn

is used to decrypt the authenticator. Typically the

authenticator has a timestamp that must be within 5 minutes

of the current time. To provide mutual authentication the

server returns the authenticator encrypted with the session

key. Strong authentication is achieved because secret keys

were never passed in the clear. [Ref. 31

6

Kerberos has several weaknesses. The user’s secret key

is stored in the host’s memory during AS exchange. Kerberos

is vulnerable to password guessing attacks. Registering each

service with the KDC does not scale. Applications must be

modified to take advantage of Kerberos.

C * A SECURE EUROPEAN SYSTEM FOR APPLICATIONS IN A MULTI-
VENDOR ENVIRONMENT (SESAME)

Sesame is the European substitute for Kerberos. Sesame

Sesame implements all the specified security services.

architecture can be divided into 4 major entities: client,

security server, application server and support components.

GSS-API calls need to be added to the client and application

server entities in places where messages are being sent and

received. The C source code for Sesame V4 for Redhat Linux

V5 is available at www.cosic.east.kuleuven.ac.be/sesame.

There is a project underway to convert Sesame to Java in

order to improve portability.[Ref. 21

D. DISTRIBUTED COMPUTING ENVIRONMENT (DCE)

The Open Systems Foundation (OSF) specification for DCE

includes facilities for security, directory services, time

services, threads and remote procedure calls.

DCE 1.2 is compatible with Kerberos V5 so single logon

and mutual authentication services are available. DCE uses

Access Control Lists (ACLs) for authorization. Role based

authorization is not available. Like Kerberos, DCE/RPC uses

7

a session key to provide secure communication services

between the client and server. A rich set of APIs,

including GSS-API is available to the programmer. These

APIs provide data confidentiality and integrity

services.[Ref. 21

The DCE web site is www.camb.opensroup.orq/tech/dce.

E. KRYPTOKNIGHT

KryptoKnight has been under development at IBM' since

1992. Kerberos influenced the design of this system.

Similar security services include single logon per user,

mutual authentication, key distribution and data integrity

and confidentiality. Role based authorization is not

provided. The 2-party, 3-party and inter-domain protocols

are designed to minimize network usage and computer

processing.[Ref. 21

The KryptoKnight web page is www.zurich.ibm.com/-sti/s-

kk/extern/kryptoknisht

F. WINDOWS NT SECURITY MODEL

The goal of any multitasking and networked operating

system security is to ensure that system resources such as

memory, files, devices and CPUs cannot be accessed without

authorization.

The NT security model has three major components: the

logon process, the security reference monitor, and other

security subsystems.

8

I 1

1. Local User Logon Process

Each user has an account on a local machine that is

managed by administrators using the Security Accounts

Manager (SAM). In a NT server environment, each user

may also have a domain account. The Primary Domain

Controller (PDC) and the Backup Domain Controller (BDC)

Once are responsible for authenticating the user.

authenticated, the user has access to any machine on

the network that allows access to domain users. The

trusted domain relationship is one-way and not

transitive.

Each user may be assigned to one or more groups. If

the number of users exceeds the number of groups,

assigning users to groups and privileges and

permissions to groups reduces the administrator's task

of managing security policy.

2. Security Reference Monitor

The reference monitor is responsible for authorizing

access to any NT object and audit generation. The

reference monitor accesses all NT objects consistently

and uniformly. User mode processes pass an object

handle to system services operating in kernel mode.

There are 23 NT object types: adapter, controller,

desktop, device, directory, driver, event, eventpair,

file, IOCompletion, key, mutant, port, process,

profile, section, semaphore, symboliclink, thread,

9

timer, token, type, and windowStation. Each obje-ct

type has a set of attributes that are common to all

object types and a set of attributes specific to the

object type. The object manager uses the common

attributes to provide the following services: close,

duplicate, query object, query security, set security,

wait for single object, wait for multiple objects.

Each NT object has a security descriptor attribute

which defines the permissions, auditing and ownership

of an object. The corresponding structures are named

Discretionary Access Control List (DACL) , System Access

Control List (SACL) , and Owner Security Ids (OwnerSID) -

Each entry in the list is named an Access Control Entry

(ACE). The owner controls a DACL ACE. The security

administrator controls a SACL ACE. A n ACE can contain a

collection of access rights that may be generic,

standard or specific. Generic access rights are read,

write, execute and all (read, write, execute). Generic

access rights can be mapped to standard access rights

that are delete access, read access to security

descriptor, read, write, execute, synchronize, write

DAC, write Owner, required, and all.

In summary a user access token includes a Security ID

(SID) , a list of privileges and a list of group SIDs.

An object security descriptor includes an owner SID,

DACL, and SACL. [Ref. 43

-

10

3. Audit Security Subsystem

The following table describes the types of events that

can be audited in Windows NT.[Ref. 51

event

Logon and

File and
Object
Access

Use of User
Rights

User and
Group
Management

Security
Policy
Changes

Restart,
Shutdown ,
and System

Process
Tracking

I

Description

A user logged on or off or made a network
connection.

A user opened a directory or a file that is
set for auditing in File Manager, or a user
sent a print job to a printer that is set
for auditing in Print Manager.

A user used a user right (except those
rights related to logon and logoff).

A user account or group was created,
changed, or deleted. A user account was
renamed, disabled, or enabled; or a
password was set or changed.

A change was made to the User Rights,
Audit, or Trust Relationships policies.

A user restarted or shut down the computer,
or an event has occurred that affects
system security or the security log.

These events provided detailed tracking
information for things like program
activation, some forms of handle
duplication, indirect object accesses, and
process exit.

Table 1.1 Windows NT Event Types for Audit

The Event Viewer utility formats and displays audit

event records.

11

Audit event records include header information that is

present in all event records. The following list

describes this common information.

0 The time the event was generated.

0 The SID of the subject that caused the event to be

generated. If possible, Event Viewer translates

this SID to an account name for display. The SID

is the impersonation ID if the subject is

impersonating a client, or the primary ID if the

subject is not impersonating.

0 The name of the system component or module that

submitted the event. For security audits this is

always Security.

0 The module-specific ID of the specific event.

0 The event type, either Success Audit or Failure

Audit .

0 The event category, used to group related events

such as logon audits, object access audits, and

policy change audits. [Ref. 51

G . DCOM

Figure 1.1 shows the overall DCOM architecture. The

client uses an interface, represented by a lollipop, to

access a service provided by a remote component. Using DCE

RPC and common security providers makes DCOM available on

12

other platforms including Apple Macintosh, Sun Solaris,

Linux, A I X , and MVS.
-

run-time run-time

Provider Provider

Protocol Stack Protocol Stack

protocol

Figure 1.1. Overall DCOM Architecture [Ref. 51

DCOM can provide security services for COTS components

externally by using the DCOM configuration tool or by

embedding security API calls within components. The primary

DCOM security services fall into three categories: access,

launch and call. Access security checks fo r privilege to

connect to a running object. Launch security checks for

privilege to create an object. Call security checks for

privilege to access a component interface.

Each client has a security context that encapsulates

security services. Security features, such as mutual

authentication, can be selected just by setting a property

value.

13

DCOM can impersonate the client on a server machine -to

allow nested client-server architecture. Impersonation can

also be used to control access to individual properties and

methods of components.

-

DCOM is layered on Object Remote Procedure Call (ORPC)

which is an extension of DCE RPC. These services are

accessible through the WIN32 Security Support Provider

Interface (SSPI). DCOM can also accommodate multiple third

party security providers.

DCOM uses Windows NT NTLM, Kerberos V5 or Distributed

Password Authentication (DPA) authentication protocols.

DCOM uses SSL/PCT protocols to provide integrity and

confidentiality services for communication connections.

DCOM uses the Windows Registry and the ACL facilities

of the Windows NT operating system. DCOM is also available

on Macintosh and UNIX platforms.[Ref. 41

H. JAVA

Java 1.1 applets run in a virtual machine on a host

machine. The assumption is that all applets are un-trusted

unless accompanied by a digital signature. The virtual

machine protects the host from un-trusted applets utilizing

the "sandbox" approach. This means the capabilities of Java

applications that are potentially harmful to the host are

restricted in applets. For example, an applet may not

access the host file system.

14

The java.lang.SecurityManager class implements the

applet security restrictions. A security policy is created

by instantiating and registering a security manager object.

A potentially harmful operation causes an exception that is

handled by a security manager method.

I. CORBA

The Common Object Services specification (CORBASec)

describes security related tasks and requirements needed for

CORBA .

A CORBA ORB, ORBacus, from Object Oriented Concept Inc.

has been used to implement some specified security services.

ORBacus currently provides the Security Level 1

functionality of CORBASec. Security Level 1 provides

security services for applications that are unaware of

security including mutual authentication, confidentiality

and integrity.

The messages exchanged are encapsulated in the Secure

Inter-ORB Protocol (SECIOP) message format. SECIOP provides

a standard for maintaining security and interoperability

between ORBS. Each end maintains its state following the

rules of the SECIOP Context Management finite state machine.

The security functionality underneath is that of

Kerberos V5 and is accessed through a Java binding of the

GSS-API.

15

J. SECURE SOCKETS LAYER (SSL)

SSL is positioned between the TCP/IP application and

connections layers enabling multiple services such as

Telnet, HTTP and FTP to establish secure connections without

modification to the services. SSL utilizes RSA

Public/Private key architecture. The server identity is

validated to the client by x.509 digital certificates.

Optionally the client identity can also be validated to the

server. The server has access to an LDAP compliant key

directory server. [Ref. 61

K. SECURE HYPERTEXT TRANSFER PROTOCOL (S-HTTP)

S-HTTP permits parties to negotiate symmetric or

asymmetric keys, key management technique, message formats,

and cryptographic strength. S-HTTP allows for multiple trust

models to be negotiated between client and server. Security

features are specific to the HTTP protocol.[Ref. 31

L. IP SECURITY (IPSEC)

IPSec provides for secure transfer of IP packets across

an untrusted network. IPSec resides at the network layer of

the OSI model. IPSec is transparent to protocols at higher

layers in the OSI model. IPSec is an open standard for

encryption on an IP network.

Two one-way security associations (SA) between hosts or

gateways store security parameters (Source IP, cryptographic

algorithm, cryptographic keys, user or gateway name, data

16

sensitivity level, transport layer protocol, source and

destination ports). Unique SA key includes security

parameter index (SPI), IP destination, and security

protocol, either Association Header (AH) or Encapsulated

Security Payload (ESP). With ESP, the enclosed

packet(tunne1ing) is encrypted, so original source and

destination addresses could be unregistered.[Ref. 71

17

THIS PAGE IS INTENTIONALLY LEFT BLANK

18

111. GENERIC -PER FOR SYSTEM COMPONENTS

A. REQUIREMENTS OF THE GENERIC WRAPPER FOR SYSTEM
COMPONENTS

1. General Description

The security services designed for commercial

applications often focus on data integrity while

military applications focus on data confidentiality.

In order for COTS components to operate in a military

environment, the commercial security services must be

carefully selected to achieve military security

requirements. The next section contains a list of

security services applicable to the military

environment that are also available in various

combinations within commercial products. A methodology

shall be developed to transform classes of legacy

modules into reusable components using the wrapper

architecture.

Components shall pass messages transparently across

language, operating systems and network boundaries.

A common set of security services across operating

systems will simplify implementation of a security

policy.

The following security services shall be available to

the customer:

Single logon for users

19

Mutual authentication

Auditing

Key distribution

0 Role based Access Control

Data confidentiality

Data integrity

Data availability

Mon-repudiation

The single logon for users means the u s e r needs to

identify him once per session. It is the

responsibility of the security services to protect and

distributed the authentication information of a user.

Mutual authentication ensures proper identification of

the user to the system and the system to the user.

Auditing means significant security events are recorded

for later analysis. Significant security events shall

include login, logout, password change, and access

validation.

Key distribution provides a secure transport mechanism

for encryption keys.

Role based access control assigns roles to users and

privileges to roles, thereby simplifying access control

if the number of roles is less than the number of

users.

2 0

Data confidentiality means data is disclosed according

to a policy.

Data integrity means the recipient gets the intended

data.

Data availability means the user has access to the data

when needed.

Non-repudiation means the sender of a message cannot

later deny he sent the message.

2. Environment

The classes of projects targeted by this thesis

typically operate in an environment with the following

conditions:

Components pass messages synchronously or

asynchronously.

Components may have real-time constraints.

0 A hierarchy of interacting COTS, GOTS and

custom components may be assembled to form an

application.

Implementation will be dependent on the

security services of the host operating

systems.

Security policies need to evolve and policy

implementations need to be manageable in a

distributed computing environment.

21

Some components may be in binary executable

form where compile or link is not possible.
-

Other components may be re-linked but not

recompiled. Other components may not be re-

linked but substitution of dynamic load

libraries (DLL) is possible. Other components

may be modified at the source code level and

recompiled.

The security services will not be exported

outside of the United States.

0 Attacks can come from inside or outside an

organization.

0 This security system must be adaptable to

counter new kinds of security attacks.

0 The target systems will operate at a single

level of security at no higher than the

discretionary access control level (C 2) .

B. SPECIFICATION OF THE GENERIC WRAPPER FOR SYSTEM
COMPONENTS

Wrappers that need to exchange self-describing content

over a network can use X M L . Utilization of XML within

wrappers makes data transport mechanism independent of

language or operating system. Following is a description of

the XML standard.

2 2

1. XML Standard

X M L is an emerging standard for transferring data among

distributed components in web applications. Industry

has been quick to agree on XML vocabularies. NITES has

-

developed a nationally recognized vocabulary for

meteorological data. See Appendix E for XML

meteorological vocabulary and sources for other

vocabularies.

X M L

0

a

0

offers the following desirable features:

X M L describes data that can be specified in a

lexical tree structure. Unlike directed graphs,

trees can be efficiently traversed.

X M L and HTMZ; share the same level in the WEB

architecture. Both can use the secure HTML

mechanism and the digital signature mechanism.

XML specification is the product of the World Wide

Web Consortium (W3C) and is recognized as a

standard for distribution of data over the

Internet.

All content is encoded in the specified Unicode

character set. There is no need to wrap vendor

specific data formats.

Industry specific X M L vocabularies make content

available to any compliant application.

23

0 XML vocabularies are extensible without affecting
-

earlier versions.

Any DoD joint application should consider

evolving to X M L . Some common steps to gradually

incorporate XML into an existing project include:

Categorize the types on information the system

handles. Examples are personnel, weather,

tactical, and logistics.

Search for existing XML standards in categories.

If there are no X M L standards within a category,

organize a standards committee, and produce an

industry wide standard.

Develop components to transform existing messages,

records, etc. into XPlL entities. A one-time

transformation is usually preferable to repeated

run-time transformations.

Use existing tools to provide additional

transformations such as record set to XML.

Use security zones of the browser to implement

security policy. Use X M L parser imbedded in

browser to extract information for presentation.

Security

security zone features have been extended in

Internet Explorer 5 (IE5) to provide security services

24

for the embedded XML parser. The zones include local,

Internet, local intranet, trusted site, and restricted

site in order of trustworthiness. The originating zone

may access a zone that is equal or less

trustworthy. [Ref. 51

b) Namespaces

XMT; namespace specification developed by World Wide Web

Consortium (W3C) is implemented on IE5. This allows

developers to define unique element names using a

registered qualifier.

c) Document Type Definitions (DTDs)

DTDs utilize XML to describe rules to validate an XML

document. DTDs are an optional section of the XML

document.

d) Document Object Model (DOM)

The DOM provides a standard way to programmatically

construct and traverse any X M L document. The X M L

document is composed of objects with attributes and

methods. DOM can be applied to the task of transforming

an ActiveX Data Object (ADO) record set into an X M L

document. Interfaces are defined for the DOM and all

X M L objects.

e) XML Specification

The X M L specification is on the Web at URL

www.w3.ors/xml. Production rules are in the Extended

-

25

Backus-Naur Format (EBNF) . An annotated version is at

Web

The

0

0

0

0

0

0

0

0

0

2 .

DCOM

site ~.xml.com/xml/pub/axml/axmlintro.html.

design goals for XML are:

XML shall be straightforwardly usable over the

Internet .

XML shall support a wide variety of applications.

XML shall be compatible with SGML.

It shall be easy to write programs which process

XML documents.

The number of optional features in X M L is to be

kept to the absolute minimum, ideally zero.

XPlL documents should be human-legible and

reasonably clear.

The XML design should be prepared quickly.

The design of X M L shall be formal and concise.

XML documents shall be easy to create.

Terseness in XPlL markup is of minimal importance.

[Ref. 81

COTS Application exposes API

and CORBA use an Interface Definition Language

(IDL) to name and describe an interface containing

public attributes, methods and events. There is a

many-to-many relationship between interfaces and

2 6

components. A component may implement one or more

interfaces. The interface serves as a contract between

the component developer and user.

How do you ensure each interface has a unique name when

many independent activities are creating interfaces?

One solution is to use a routine that will always

generate a different name each time it is called. DCOM

uses this solution to generate unique class and

interface names. Once an interface has been assigned a

name it will never change. There is no way to modify

an interface and use its original name. This

guarantees that all legacy code will never need to be

changed because an interface has been modified.

DCOM interfaces are language and platform independent.

For example, a component written in Visual Basic and

running on a Windows NT platform can use a component

written in C++ and running on a Unix platform.

DCOM and CORBA require each component to implement the

Unknown interface. From this interface, all interfaces

implemented by the component can be dynamically

discovered.

Dynamic discovery and use of an interface is known as

late binding. Use of a priori knowledge of implemented

interfaces is known as early binding. DCOM and CORBA

both support early and late binding. There is a

performance penalty for using late binding.

27

Microsoft Visual Basic hides many interface details.

The development environment generates the IDL from the

class implementation. The unique IDL name is

automatically generated. The clause 'lwith events" will

enable receipt of events. The Unknown interface is

automatically generated.

Microsoft Word, Excel and Powerpoint are examples of

COTS components that expose an API. In the case study

the Powerpoint API is used by the application wrapper.

3. Standard file naming and directory conventions for
component determination

On Windows NT there is a many-to-one relationship

between a file type and an application. For example,

the file type PPT is associated with the Powerpoint

application.

NITES imagery applications generate TIF, GIF, and MIF

file types. Powerpoint is capable of processing the

above file types.

Middleware wrappers can take advantage of standard file

naming conventions -and directory conventions to

integrate components. For example, if a COTS

application periodically generates an imagery file to a

known directory, middleware can poll the directory for

new files with a file type of interest and pass the

file to a consumer of the file type.

2 8

4. Command line input support for COTS COMPONENTS
Invocation -

UNIX and DOS have popularized starting an application

and passing switches and parameters on a command line.

This same mechanism can be used from within a program

to start another program. A wrapper can use this

mechanism to integrate independent COTS applications.

A chaining model is used when the calling program

terminates after execution. An asynchronous model is

used when the calling and called programs operate in

parallel. A synchronous model is used when the calling

program waits for completion of the called program.

2 9

Process A Process B Process A Process B

Exit

Chainning model Asynchronous model

Process A Process B

Synchronous model

Figure 3.1. Wrapper calling models

3 0

A.

4.1

IV, ARCHITECTURAL DESIGN PATTERN-

ARCHITECTURAL DESIGN

The architectural design pattern represented in Figure

is common to many IT systems including NITES and USCG

National Distress Response System Modernization Program

(NDRSMP) .

Application
Wrapper

COTS
Application

Controller Monitor 4

T 1
ODBC

Compl i an t
Database

Figure 4.1. Architectural Design Pattern

The realization of this architecture on a network of

Windows NT machines running DCOM, IIS, Internet Explorer and

optionally a UNIX relational database server machine,

satisfies the requirements of the previous section.

In NITES, the object is a TIF file containing a

satellite image. In NDRSMP, the object is a WAV file

31

containing a voice segment. The Monitor component is

responsible for detecting the presence of a new object. The

controller component is responsible for coordinating

multiple concurrent asynchronous activities. The glue

component is responsible for storing and retrieving objects

from a ODBC compliant relational database. The Application

Wrapper is responsible for making the object available to a

COTS viewer application.

B. NITES IMPLEMENTATION

1. Using Architectural Design Pattern

A Windows NT DCOM solution in Visual Basic (VB) was

used in NITES to implement the architectural design

pattern. See Appendix D for the skeleton VB code. The

launch, access and permission security features were

set external to each component using DCOMCNFG utility.

The DCOMCNFG utility was also used to set the location

of each component and user account assigned to the

component. The automation data types were used to make

marshaling and un-marshaling of data transparent to

each component. Migration from a desktop

application to an Internet Explorer 5 (IE) was

performed to reduce maintenance. Client components can

be maintained on the server and automatically

downloaded to the client. Migration is accomplished by

3 2

converting the project type from standard executable to

an ActiveX control using Microsoft Visual -Studio.

The key to generic wrapper design is to use standard

objects. Standard objects include widely used file

extensions such as Tagged Image File Format (TIFF) and

WAV, XML meta data, and record sets. There are COTS

plug-in viewers for each of the above standard object

types.

2. Thin Client Technology

The web based application wrapper is implemented using

modern thin client technology. When a user opens a HTTP

page from a browser, the wrapper is then automatically

downloaded and installed on the client machine. Once

the wrapper is up and running, all images needed for

creating the brief are dynamically downloaded from the

server using the OpenURL method. OpenURL uses the

current open HTTP connection to transfer image files.

The continuous brief is created on the client machine

using the Powerpoint APIs. The Powerpoint is used to

display the brief.

3. Push Technology

The advantage of using push technology is that the

client does not need to poll the server periodically

for new data. The server notifies its clients (wrapper)

when new data (images) arrive. The wrapper receives the

notification and compares the image type with the type

33

being showed. If the image types match, the wrapper

downloads a new set of images from the server and

updates the brief.

34

-

C . NETWORK ARCHITECTURE

Figure 4.2 depicts network architecture similar to many

systems including NITES. The network is composed of an

intranet divided into four sub-nets, a router connecting the

four sub-nets and providing a connection to the internet

service provider, and a dial-in access server. Two sub-nets

separate the traffic of two user groups. Security and packet

wrapper options within this network architecture are

characterized. The components in the architectural design

pattern are typically deployed on the web server and user

computers.

3 5

Subnets Router

Admin

Users

To Remote
Access

Web Server DNS Server Mail Server

Dial-in

Figure 4.2. Network Architecture

36

1. Intranet Security -

, A hierarchical network architecture formed with routers

offers traffic isolation and additional security.

Using ACLs and IP filters on the router Ethernet

interfaces can control traffic flow across subnets.

Some routers, including the popular Cisco router, are

capable of protecting against IP spoofing.

2. Internet Security

Standard security mechanisms are available at different

layers of the O S I Network Model. Point-to-point

tunneling protocol (PPTP), Layer 2 tunneling protocol

(L2TP), Frame Relay, and Asynchronous transfer mode

(ATM) are available at the Data link layer. IP

security (IPSec) and Generic routing encapsulation

(GRE) are available at the Network layer. SOCKSv5, SSL

and TLS are available at the session layer.

3. Dial-in Security

Some authentication schemes, such as password

authentication protocol (PAP), transfer passwords in

the clear and are vulnerable to snooping. Stronger

authentication schemes are available.

The dial-in access server is a convenient place to host

authentication schemes for mobile users. Remote

Authentication Dial-in User Service (RADIUS) is a draft

standard that covers protocols for a centralized access

37

server. RADIUS allows for one-time token authentication

schemes.

Windows NT provides Challenge Handshake Authentication

Protocol (CHAP). Client and server share a common

secret key. A unique session key is negotiated without

transferring the secret key in the clear. A unique

session key limits the usefulness of replay attacks to

the current session.

-

38

1

V. CASE STUDY

A. CASE STUDY OVERVIEW

A subset of the operational NITES system was chosen for

the case study. This subset is representative of the issues

involved in the integration of COTS software components

where only the executables are available.

The case study covers the wrapper and security aspects

of component integration.

The wrapper transforms COTS applications into a

COM/DCOM component enabling interfaces with infrastructure

components as shown in Figure 5 .2 .

1. APP

The App is the COTS application that provides the APIs

used by the App Wrapper to integrate with other

components.

2. App Wrapper

The App Wrapper is the software code developed to add,

modify, and hide functionality from COTS, GOTS or

legacy software components to align them with the

overall system requirements and architecture. In the

design, wrapper and glue code technology is being

implemented to enable the COTS applications to adhere

to the existing NITES architecture.

39

3. System Monitor

The Monitor component is responsible for detecting the

presence of a new object.

4. System Controller

The controller component is responsible for

coordinating multiple concurrent asynchronous

activities. The controller runs on the application

server. It serves two functions within the system,

handling notifications from the monitor and the glue

component.

5. Storage Directory

The Storage Directory is a target directory that is

accessed by the IMGEDT application and the Glue

component. This is the location for the data

temporarily stored before being updated to, or

retrieved from the database.

6. Application (IMGEDT)

IMGEDT is a COTS application that generates the

satellite images.

7. Glue Component

The glue component is responsible for storing and

retrieving objects from an ODBC compliant relational

database.

8. Database

The Database is an OBDC compliant relational database

that is available for storing and retrieving data.

40

App Wrapper n

I Y / retrieve

Sys t em
Controller Monitor Directory

initiate \ notify retrieve/store store

Application
(IMGEDT)

data I

Store data/
Reauest for data

Database

Figure 5.2 Component Integration DCOM Wrappers

41

-

Component security is based on external DCOM security

features. External DCOM security provides the following

advantages over internal DCOM security:

Source code, object code or DLLs are not required.

External security can be used when only

'executables are available.

Since security policy is not embedded within

components, components may be reused in security

environments.

Security policy can be implemented without writing

any code or understanding component internals.

The case study focuses on two COTS applications within

the operational NITES system. The first application, called

image editor, produces a product. The second application,

called continuous brief, presents a product. The image

editor creates a file in a known directory. The file

extension identifies the file type. The file is saved in a

central relational database. This conforms to a design

philosophy of NITES that each application interfaces with

the database and not with each other.

The continuous brief loops through a set of the latest

weather satellite images. The satellite images are extracted

from the database. Continuous brief parameters include the

42

number of images, viewing duration of each image, and image

viewing dimensions.
-

Each application fits the three-tiered architecture of

presentation, logic, and database. The presentation and

logic tiers run on a PC with Windows NT. The database tier

runs on Sun Solaris. COM/DCOM is used to interface logic

components on the PC. ADO/ODBC is used to interface to the

relational database.

The Extensible Markup Language (XML) is used to wrap

the data products in the relational database.

B. PRODUCE PRODUCTS TO DIRECTORY: IMAGE EDITOR (IMGEDT)

IMGEDT is a legacy NITES application that will be used

to demonstrate the effectiveness of the design pattern

produce products to directory. It is assumed only the

executable is available, dynamic link library (DLL)

substitution is not an option, and driver chaining will not

be used.

IMGEDT is a Windows NT desktop application with no

network or database connectivity. IMGEDT is capable of

opening an image file, editing an image file and saving an

image file to the local directory system.

The user signs on locally using id and password. The

user has system privileges and object permissions to execute

IMGEDT, read an image file and store an image file to a

43

directory. Windows NT provides authentication and access

control services.
-

Figure 5 . 3 shows the product producer sequence diagram.

It is the responsibility of the System Monitor to poll the

IMGEDT target directory for new or updated image files. It

is assumed the IMGEDT target directory is located on a

shared drive within an intranet and that the shared drive is

accessible to the System Monitor. When a file is detected,

the System Monitor initiates the sequence to store the image

on a remote relational database.

44

Svstem Monitor Svstem Controller Application Storaae Directory
I

Notifies

Glue Component Database

I b
Polls directorv for new obiect

itroller if there's nc

_____)

Requests for storing object to database

D

..lakes the connecti +
Retrieves object from directory

Stores object to database

t----4
Terminates the connection

Figure 5.3 Store object into Database

Following is a detailed explanation of each step in the

sequence diagram.

1. The application saves an object to the storage

directory.

2. Concurrent to step 1, the system monitor

periodically polls the storage directory for a new

or updated object .

45

3. Access to the object is allowed only if the system
-

monitor has read permission.

4. The system monitor notifies the system controller

if there is new object.

5. The glue component establishes a remote connection

to the relational database.

6. The glue component updates the database.

7. The relational database commits the object to the

database after the command is successfully

processed.

8. The glue component terminates the remote

connection to the relational database.

C . DISPLAY PRODUCTS: CONTINUOUS BRIEF'

The goals of the continuous brief case study are:

1. Prove that the presented wrapper and security

architecture is feasible in the context of an

existing system.

2. Measure performance impact due to security and

wrappers.

3. Formalize the case study into a pattern for future

pro j ects .

The continuous brief is composed of the following objects:

1. Web Browser

2. Powerpoint as an ActiveX Document embedded within

a browser -

46

3.

4.

5 .

6 .

7.

1.

Powerpoint Application wrapper that utilizes

Powerpoint API.

Control that coordinates activities within the

-

system

Communications that

messaging facilities.

Database that provides

row sets using SQL.

provide inter-component

storage and retrieval of

IMGNT application that interfaces with the

database for storing and retrieving images.

Continuous Brief Initialization

Figure 5.4 shows the sequence of actions performed by

cooperating objects to initialize the continuous brief.

47

Controller

Reaisters with

System
Monitor r Direct0

Requests for objects

I I
Makes the connection

t-+l
Retrieves obiect from database

Saves obiect to directow -
Notifies controller when done retrieving objects I

I Notifies obiect's readv

Retrieves objects

Figure 5.4. Continuous Brief

Terminates the connection

Initialization Sequence Diagram

48

Following is a description of the diagram:

1. User registers to the web server. User

authentication scheme will depend on user role and

user location.

2. If user is authenticated, the web server sends the

Initialization GUI home page containing parameters

to be filled in.

3. The user fills in the number of images starting

from the most current, the display duration of

each image in seconds and the height and width of

the display area. Default values are 24 images, 0

second duration, and display area equal to the

screen size.

4. The web Server initiates the application wrapper

and passes input parameters.

5. The application wrapper registers interest in new

satellite images with the controller. The

controller will notify all registered application

wrappers when a new satellite image has been

stored into the database.

6. The application wrapper requests the latest

requested number of images from the database.

49

7. The glue component transforms the request into an
-

asynchronous database query.

8. The database returns the requested images in a

tif, jpeg or mif file format. The time the

satellite image was photographed is part of the

file name.

9. The glue component saves the requested images to

the storage directory.

10. The application wrapper downloads the images via

the current HTTP connection.

11. The application wrapper uses the PPT API to

generate and show a continuous brief.

2 . Continuous Brief Update

Figure 5 . 5 shows the sequence of actions performed by

cooperating objects to update the continuous brief.

50

Fl WraDper Controller nl Component
I

Database

-

Notifies

Makes the connection

I----+
Retrieves obiect from database

b
Stores obiect to directow

4 I
Terminates the connection

Saves obiect to directotv

m

Notifies controller when done retrieving objects b
I

4
Retrieves objects

b
Uodates Presentation

Polls directotv for new obiect

roller if there's new object

I I
I

51

It is assumed that the App wrapper is embedded in the

browser on the client machine. Foliowing is a

description of the diagram:

1.

2 .

3.

4 .

5 .

6 .

7 .

8 .

9 .

10.

11.

The

The Application saves new object to the storage

directory.

The system monitor notifies system controller

there is new object.

Controller forwards request to Glue component.

Glue component marshals request for database query

and sends request using ODBC protocol.

Database processes request and stores the new

object.

Glue component notifies controller that a new

object has been inserted into the database.

System controller requests Glue component for

objects.

Glue component initiates retrieval of objects from

database.

Glue component notifies system controller when

retrieval is completed.

Controller notifies registered App wrappers that

new objects are available.

App wrapper updates presentation with new objects.

Observer Pattern, as described in Design Patterns,

also classifies this type of application. The subject

is the satellite image section of the database and the

52

observer is the application wrapper. The loose

coupling between the database and the wrapper allows

multiple wrappers to receive notification of a new

satellite image.

3, User Interface

Before the brief is started, the user is prompted for

the following parameters:

The type of brief. Default is visual.

0 Number of images in brief (1-99). Default 24

Duration of each image (0-20 seconds). Default

0 .

Image display dimensions (height and width in

twips). Default is window size.

These parameters initialize the brief via the brief

interfaces. Buttons are used to start and stop the

brief. A reset button restores input parameters to

default values.

4 . Brief Interfaces

a) Image Interface

The image interface is mapped to the PowerPoint shape

object interface. Each image in the brief share the

following properties:

Setwidth (twips width);

53

Sets the width of the display area in twips

for the image.
-

SetHeight (twips height);

Sets the height of the display area in twips

for the image.

Each image is sized to fit the display area.

b) Images Interface

The images interface is mapped to the Powerpoint slides

object interface. The interface manages the images in

the brief.

SetNumberOfImages (integer nImages);

Sets the number of images in the brief.

AddImage (picture image) ;

Adds the given image to the end of the brief.

The images should be added in time sequence

from the oldest to the newest.

c) Show Interface

The show interface is mapped to the Powerpoint show

object interface. The interface manages the sequential

display of each image in the brief.

SetImageDuration (integer seconds);

Sets the number of seconds that each slide is

diplayed.

54

Startshow () ;

Display images from first to last and repeat

image sequence until show is stopped.

StopShow () ;

Stop continuous brief.

D. DCOM DEPLOYMENT INSTRUCTIONS

The Visual Basic development environment provides tools

to create a deployment package for ActiveX Exe remote

servers. The remote server check box inside the

project/properties/component section needs to be checked.

Making the project using Files/Make creates an executable

file (EXE), assigns a globally unique class ids and

interfaces ids, and registers the component on the local

machine. To avoid creation of new global identifiers each

time the component is made, set the version compatibility to

binary compatibility using the projects/properties/component

pane. New global identifiers are only necessary when the

interface definition changes. The package and deployment

wizard steps you through the process of creating a

deployment package. Since the target machine does not

usually contain a development environment, the Visual Basic

run time environment must be included in the deployment

package. If the remote server component creates other

components, the Visual Basic Reference file (VBR) and Type

55

Library (TLB) must also be included in the deployment

package.
-

Transfer the deployment package to the target machine

and execute the setup application. Setup will register the

component in the registry, copy dependent files to the

appropriate system directory and update the programs folder.

Run DCOMCNFG on the server machine. The DCOM server check

box needs to be checked in order for the DCOM server to run.

Find the application name from the list of applications, and

select properties. The location is local machine. The

security setting controls user roles that have privileges to

launch, attach or change ownership of the remote server.

The identification section is used to enter the user account

and user password that will be used to launch the component.

The protocol section is used to list the protocols to use in

priority sequence.

Run DCONCNFG on the client machine. The DCOM server

check box needs to be checked in order for the DCOM server

to run. Find the server application name from the list of

applications, and select properties. The location is the

name of the remote server machine. The security setting

controls user roles that have privileges to launch, attach

or change ownership of the client component. The

identification section is used to enter the user account and

user password that will be used to launch the component.

5 6

The protocol section is used to list the protocols to use in

priority sequence.

The client is now ready to launch or attach to the

remote server component. There is no need to manually start

the server component. When the client creates a new the

server component, the server component is launched on the

remote machine.

Use the internet package option of the Package and

Deployment Wizard to deploy an ActiveX control to the Web

Server. This creates a CAB file containing the control and

its dependencies. The CAB file is compressed to reduce

download time. During the initial download, the ActiveX

control is saved and registered on the client. Subsequent

references to the control are resolved locally.

57

THIS PAGE IS INTENTIONALLY LEFT BLANK

5%

VI. CONCLUSIONS -

The following conclusions are based on application of

the distributed component integration methodology (DCIM) to

the case study.

A. DCOM SOLUTION

DCOM is a natural choice for this implementation. The

host machine is a PC running Windows NT and DCOM is bundled

with the 0 s . There is familiarity with DCOM from prior

projects. Visual Basic development environment hides low-

level plumbing from the developer. Security policy can be

defined external to the component implementation. The

existing design pattern template fit the design of the

continuous brief application.

DCOM proved to be a quick and efficient way to

implement a robust continuous brief application. Components

were tested in the VB debug environment. Then executables

were tested on a single machine. Finally, the system was

distributed to the Web server machine. No source code

changes were made to execute in these three configurations.

B. ARCHITECTURAL DESIGN

The architectural design with accompanying VB

application framework skeleton code proved to simplify

implementation. The details of object creation, push

technology, client registration for service, event

59

processing, browser based components, asynchronous object

execution, and polling were provided by the framework.

The framework was extended to poll a directory, make

asynchronous database queries, add arguments to events, wrap

Powerpoint and add a user interface. The developer is able

to focus on the application without being distracted by

plumbing details.

C. WRAPPERS

Three types of wrappers were used in the implementation

of the continuous brief: file type in directory, object, and

COTS API. The monitor component of the architectural design

was extended to periodically check for a new satellite image

file in a directory specified by the configuration utility.

The object wrapper used the file name structure to extract

image time, type and location. The PowerPoint API was used

show the continuous brief. Even though the show could have

been easily implemented using a Java applet, Powerpoint

could simplify future extensions such as image cropping and

image titling.

To eliminate the need for Powerpoint on each client,

the show could have been generated on the server and sent to

the client for viewing. Microsoft provides a web based

PowerPoint viewer free of charge.

60

D, SECURITY

The external security features of DC6M proved to

simplify implementation of security policy; however Windows

NT Service Pack 5 does not expose DCE encryption to external

DCOM security. Single user logon, user privileges based on

role and discretionary access control were available.

E. IMGNT

Administrative problems precluded the use of ImgNT to

retrieve selected images from a database and store in a

directory. The system had not been installed on an

unclassified system, Visual Basic was not available, and

ImgNT patches had not been made. It is assumed that ImgNT

had already stored requested images to a directory.

F, FUTURE TRENDS

The value of the results of this thesis is time

sensitive. Research on this thesis began in April 1999.

Since that time Microsoft has released Windows 2000, SPAWAR

has unveiled a public key infrastructure for e-mail, SPAWAR

has a draft security policy, a network centric architecture

has been deployed to the USS Coronado, CORBA has a wider

selection of commercial ORBS, new standards for wireless

communications have been developed, Linux is gaining support

from many communities, security measures are receiving

higher priority and many other innovations.

61

I

The distributed component integration methodology

described in the thesis will remain in the mainstream for

the foreseeable future. Independently designed components

will need custom integration using some form of wrapper.

Network administrators will require implementation of

security policy using tools external to the application.

62

- LIST OF REFERENCES

[l] Berzins V., Luqi, Schultes B. JBC Report, Naval Post
Graduate School, 1999

[2 l Ashley,P., Practical Intranet Security, Kluwer Academic
Publishers, 1999

[31 Summers Rita C., Secure Computing, McGraw-Hill, 1997

[4] Grimes, R., Professional DCOM Programming, WROX, 1997

[51 Microsof t Corporation, Ent i re Col lect ion, MSDN Library,
1996

[6] Krause M. , Handbook of Information Secur i ty Management,
Auerbach, 1999

[7] Phaltankar K., Implementing Secure Intranets and
Extranets, Artech House, 2000

[8] Moultis N., Kirk C., XML Black Book, Coriolis Technology
Press, 1999

[91 Szyperski, Clemens, Component Software, Addison-Wesley,
1998

63

THIS PAGE IS INTENTIONALLY LEFT BLANK

64

BIBLIOGRAPHY -

Berzins and Luqi, Software Engineering with Abstractions,
Addison-Wesley, 1991

Douglas B., Real-Time UML, Addison-Wesley, 1998

Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns
CD, Addison-Wesley, 1995

http://www.esat.kuleuven.ac.be/cosic/sesame3 2.html

65

THIS PAGE IS INTENTIONALLY LEFT BLANK

6 6

APPENDIX A. GSS-API VERSION 2 FUNCTION-CALLS

CREDENTIAL MANAGEMENT

GSS-Acquire-cred

GSS-Inquire-cred

GSS-Release-cred

acquire credentials for use.

display information about

credentials.

release credentials after use.

CONTEXT-LEVEL CALLS

GSS-Init-sec-context

GSS-Context-time

initiate outbound security

context.

GSS-Accept-sec-context accept inbound security

context

GSS-Delete-sec-context flush context.

GSS-Process-context-token process received control

token on context.

indicate validity time

remaining in context.

PER-MESSAGE CALLS

GSS-GetMIC

GSS-VerifyMIC

apply signature, receive as

token separate from message.

validate signature token along

67

GSS-Wrap

GSS-Unwrap

SUPPORT CALLS

GSS-Display-status

GSS-Compare-name

GSS-Display-name

GSS-Import-name

GSS-Release-name

GSS-Release-buffer

GSS-Release-oid-set

with message.

sign, optionally encrypt and
-

encapsulate.

decapsulate, decrypt if

needed, validate signature.

translate status codes to

printable form.

compare two names for equality

translate name to printable

form.

convert printable name to

normalized form.

free storage of normalized-

form name.

free storage of printable name

free storage of OID set .object

6 8

APPENDIX B. SESAME CRYPTOGRAPHIC SUPPORT FACILITY (CSF) APIS

INITIALIZATION APIS

csf-get-qos (1

Returns the list of allowed pairs of algorithms with

associated key length, for a given quality of service,

within a given CSF domain such as "quality of service". The

first algorithm and key length pair represent the default.

A quality of service is

J

0 A service (integrity or confidentiality),

A strength (weak, medium or strong),

A class of algorithms (symmetric or asymmetric)

csf-begin()

Starts CSF up for a given algorithm. This API is used

to initialize internal data for a software algorithm, or to

set-up a hardware device.

csf-end()

Turns off CSF for a given algorithm. This API is used

to free internal data for a software algorithm, or to shut

down a hardware device.

Key generation APIs

A key handle is generated by these APIs.

csf-gen-asym_key_pair()

69

Generates an asymmetric key pair with the key length,

key data and the reversible cryptographic algorithm as

parameters.

csf-gen-sym_keyO

-

Generates a symmetric key with the key length, key data

and the reversible cryptographic algorithm as parameters.

csf-derive-secret-key()

This API is used to derive a secret key of a given key

length from a string or a basic key, using an irreversible

encryption algorithm and a seed.

Key handling

csf-init-key()

Initializes the key to be used by the CSF module. An

indication on the way the key is stored (hardware, software,

smart card . . .) , on the way the key is used (encryption,

decryption, signature key or a key to check a signature) and

the key itself or a reference of that key is given in input.

It returns an opaque key handle to be used by subsequent

calls to CSF APIs.

csf-release-key()

Releases an opaque key handle.

csf-read-key-info()

Allows to retrieve a key or a key reference from a key

handle -

csf-get-key-data()

7 0

Allows to retrieve key data (key usage and optionally

key validity time, initial vector) from a key handle.

Crypto context APIs

csf-init-context ()

Initializes a crypto context from a CSF key handle and

a pair of algorithms (reversible or irreversible) and

associated key length. This context contains elements

(hardware or software) to be used in data protection

operations. It returns an opaque context handle to be used

by subsequent data protection CSF APIs.

If the crypto context already exists, it is modified

according to the input parameters.

csf-create-owf-contet()

Creates a CSF context, only usable for an irreversible

encryption algorithm which does not use any key, such as MD4

or MD5. No key handle is needed to use this interface.

csf-release-context()

Releases an opaque CSF context handle.

csf-duplicate-context()

Duplicates an existing crypto context. A new context

handle is generated. The new context can then be modified by

a call to csf-init-context().

csf-retrieve-key-from-context()

Returns the key handle attached to a crypto context.

csf-query-context ()

71

Returns the pair of algorithms (irreversible - +

reversible) with associated key length and the quality of

service attached to a crypto context.

Data protection APIs

csf-encrypt ()

Generates an encrypted text from a clear text and a

crypto context (including a key, a reversible algorithm and

optionaly initial vectors).

csf-decrypt ()

Generates a clear text from an encrypted text using a

crypto context (including a key and a reversible algorithm).

csf-generate-check-value()

Generates a signature from a clear text using a crypto

context (including a key (private or secret), an

irreversible algorithm and a reversible one).

csf-verify-check-value()

Checks the signature of a clear text using a crypto

context (including a key (public or secret), an irreversible

algorithm and a reversible one).

csf-owf ()

Generates an irreversibly encrypted text from a clear

text using a crypto context (including an irreversible

algorithm).

Import/export APIs

csf-extract-key()

7 2

Packs the key and all data relative to the key (key

usage, key validity) into an exportable format. This package

has to be sent to the remote machine. csf-restore-key() has

then to be called on this machine to restore the key

-

information.

csf-restore-key()

Creates a key handle from a package obtained by an

earlier call to csf-extract-key () , usually on another

machine.

csf-extract-context()

Packs the key and all data relative to the crypto

context (key usage, key validity, pair of algorithms) into

an exportable format. This package has to be sent to the

remote machine. csf-restore-context () has then to be called

on this machine to restore the context information.

csf-restore-context()

Creates a key handle from a package obtained by an

earlier call to csf-extract-key() , usually on another

machine.

RANDOM NUMBER GENERATION API

csf-gen-rand-num()

Generates a random number of a given length.

Free routines

free-key-info0

Free a key (A key-info-t structure).

free-key-data()

7 3

Free key data (a key-data-t structure).
-

f ree-algo-id ()

Free an algorithm (an algo-identifier-t structure).

f ree-algo-idgair ()

Free a pair of algorithms

structure).

f ree-algo-idgair-list ()

Free a list of algorithms (an

structure).

free_algo-list-excegt-one()

(an algo-idsair-t

algo-id_pair-list-t

Free a list of algorithms, except one pair in the list.

SET-UP AND CONFIGURATION

Set-up and configuration of the CSF module is done by a

control program called csfcp.

The CSF administrator is the only person authorized to

run this program.

csfcp is be used to:

Configure the quality of service, within the local

domain. A list of allowed pairs of algorithm

identifiers (irreversible or reversible) is to be

associated to each qos.

Configure the quality of service which is to be

used to communicate between two CSF domains. A

subset of the local qos configuration can be

chosen and then sent to the second domain.

74

Set-up all the algorithms available under CSF. For

all available algorithms, the choice between
-

hardware and software is made, for key storage and

algorithm implementation.

7 5

THIS PAGE IS INTENTIONALLY LEFT BLANK

7 6

APPENDIX C. SESAME ARCHITECTURE -

A. PROTOCOL NOTATIONS

A

P

U

R

X

Y

Z

V

W

KAB

kAL3

PKA

PKA-l

Authentication Server

Privilege Attribute Server

User Sponsor

User

Client Application

Server Application

Server Application accesses by delegate

PAC validation facility of application server Y

PAC validation facility of application server Z

Long term key shared between A and B

Session key shared between A and B

Public key of A

Private key of A

ReQPriv,

Cert,X.509 certificate for the public key Pk,

RLx Requested lifetime for x

T,,Te Start and end time

ri Nonce generated by i

n, Message sequence number

h() Hash function

KeyPK,-,-, = ENC(PK,) (kjk, Ts, Te, data)

Requested privileges by user R sealed by klP

77

KeyPK,-, = ENC(PK,) (kjk, Ts, Te, data)

A U ~ ~ S K , _ ~ = ENC(kij) (j, ti, data)

A U ~ ~ P K , _ ~ = SIGN(Pk,-’) (j, ti, K~YPK,-~)

B. USER SPONSOR FUNCTIONS

Sends an authenticator SIGN(P&-’) (A, t,,Key(Pfh-,) to the

Authentication Server.

Decrypts the incoming key package from AS using the

user‘s private key.

Sends a request for a PAC to the privilege attribute

server. The request contains the requested lifetime of

the PAC, TGT, session key authenticator ENC(k,,,) (P, t,,

data).

C. AUTHENTICATION PRIVILEGE ATTRIBUTE CLIENT (M A)

The APA is developed by a programmer using the GSS-API.

The User Sponsor uses this API to communicate with the

authentication server and privilege attribute server to

obtain authentication and credentials. See Appendix A for a

description of GSS-API.

I). APPLICATION CLIENT

Every application client needs to be modified to

include GSS-BPI.

1. Authentication Server (AS) Functions

Checks the X . 5 0 9 certificate for the public key of user

(Cert,) .

7 8

Verifies the authenticator portions o f Cert,.

Returns an authentication which includes the Primary

Principal Identifier (PPID) as part of the ticket

granting ticket (TGT), and an authenticator containing

the public key of the privilege attribute server (PAS)

TGT, = ENC(K,,) (R, U, TS, Te,

PAC, = SIGN(PK,-') (user role attributes, PPID,, PV,,

DTQ,, data)

E. PRIVILEGE ATTRIBUTE SERVER (PAS) FUNCTIONS

Supplies PAC as specified in ECMA 219 Security in Open

Systems, 2nd edition, March 1996. European Computer

Manufactures Association

F. KEY DISTRIBUTION SERVER (KDS)

0 For the intra-domain case use Kerberos V5 model.

For the inter-domain case use X.509 certificates.

G. PRIVILEGE ACCOUNT CERTIFICATE (PAC) VALIDATION FACILITY
(PVF) FUNCTIONS

Validate PAC

Key Management

Support Components

Audit

Record security relevant events using appropriate

identities.

79

H. PUBLIC KEY MA"T (PKM) FUNCTIONS
-

Manage public and private keys using PGP solution

0 Establish symmetric keys between parties i and j

using public-key standard X . 5 0 9 .

i sends a session key to j encrypted with j ' s public

key. i sends an authenticator using its private key. J

authenticates the message signature by applying i's public

key and comparing the message with the message signature.

The session key is now available to both parties.

80

APPENDIX D. SKELETON VB CODE FOR DESIGN PATTERN

A. MONITOR COMPONENT

1. Modules

a. Module 1

Option Explicit
Public gMonitor As Monitor
Public glngUseCount As Long

Reference to monitor
Global reference count

2. Classes

a. Monitor

Option Explicit

Private mFormJ?orTimer As FormForTimer
Private WithEvents mTimerForMonitor As Timer

Public Enum Enumeration
enuml = 1
enum2 = 2
enum3 = 3

End Enum

Event that passes all automation data types supported by
' proxy and stub
Event MonitorActivity(-

boo1 As Boolean, -
chr A s Byte, -
sfloat As Single, -
dfloat As Double, -
sint As Integer, -
lint As Long, -
enum123 As Enumeration, -
str As String, -
money As Currency, -
datetime As Date)

Private Sub Class-Initialize() I Start Monitor Timer

' Create instance of form
Set mF'ormForTimer = New FormForTimer
Load mFormForTimer

81

I Connect timers' events to associated even> procedures
\ in Monitor
Set mTimerForMonitor = mFormForTimer.TimerForMonitor

End Sub

Private Sub Class-Terminate() ' Terminate Monitor
Set mTimerForMonitor = Nothing
Unload mFormForTimer
Set mFormForTimer = Nothing

End Sub

Private
Event

Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim

Sub mTimerForMonitor-Timer() Process Timer

boo1 As Boolean
chr As Byte
sfloat As Single
dfloat As Double
sint As Integer
lint As Long
enum123 As Enumeration
str As String
money As Currency
datetime As Date

'<insert monitor task>

Signal clients that monitor has detected activity
RaiseEvent MonitorActivity(boo1, -

chr, -
sfloat, -
dfloat, -
sint, -
lint, -
enum123, -
str, -
money, -
date t ime)

End Sub

b. Monitor Connector

Option Explicit

Public Property Get Monitor() As Monitor Get reference to
\ monitor

82

Set Monitor = gMonitor
End Property

Private Sub Class-Initialize() Create Monitor and
\ reference count

If gMonitor Is Nothing Then

End If
glngUseCount = glngUseCount + 1

Set gMonitor = New Monitor

End Sub

Private Sub Class-Terminate() ' Terminate Monitor when
reference count = 0

glngUseCount = glngUseCount - 1
If glngUseCount = 0 Then

End If
Set gMonitor = Nothing

End Sub

B, CONTROLLER COMPONENT

1. Modules

a. Module 1

Option Explicit
Public gcontroller As Controller I Reference to controller
Public glngUseCount As Long Global reference count

2. Classes

a, Controller

Option Explicit

Event ControllerEvent() Sent to AppWrapper(s)

Public WithEvents mglue As Glue I WithEvents causes glue to

Private WithEvents monitor As Monitor Get Monitor events
run asynchronously

Multiple connections to single monitor
Private mMonitorConnector As MonitorConnector

Private Sub Class-Initialize0 Connect to Monitor

Set mMonitorConnector = New MonitorConnector
Set monitor = mMonitorConnector.Monitor

End Sub

83

Receive event from Monitor'
Private Sub mMonitor-MonitorActivity(-

boo1 As Boolean, -
chr As Byte, -
sfloat As Single, -
dfloat As Double, -
sint As Integer, -
lint As Long, -
enum123 As Enumeration, -
str As String, -
money As Currency, -
datetime As Date)

Set mglue = New Glue
Call mglue.StartG1ue

asynchronously
End Sub

Glue runs

Private Sub mglue-glueDone0 ' Asynchronous glue
component is done

Set mglue = Nothing
RaiseEvent ControllerEvent
End Sub

b. Controller Connector

Option Explicit

Public Property Get Controller0 As Controller

End Property
Set Controller = gcontroller

Private Sub Class-Initialize0 Initialize Controller
' and reference count

If gcontroller Is Nothing Then

End If
glngUseCount = glngUseCount + 1

Set gcontroller = New Controller

End Sub

Private Sub Class-Terminate0 I Terminate controller when
reference count = 0

glngUseCount = glngUseCount - 1
If glngUseCount = 0 Then

Set gcontroller = Nothing
End If

End Sub

8 4

C. GLUE COMPONENT

1. Classes

a. Glue

Option Explicit

Event GlueDone () I Sent when glue task done

Public Sub StartGlueO Start glue task
<Insert glue task here>

RaiseEvent GlueDone
End Sub

D. APPLICATION WRAPPER COMPONENT

1. Forms

Option Explicit

Private WithEvents mController As Controller
Private mControllerConnector As ControllerConnector

Private Sub Form-Load() Connect to controller
Set mControllerConnector = New ControllerConnector
Set mController = mControllerConnector.Control1er

End Sub

I Receive Controller event
Private Sub mController-ControllerEvent()

Textl-Text = "Received Controller Notification"

End Sub
<insert interface with COTS application>

85

THIS PAGE IS INTENTIONALLY LEFT BLANK

8 6

APPENDIX E. XML VOCABULARIES -

The following list contains sources for some existing

XML vocabularies:

Mathematical Markup Language (MathML) can be found at

URL www.w3.ors/Math

Web Interface Definition Language (WIDL) can be found

at URL www.webmethods.com/technolosv/widl description.htm1

The Nites I Meteorological Vocabulary Observation Markup

Format (OMF) :

<! - - <!DOCTYPE OMF SYSTEM "0MF.dtd" [-->
<!-- Weather Observation Definition Format DTD -->
<!-- This is the OMF XML DTD. It can be referred to using
the
formal public identifier

For description, see 0MF.html
$Id: OMF.dtd,v 3.8 1 9 9 9 / 1 0 / 2 5 18:18:31 oleg Exp oleg $

<!-- Weather Observation Definition Format -->
<!-- Basic attributes -->
<!ENTITY % TStamp-type "NMTOKEN">
<!ENTITY % TRange-type "CDATA">
<!ENTITY % TStamp "TStamp %TStamp-type; #REQUIRED">
<!ENTITY % TRange "TRange %TRange-type; #REQUIRED">
<!ENTITY % LatLon "LatLon CDATA #REQUIRED">
<!ENTITY % LatLons "LatLons CDATA #REQUIRED">

-//METNET//OMF' I.O//EN

-->

<!ENTITY % BBoX-REQD "BBox CDATA #REQUIRED">
< !ENTITY % BBox-OPT "BBox CDATA #IMPLIED">
<!ENTITY % BId "BId NMTOKEN #REQUIRED">
< ! ENTITY % SName " SName CDATA #REQUIRED">
< !ENTITY % Elev "Elev NMTOKEN #IMPLIED">
<!-- Basic elements -->
<!ELEMENT VALID (#PCDATA)>
<!ATTLIST VALID %TRange;>
<! - - A collection of weather observation reports -->
<!ELEMENT Reports (METAR I SPEC1 I UAR I BTSC I SYN) * >
<!ATTLIST Reports %TStamp;>

87

< ! - - Common report attributes --->
<!ENTITY % ReportAttrs
"%TStamp; %LatLon; %BId; %SName; %Elev;
Vis NMTOKEN #IMPLIED
Ceiling NMTOKEN #IMPLIED

<!- - METAR and SPECI reports -->
<!ELEMENT METAR (#PCDATA)>
<!ATTLIST METAR %ReportAttrs;>
< !ELEMENT SPECI (#PCDATA) >

>

<!ATTLIST SPECI %ReportAttrs;>
<! - - A collection of weather hazard advisories -->
<!ELEMENT Advisories (SIGMET I AIRMET I WW) * >
<!ATTLIST Advisories %TStamp;>
<! - - A SIGMET advisory -->
<!ELEMENT SIGMET (VALID, AFFECTING?, EXTENT, BODY) >
<!ATTLIST SIGMET
class (CONVECTIVE1 HOTEL1 INDIA1 UNIFORMI VICTOR1 WHISKEY)
#REQUIRED
id NMTOKEN #REQUIRED
%TStamp;
%BBox-OPT;
>
<!ELEMENT AFFECTING (#PCDATA)>
<!ELEMENT EXTENT (#PCDATA)>
<!ATTLIST EXTENT
Shape (AREA1 LINE1 POINT) #REQUIRED
%LatLons ;

< ! ELEMENT BODY (#PCDATA) >
<! - - A collection of weather forecasts -->
<!ELEMENT Forecasts (TAF) * >
<!ATTLIST Forecasts %TStamp;>
< ! - - A Terminal Aerodrome Forecast --->
<!ELEMENT TAF (VALID, PERIOD+) >
<!ATTLIST TAF
%TStamp; %LatLon; %BId; %SName;

<!ELEMENT PERIOD (PREVAILING, VAR*) >
<!ATTLIST PERIOD
%TRange ;
Title NMTOKEN #IMPLIED

< !ELEMENT PREVAILING (#PCDATA) >
<!ELEMENT VAR (#PCDATA)>
<!ATTLIST VAR
%TRange ;
Title CDATA #REQUIRED

<!- - Rawinsonde and Pibal Observation reports --->

>

>

>

>

88

WS (01112
Curr-s (2

89

3) #IMPLIED
3 14) #IMPLIED

<!ATTLIST BTLEVEL
D NMTOKEN #REQUIRED -
T NMTOKEN #IMPLIED
S NMTOKEN #IMPLIED
Curr CDATA #IMPLIED

<!-- Surface Synoptic Reports from land and sea stations -->
<!ELEMENT SYN (SYID, SYCODE?, SYG?, SYSEA?) >
<!ATTLIST SYN
%TStamp; %LatLon; %BId; %SName; %Elev;
Title (A74XX BBXX I ZZYY) #REQUIRED
SType (AUTO I MA") "MA""

< ! ELEMENT SYID (#PCDATA) >
<!ATTLIST SYID
WS (0111314) #IMPLIED

< ! ELEMENT SYCODE (#PCDATA) >
< ! ELEMENT SYG (#PCDATA) >
<!ATTLIST SYG

>

>

>

T NMTOKEN #IMPLIED
TD NMTOKEN #IMPLIED
Hum NMTOKEN #IMPLIED
Tmm CDATA #IMPLIED
P NMTOKEN #IMPLIED
PO NMTOKEN #IMPLIED
Pd NMTOKENS #IMPLIED
Vis NMTOKEN #IMPLIED
Ceiling NMTOKEN #IMPLIED
Wind CDATA #IMPLIED
WX CDATA #IMPLIED
Prec CDATA #IMPLIED
Clouds CDATA #IMPLIED

<!ELEMENT SYSEA (#PCDATA)>
<!ATTLIST SYSEA
T NMTOKEN #IMPLIED
Wave CDATA #IMPLIED
SDir CDATA #IMPLIED

<! - - Plain-text WMO Meteorological messages -->
<!ELEMENT Messages (MSG) * >
<!ATTLIST Messages %TStamp;>
<!ELEMENT MSG ANY >
<!ATTLIST MSG
id NMTOKEN #REQUIRED
Type NMTOKEN #IMPLIED
%TStamp;
% SName ;
%BBox-OPT;
BBB CDATA #IMPLIED

>

>

90

Descr CDATA #IMPLIED
>
<!--] > -->

91

THIS PAGE IS INTENTIONALLY LEFT BLANK

92

APPENDIX F. SYSTEMS REQUIREMENTS SPECIFXATION

93

SOFTWARE REQUIREMENTS SPECIFICATION

FOR AN

ARCHITECTURAL l?RAMEWORK

OF

DOD COTS/LEGACY SYSTEM

94

1. SCOPE

1.1 INTRODUCTION

The trend towards using Commercial Off-The-Shelf (COTS)

software within Department of Defense (DoD) has become the

accepted way to build systems. Twenty years ago, almost all

DoD software-intensive systems were built by awarding large

multimillion-dollar contracts to defense contractors to

build these systems from scratch. In the go ’s , with a

constantly dwindling budget, the focus has shifted to

building software-intensive systems by integrating COTS

software components.

Building software systems from COTS components is quite

different. The black box nature of the COTS software

components along with the uncontrollable evolution process

requires a different architectural approach in developing

systems with COTS.

1.2 PURPOSE

The purpose of this requirements specification is to

analyze and document the requirements in developing an

architectural framework for COTS/Legacy systems within the

DoD . To focus the requirements of the architectural

framework, a DoD Meteorological and Oceanographic (METOC)

system, the Naval Integrated Tactical Environmental System I

95

(NITES I), which is very representative of today's DoD

COTS/Legacy systems, will be used.
-

1.3 BACKGROUND

The NITES I project is a Space and Naval Warfare

(SPAWAR) sponsored project within DoD. Like most other

projects within DoD, the WITES I project is being developed

in an environment that emphasizes the use of personal

computers and COTS components.

NITES I acquires and assimilates various METOC data for

use by US Navy and Marine Corps forecasters. The purpose of

NITES I is to provide the METOC community (Users) with the

tools necessary to support the warfighter (Customers).

The NITES I is the primary METOC data fusion platform and

principal METOC analysis workstation, intended to be

operated on both a classified and unclassified network

environment by METOC personnel. This system receives,

processes, stores and disseminates METOC data and provides

analysis tools to render products for application to

military and tactical operations. NITES I data and

information/products are stored in a unified METOC database

on the C4ISR network and available to local and remote

planners and warfighters.

9 6

1.4 REFERENCES
-

Performance Specification (PS) for the Tactical

Environmental Support System / Next Century TESS(NC)

(AN/UMK-3) (NITES version I and 11)

Security Guidelines for Space and Naval Warfare Systems

Command (SPAWAR) Program Software Developers (DRAFT),

October 1999.

Horizontal Integration: Windows NT Developer's Guidelines

(DRAFT), Version 0.1.

97

2. GENERAL DESCRIPTION

2.1 ARCHITECTURE COALS

Integration

COTS/GOTS/legacy components are usually created as

standalone products. When these components are targeted for

integration into a system, the architecture shall provide

seamless integration of these COTS/GOTS/legacy components.

The architecture shall support middleware approaches to bind

data, information and COTS/GOTS/legacy components.

Because evolution and upgrade of COTS/GOTS components

are outside the control of the system integrators, the

architecture of the COTS/GOTS/legacy system shall have an

adaptable component configuration to reduce the effort of

testing and reintegration when upgrades or new COTS/GOTS

packages are introduced to the system.

INTEROPERABILITY

COTS/GOTS and legacy systems reside on multiple

platforms. This architecture shall address distributed,

heterogeneous systems consisting of both UNIX and PC-based

platforms.

In order to achieve and maintain information superiority on

the battlefield, the architectural framework for DoD

98

COTS/GOTS/legacy systems shall have the capability to share,
-

receive and transmit on heterogeneous networks and hardware

devices.

The exchange of data between two systems shall be in

such a way that interpretation of the data is precisely the

same. The data displayed on two different systems shall

remain consistent. The architectural framework shall

include standard application program interfaces (APIs).

APIs specify a complete interface between the application

software and the platform across which all services are

provided. A rigorous definition of the interface results in

application portability provided the platform supports the

API as specified, and the application uses the specified

API . The API definitions shall include the syntax and

semantics of the programmatic interface as well as the

necessary protocol and data structure definitions.

ADOPTED FRAMEWORK TECHNOLOGY

Java/C++, web technologies, open systems, application

program interfaces, common operating environment, object and

component technology, commercial products and standards are

all important to the COTS/GOTS/legacy system architecture.

99

The COTS/GOTS/legacy system shall adopt the Interface

Definition Language (IDL) as the language for expressing the

syntax of the framework services.

The COTS/GOTS/legacy system architecture shall be

expressed as UML class and package diagrams, with detailed

component descriptions using IDL with English narrative to

provide semantics.

SECURITY

DoD tactical systems are normally classified to some

security level. In building this architectural framework,

the architecture shall address the DoD Trusted Computer

System Evaluation Criteria (TCSEC) to at least the C2

security level.

The architecture shall include discretionary access

control (DAC) .

Only single level classification systems shall be

supported in this architecture (i.e. no multi-level security

(MLS) -
Assembled components shall not require modification to

add security services.

The security mechanisms shall be protected from

unauthorized access.

The following security services shall be available to

the component assembler:

100

1.Single login for users
-

The single login for users means the user needs to

identify himself once per session. It is the

responsibility of the security services to protect

and distribute the authentication information of a

user.

2. Mutual authentication

Mutual authentication ensures proper identification

of the user to the system and the system to the

user.

3. Auditing

Auditing means significant security events are

recorded for later analysis. Significant security

events shall include logon and logoff, security

policy changes, user and group management, and

access to specified objects.

4. Secure key distribution

Key distribution provides a secure transport

mechanism for encryption keys.

5.Role based Access Control

Role based access control assigns roles to users and

privileges to roles, thereby simplifying access

control if the number of roles is less than the

number of users.

101

6. Data confidentiality
-

Data confidentiality means data is disclosed

according to a policy.

7.Data integrity

Data integrity means the recipient gets the intended

data.

8. Non-repudiation and authenticity

Non-repudiation means the sender of a message can

not later deny he sent the message.

NETWORK SECURITY

The trend in DoD is for networked systems vice

standalone monolithic systems and because most systems have

some level of classification, this architecture shall

address network security.

The architectural framework shall support a secure

network.

The architectural framework shall support the network

security mechanisms specific to the target architecture,

including firewalls, routers, encryption, and proxy

services.

1 0 2

NETWORK COMMUNICATIONS
-

The architectural framework shall support different

network protocols (i.e. TCP/IP) and topologies dependent on

the target architecture.

The application layer shall be able to execute a

variety of data management commands without having knowledge

of the data location, database, file type, operating system,

network protocol, or platform location.

DEVELOPMENT LANGUAGE

The architectural framework shall support any

development language that is supported by the legacy system

as well as any development language that supports platform

independence for newly developed code in the target

architecture.

2.2 ASSUMPTIONS AND DEPENDENCIES

Assumption 1: Legacy systems are monolithic and not

modifiable.

Assumption 2: Legacy systems have some existing mechanism

for interaction.

Assumption 3 : There are varying degrees of COTS. To be

considered COTS, the component cannot be modified.

Assumption 4: Reliability, performance, safety and security

must be weighed in the target architecture.

103

- I

Assumption 5:

scope of this effort.

Multilevel security systems are beyond the
-

104

3. TARGET ARCHITECTURE FUNCTIONS -

DATABASE

COTS software applications which handle data tend to

have their own mechanism and structure for the storage of

the data internal to the COTS application. When the target

architecture includes a master database to store its data,

the architectural framework shall support the target

architecture’s central storage of data. The architecture

shall support remote access to the database.

SECURITY

The target architecture shall support Discretionary

Access Control (DAC) .
Access to information controlled by an application

shall be based on an access control list (ACL) of a

parameter that can be used to distinguish between authorized

and non-authorized entities. Entities include users,

devices, and other applications.

The target architecture shall support non-repudiation.

a. The data recipient shall be assured of the

originator’s identify .

b. The data originator shall be provided with proof of

delivery.

105

c. The algorithm used to digitally sign data entries

and receipts shall be either the Digital Signature

Standard (DSS) FIPS 186 or RSA (1024 bit).

d, The original transmitted data signed by the sender

and the requested receipt signed by the recipient

shall be time-stamped by a trusted third party.

GRAPHICAL USER INTERFACE (GUI)

The target architecture shall include a GUI style

guide. If a GUI style guide does not exist for the target

architecture, UNIX platforms shall adhere to the MOTIF

standard and X-Windows standard, and PC platforms shall

adhere to the Windows MT standard.

EXTERNAL SYSTEM INTERFACES

Because the target architecture exists in a network

environment where it shares data with other external

systems, the external system interfaces where information is

exchanged shall be well defined to support interoperab.ility.

MIDDLEWARE TECHNOLOGY

The COTS/GOTS/legacy architecture shall support new

component integration technologies (i.e. COM/DCOM) to broker

between components that by themselves normally do not

communicate to form an integrated system.

106

The target architecture shall support wrappers to

enable COTS/GOTS applications to interface with each other.

The wrappers shall support the METOC data (listed in Table 6

of reference 1) and its various formats within NITES. The

architecture shall ensure when an application updates a set

of data, the update is consistently made throughout the rest

of the database.

107

4,ARCHITECTURE ATTRIBUTES

4.1 PERFORMANCE REQUIREMsNTS

The performance requirements for the target system are

contained in Table 6B of the NITES Performance

Specification. In addition to those performance

requirements, the following requirements shall also be

addressed in the target architecture.

The architecture shall optimize the database access

over a network.

The architecture shall allow concurrent access of the

database to multiple users.

The component technology shall not degrade the system

performance by more than 10% of the target system’s current

performance requirements. Refer to Table 6B of the NITES

Performance Specification.

4.2 RELIABILITY REQUIREMENTS

The target architecture shall use standard fault-

tolerant technologies (i.e. Replication to maintain the

reliability and availability requirements of DoD systems.)

While the data traverses throughout various applications, to

different platforms, through the network and to/from

108

database, it must remain consistent and not suffer any

degradation.
-

4.3 DESIGN CONSTRAINTS

Because many existing legacy systems reside on UNIX

platforms and the DoD has made a commitment to move towards

a PC architecture, the architectural framework shall support

both UNIX and PC platforms with the goal of moving towards a

pure PC architecture. It is not required that all

COTS/GOTS/legacy system components be executable on both

platforms but the data must be able to be shared by

components on different platforms.

Newly developed DoD systems must use COTS products to

the greatest extent possible.

As most COTS/GOTS applications are designed to be

standalone, these applications will usually have their own

way of retrieving and storing data. When these applications

are integrated into a system, the internals of the

application of how it retrieves and stores data will not be

modified.

There are varying degrees of COTS products. Depending

on whether the COTS product is an opaque or a black box will

drive the wrapper design and implementation.

109

THIS PAGE IS INTENTIONALLY LEFT BLANK

110

APPENDIX G , SYSTEM DESIGN SPECIFICATION

111

1. SYSTEM ARCHITECTURE -

1.1 SYSTEM ARCHITECTURE DIAGRAM

The Naval Integrated Tactical Environmental System

(NITES) software runs in a distributed, heterogeneous

environment on standard commercial-off-the-shelf (COTS)

personal computers (PCs) and TAC-4 UWIX computers.

The NITES architecture consists of a central database

residing on a UMIX computer, which is shared amongst the

various NITES components (most of which reside on PCs with

the exception of the tactical applications which reside on a

TAC-4 UNIX computer) as depicted in figure 1. In this

topology, there is no direct interaction between the

components. All interactions are through the central

database. This topology allows ease of integration of COTS

components as it minimizes the integration effort since each

component only has one interconnection.

112

Applications

T

Figure 1 - NITES Architecture Diagram

Forecaster applications (COTS/GOTS) - Manipulate METOC

data to easily plot, analyze, display on a common

geographical reference.

Serial Communications (Legacy code) - Handles the

ingest and dissemination of METOC data through existing

legacy communication channels.

Briefing (COTS) - Briefing utility used to brief

tactical commanders, flight operators the environmental

conditions that they will be operating in.

Tactical applications (Legacy code and newly developed

code) - Tactical applications take in METOC data to predict

the affects of the environmental conditions on the

environment, tactical equipment, etc.

113

Database (GOTS) - The database is the central
-

repository for all METOC data.

Network communications (GOTS) - Handles the ingest and

dissemination of METOC data through SIPRNET.

The deployment diagram, as depicted in figure 2,

consists of a NITES Server, a NITES Database Server, and

NITES workstations with a communications package, an

applications package, a database package, a system

controller package, a security package and a briefer package

residing on multiple hardware platforms.

114

1. .4

Figure 2 - Deployment Diagram

115

In the NITES architecture, all interactions are through

the NITES database. However, in the initial delivery of the

NITES software, this architecture was violated since none of

the COTS applications were able to communicate with the

NITES database to retrieve and/or store data and products.

A prototype of a portion of the NITES system will be

developed to demonstrate the NITES architecture where a COTS

application can communicate with the NITES database to

retrieve and store data and products. A system controller

package and the security package are newly developed for the

NITES. The COTS applications packages and the briefer

package will be modified to use wrapper and glue technology

to enable it to communicate with the database package.

These packages will be designed and developed to move the

system in the direction of conforming to the existing

architecture.

This prototype will use an object request broker (ORB)

to marshal events/notifications in a distributed

environment. Because this prototype is being developed

under the Windows NT environment, and DCOM is freely

available with Windows NT, we have chosen to use DCOM as our

ORB.

DCOM components can communicate three ways: within the

same process, out of process and between network nodes. The

component internals do not need to be changed regardless of

116

the deployment decision. The DCOMCNFG and dynamic link

library (DLL) packaging are used to implement <he deployment

decision.

Deployment flexibility affords alternative performance

solutions in a distributed network environment. For

example, the Monitor component could be deployed on a

different network node than the Controller component to

reduce CPU load. This solution assumes the sampling rate is

higher than the notification rate.

1.2 INTER-TASK COMMUNICATION

The tasks on the NITES will be implemented to run

asynchronously. Communications are broken down between the

following tasks:

0 Monitor/Controller

Controller/Glue Component

CBWrapper/Glue Component

0 CBWrapper/Controller

The Application Wrapper is responsible for making the

object available to a COTS viewer application.

MONITOR/CONTROLLER

Slides for the briefing package are generated by the

operator using an external COTS/GOTS application, As each

of these slides is generated, it is saved to a directory by

117

the COTS/GOTS application. The system monitor polls the

directory and when a file is found, notifies the controller.

CONTROLLER/GLUE COMPONENT

When the controller receives notification from the

monitor that a new file exists, the controller will create

an instance of the glue component.

CBWRAPPER/COIWROLLER

CBWrapper registers interest in new products with the

controller.

When the controller is notified by the glue component

that a file is successfully stored in the database, it will

broadcast the information to all the wrappers running on

client workstations. It is the responsibility of the

CBWrapper to ignore image types not appropriate for the

current brief. This assumes there is at least one wrapper

running.

CBWRAPPER/GLUE COMPONENT

The CBWrapper requests an image product from the glue

code, which will use the existing database APIs to connect

to the database, retrieves the product and returns it to the

CBWrapper. The request mechanism is used to initialize and

update the brief.

118

2. SUBSYSTEM DESCRIPTION -

The object diagram and sequence diagram depicts objects

required to design the update of a briefing package and the

scenario of updating a briefing package in figures 3 and 4

respectively.

MONITOR

The Monitor component is responsible for detecting the

presence of a new object.

CONTROLLER

The controller component is responsible for

coordinating multiple concurrent asynchronous activities.

The controller runs on the application server. It serves

two functions within the system, handling notifications from

the monitor and the glue component.

GLUE COMPONENT

The glue component is responsible for storing and

retrieving objects from an ODBC compliant relational

database.

CBWRAPPER

Wrappers are software code developed to add, modify,

and hide functionality from COTS, GOTS or legacy software

119

components to align them with the overall system

requirements and architecture. In the design, wrapper and

glue code technology is being implemented to enable the COTS

applications to adhere to the existing NITES architecture.

-

The briefing package consists of Microsoft PowerPoint,

a COTS application package. The PowerPoint application

contains APIs, which can be used by CBWrapper to create the

added functionality of automatically creating and updating

the briefing package in the background.

The PPT APIs used for the wrapper interface include:

0 Presentations.Add

0 Slides.Add

0 SlideShowTransition

0 Slideshowsetting

0 Shapes-Addpicture

0 Shapes-PictureFormat

INITIXLIZATION GUI

The Initialization GUI is used to initialize each

component with the number of images, starting from the most

current; the image type; the display duration of each image

in seconds; and the height and width of the display area.

Default values are 24 images, 0 second duration, and display

area equal to the workstation’s screen size.

120

CONFIGURATION GUI

The Configuration GUI defines the set of image types

available for the brief. Associated with each image type is

the working directory containing the current set of brief

images and a web server virtual directory corresponding to

the working directory. The CBWrapper uses the configuration

file to initialize the image type options available to the

briefer. The monitor uses the configuration file to build a

list of directories to poll.

The Configuration GUI is not restricted to the image

types settings. It can be used for defining various sets of

key values. For instance, we can use this Configuration GUI

to define the key set values for network configuration, or

application's initial default settings. This provides the

extensibility for future development of applications.

NAMING CONVENTION

The filename associated with each image type consists

of the fields represented the created date and time, the

file format (i.e., gif, jpeg, etc.), and other information

for a particular image (i.e., the channel, the location,

etc.)

The filename begins with the date and time, followed by

other information. For instance, a file named

"20000523.1331.gms5.IR.MODEL_OVERLAY.500HT.NOGAPS" indicates

that the file was created on May 23, 2000, at 13:31. The

121

CBWrapper uses the date and time embedded in the filename

for updating the continuous brief.
-

The other information of the filename is used by the

Glue component for storing and retrieving images to and from

the database.

THIN CLIENT TECHNOLQGY

CBWrapper is implemented using modern thin client

technology. When a user opens a HTTP page from a browser,

the CBWrapper is then automatically downloaded and installed

on the client machine. Once the CBWrapper is up and running,

all images needed for creating the brief are dynamically

downloaded from the server using the OpenURL method.

OpenURL uses the current open HTTP connection to transfer

image files. The continuous brief is created on the client

machine using the PowerPoint APIs. The PowerPoint is used to

display the brief.

PUSH TECHNOLOGY

The advantage of using this technique is that the

client needs not to poll the server periodically for new

data. The server notifies its clients (CBWrapper) when new

data (images) arrive. The CBWrapper receives the

notification and compares the image type with the type being

showed. If the image types match, the CBWrapper downloads a

new set of images from the server and updates the brief.

1 2 2

Application (1) Application (n)

displays connects connects displays

Wrapper (1)
wrapper (n) a

I notifies

Requests v
Controller Directory

pol1 (storage)

Provides b
Data

notifies notifies

Returns

F igure 3 - Wrapper & G l u e Code Object D i a g r a m

123

-
OMF

Sharing different formatted data requires a common

representation of data to interpret, send, and receive any

data, any format, anywhere. Within NITES, meteorological

and oceanographic observations, and certain types of

bulletins (SIGMETS, JOTS warnings, and Tropical Cyclone

Warnings, for example) are received and transmitted in an

Extensible Markup Language (XML)-based format called Weather

Observation Markup Format (OMF). OMF preserves the original

text of each observation or bulletin, and also includes

information decoded from the observation/bulletin and other

metadata concerning the message.

OMF solves the data interoperability problem by

providing self-describing tags along with the data so that

the receiving applications can consistently interpret the

data correctly. These self-describing tags are detailed in

the Document Type Definition (DTD). When drafting the NITES

data into OMF, three things must be agreed on: which tags

will be allowed, how tagged elements may nest within one

another and how they should be processed. The first two, the

language's vocabulary and structure, are codified in the

DTD .

OMF is an application of XML, and by its virtue, an

application of SGML. SGML is used extensively within DoD for

documenting of various types of information (military

124

standards, procurement materials, service manuals). OMF

brings weather observations into the same fold: Thus, the

design goals of OMF are:

Mark up (annotate) raw observation reports with

additional description and derived, computed

quantities.

The raw report data must not be modified in any

way, and should be conveniently extractable (by

simply stripping all the tags away).

OMF must be concise. While providing useful

annotations to a client, OMF markup should not

impose undue overhead on communication channels.

It should be possible to extend the markup with

additional annotations, without affecting

applications that do not use this information.

The OMF contains the following elements:

R e p o r t s - defines a group of weather observation

reports

METAR for a single METAR report

SPECI for a single SPECI report

WAR for a combined Rawinsonde and Pibal

Observation report

BTSC for ocean profile data (temperature,

salinity, current)

125

0 SYN for a surface synoptic report from a land or
-

sea station

Advisories - defines a collection of weather

hazard warnings

0 SICMET - SIGnificant METeorological Information

0 Forecasts - defines a set of weather forecasts

TAF - Terminal Aerodrome Forecasts

Messages - defines a set of plain-text bulletins.

The following sections define the major elements along

with the minor elements that are relevant to them. In each

section, XML DTD declarations are provided for precise

definition of elements and attributes. The collection of

X M L DTD declarations found in this specification can be

arbitrarily extended to add new elements and attributes for

new enhancements. Some of the element attributes are

common. For compactness, they are defined in the following

table.

12 6

Table 1-1. Basic Attributes of an Observation in OMF

Attribute

TStamp

TRange

Brief
Description
Time Stamp

Time
Interval

Format

unsigned
integer

a string of
form
‘I aaa , bbb I’ ,
where aaa and
bbb
are unsigned
integer
numbers
specifying
the beginning
and
the end
timestamps
of the
interval.

Description

UTC time in seconds
since the Epoch,
0 O : O O : O O Jan 1, 1970
UTC. This is the
value returned by a
POSIX function
time(2).
Example :
Tstamp=’937507702’
Timestamps are in
seconds since the
Epoch, 0O:OO:OO Jan
1, 1970 UTC. These
are the values
returned
by a POSIX function
time(2).

Example :
Trange=’937832400,
937915200’

127

LatLon

LatLons

Specificati
on of a
Point on
the globe

Specificati
on of a
Sequence of
Points on
the
Globe

A string of
form
I' aaa . bbb ,
ccc . ddd" ,
where
aaa.bbb and
ccc.ddd are
signed
floating
point
numbers

a

a string of a
form
"latl, lonl,
lat2, lon2,
latn, lonn"
where each
pair
(latl, lonl,
etc.)
are signed
floating
?oint numbers

The latitude and.
longitude,
respectively, of a
point on the globe,
in whole and
fractional degrees.
The
numbers are positive
for Northern
latitudes and Eastern
longitudes , and
negative for Southern
latitudes and
Western longitudes.

The range of the
numbers is [-90.0,
90.01 for latitudes,
(-180.0, 180.01 for
longitudes.

Example :
LatLon='32.433, -
99.850'
& sequence of pairs
Df numbers ,
each pair giving the
latitude and
longitude of a single
?oint in the
sequence, in whole
2nd fractional
Iegrees.

See the LatLon
2ttribute above for
nore details.

Sxample :
;atLons=' 38.42 0 , -
L11.125, 36.286, -
L11.492, 36.307, -
L12.630, 37.700, -
L13.223, 38.420, -
L11.125'

128

Table 1-1. Basic Attributes of an Observation in OMF

Attribute

BBox

BId

Brief
Description
Bounding
box
which tells
the
la t i tudal
and the
longitudal
spans of
an area of
the
globe

Station
identificat

Format

A string of
a form
"lat-N, lon-
W'
lat-S, lon-
E" ,
where the
lats
and lons are
signed
floating-
point
numbers, in
degrees

Unsigned
integer

129

Description

Specification of the
bounding box for
an area of interest.
Here lat-N is
the latitude of the
Northern-most
point of the area,
lat-S is the
latitude of the
Southern-most point,
lon-W is the
longitude of the
Western-most point of
the area, and '

lon-E is the Eastern-
most longitude.

It is required that
lat-N >= lat-S.
The left-lon (lon-W)
may however
be greater than the
right-lon (lon-E) .
For example, a range
of longitudes [-
170,170] specifies
the entire world but
Indonesia. On the
other end, the range
[170, -1701 includes
Indonesia only. By
the same token, [-
10,101 pertains to a
21-degree longitude
strip along the
Greenwich meridian,
while [lo, -101
specifies the whole
globe except for that
strip.

Example :
Bbox= '60.0, -120.0
20.0, -100.0'
WMO Block Station ID,
or other

ion group

Call sign
and full
name of an
observing
station

Elevation

A string of
the form
ccccc ,

name"
where ccccc
are
the call
letters of
the
station
(ICAO
station
id: 4 or 5
upper-case
letters, may
be omitted),
name is an
arbitrary
string
describing
the station
A non-
negative
integer, or
omitted if
unknown.

identifier for buoy -
or ship -
The observing
stations ICAO,
aircraft, or ship
call sign, plus a
plain-text station
name (e.g. "KMRY,
Monterey CA Airport"

Example :
Sname= KYML YUMA
(MCAS)

Station elevation
relative to sea
level, in meters.
This attribute may
specify a surface
elevation of an
observation station,
or an upper-air
elevation for an
upper-air report.

Example :
Elev=' 16

13 0

Table 1-2. OMF Attributes for METAR and SPEC1 Reports

Format Attribute Description

TStamp

LatLon

BId

SName

Elev

Vi s

Ceiling

Brief
Description
Time Stamp

Station
latitude
and
longitude
Station
Identificat
ion Group
Call sign
and full
name of an
observing
station
Station
elevation
Visibility

Ceiling

Unsigned
integer

WMO Block
Station ID

a number of
meters ,
omitted, or a
special token
I' INF
a number of
feet,
omitted, or a
special token
'I INF I'

Horizontal
visibility in
meters

Ceiling in
feet

Req'd
?

Yes

Yes

Yes

Yes

No

No

No

131

Table 1-3. OMF Attributes for the SYEJ Element

d?
Yes

Yes

132

WMO Block
Station
Number

Call sign
and full
name of an
observing
station
Station
elevation

String For a buoy or other
observation
platform, this
id is a combination
of a
WMO region number,
subarea number (per
WMO Code Table
0161) ,
and the buoy type
and serial number.
This information is
reported in Section
0 of a synoptic
report.

If Section 0
contains a call
sign rather than a
numerical id (as
typical with FM 13
SHIP reports), the
BId attribute is
computed as
itoa(1000009 + hc)
% 2 " 3 0 , where hc is
a numerical
representation of
the call letters
considered as a
number in radix 36
notation. For
example ,
hashes
to 0, and " Z Z Z Z "
hashes to
1,679,615. Note
this formula makes
the Bid attribute a
unique numeric
identifier for the

0 0 0 0 I'

Yes

Yes

No

133

Title

Stype

Report I String

Station String

Title defining
type of- report:
AAXX (FM-12),
BBXX (FM-13),
or ZZYY (FM-18)
Type of
station:
automated
(AUTO) or
manned (MA");
defaults to
E.IA"

Yes

No

134

Table 1-4. OMF Attributes for the SYG Element

I Attribute
T

I

Wind 1

Brief
Description
Air
Temperature

Dew point
Temperature

Relative
humidity
Extreme
temperature
S
over the
last
24 hours
Station
pressure

Sea level
pressure

Pressure
Tendency

Visibility
Number of
meters ,
omitted, or
a special
token 'I INF I'
Ceiling

dind speed
m d
fiirection

Format

positive ,
zero, or
negative
number
positive ,
zero, or
negative
number
non-negative
number
a string of a
form
I t m m m m , MMMM"
or
omitted

positive
number

pos it ive
number

String of
form
"dddd" , or
omitted
Horizontal
visibility in
meters

Number of
feet,
omitted, or a
special token

String of
form
"nnn, mm" or
omitted

INF I'

135

-
Description

Air temperature in
degrees
Celsius

Dew point
temperature in
degrees
Celsius
Relative humidity
in per cent
Minimum and
maximum
temperatures
(degrees Celsius)
over the last 24
hours
Atmospheric
pressure at
station
level, in
hectoPascals
Atmospheric
pressure at
station ,
reduced to sea
level, in hPa
Pressure tendency
during the 3
hours preceding
the observation
Horizontal
visibility in
meters

Ceiling in feet

nnn is a true
direction from
which the wind is
blowing, in
degrees, or VAR if

R e q
d?

No

No

No

No

No

No

No

No

NO

YO

I' the wind is
variable, or all
directions or
unknown or waves
confused,
direction
indeterminate. I'

This is an integer
number within
[0,360), with 0
meaning the wind
is blowing from
true North, 270
stands for the
wind blowing from
due West.
Normally this
number has a
precision of 10
degrees.

mm is the wind
speed in meters
per second.

Table 1-4. O W Attributes for the SYG Element (C o n t .)

Attribute

wx

Brief
Description
Past and
present
Weather
conditions
and
phenomena

four
digits,
"NOSIG" ,
omitted

or

Format

String of

Description

See WO-306, Code
tables 4677 and
4561 for the
meaning of the four
digits. This
attribute is coded
as "NOSIG" if there
is no significant
phenomenon to
report. The
attribute is
omitted if not
observed or data is
not available (see
ix indicator, Code
table 1860).

Regg
d?

No

13 6

Precipitati
on amount

Amounts and
types of
cloud
cover

Sea surface
temperature

Sea wave
period
and height

String of
form
nnn , hh

or 'I 'I or
omitted

String of
five
symbols
I' tplmh
or omitted

Positive ,
zero, or
negative
number
String of
form
"pp, hh" or

nnn is the amount
of prec ipi La t i on
which has fallen
during the period
preceding the time
of observation. The
precipitation
amount is a non-
negative decimal
number, in mm. hh
is the duration of
the period in which
the reported
precipitation
occurred, in whole
hours. This
attribute is
encoded as I"' if no
precipitation was
observed. The
attribute is
omitted if unknown
or not available
(see iR indicator,
Code table 1819).
Sea stations
typically never
report
precipitation.
The first digit is
the total cloud
cover in octas
(Code table 2700).
The second digit is
the cloud cover of
the lowest clouds,
in octas. The other
three symbols are
types of low,
middle, and high
clouds, resp. See
WMO-306 Code tables
for more details.
Sea surface
temperature in
degrees Celsius

pp is the period of
wind waves

No

No

No

No

137

in seconds. hh is
the height _of wind
waves, in meters.
If a report carries
both estimated and
measured wind
wave data, the
instrumented
information is
preferred.

Table 1-4. OMF Attributes for the SYG Element (Cont.)

Brief
Description
Ship ' s
course and
speed

Format

String of
form
"nnn, mm" or
omitted.

Description

nnn is a true
direction of
resultant
displacement of
the
ship during the
three hours
preceding the time
of observation.
The number is in
degrees, or VAR if
"variable, or
all directions or
unknown or
waves confused,
direction
indeterminate."
This is an integer
number within
[0 , 3 6 0) , with 0
meaning the ship
has moved towards
the true North;
270 means the ship
has moved to the
Hest. Normally
this number has a
precision of 45
degrees.

NO

138

mm is the average
speed made
good during the
three hours
preceding the time
of observation, in
meters per second.

139

'ra~ie 1-6. O m Attributes for the UALEVEL Element

Attribute

Ref

P

H

r

3P

Qind

Brief
Descriptior
Reference
to
sounding
Part

Pressure

Geopo tent ia
1
height

\ir
Temperature

lew point
zemperature

Jind speed
m d
lirection

Format

String -
TTAA I' ,

"TTBB" , etc.

positive
number

Non-negative
number
of
geopotential
meters, or
'SURF' for
surf ace ,
'TROP' for
tropopause,
'm'
for level of
maximum
winds ,

for maximum
wind
level at the
top of the
sounding, or
omitted
positive ,
zero, or
negative
number
?ositive I

zero, or
iegative
number

MAXWTOP

String of
Eorm "nnn,
nm" or "nnn,
nm
2bb" or "nnn,

1 aaa" or
'nnn, mm

nm

-
Description

Reference to the
part of the
sounding from
which the level
data were derived
Atmospheric
pressure at
sounding level, in
hectoPascals
Geopotential
height of the
reported level, or
a special
height indicator

~

Air temperature in
degrees
Celsius at the
reported level
Dew point
temperature in
degrees Celsius at
the reported
level
nnn is a true
direction from
uhich the wind is
blowing, in
degrees, or VAR if

the wind is
variable, or all
3irections or

Req
d?

Yes

Yes

No

No

No

VO

140

bbb, aaa" or
omitted

unknown or waves
confused
direction
indeterminate. 'I

This is
an integer number
within [0 , 3 6 0) ,
with 0 meaning the
wind is blowing
from true North,
270 stands for the
wind blowing from
due West. Normally
this number has a
precision of 10
degrees.

mm is the wind
speed in meters
per second.

If specified, bbb
stands for the
absolute value of
the vector
difference between
the wind at
a given level, and
the wind 1
km below that
level, in meters
per second. The
number aaa if
given is the
absolute value of
the vector
difference between
the wind at a
given level, and
the wind 1 km
above that level,
in meters per
second.

141

Table 1-7. O W Attributes €or the BTSC Element

Attribute

TStamp

LatLon

BId

SName

Title

Brief
Description
Time Stamp

Latitude
and
Longitude
of
observation
Station
identifier
group

Call sign

Report type

positive
integer

string

string

For a buoy or other
observation
platform, this ID is a
combination of a
WMO region number,
subarea
number (per WMO-306
Code Table
0162), and the buoy
type and serial
number. This
information is
reported
in Section 4 of a BTSC
report.
If Section 4 contains
a call sign rather
than a numerical id,
the BId attribute
is computed as
itoa(1000009 +
hc) , where hc is a
numer i c a1
representation of the
call letters
considered as a number
in radix 36
notation. For example,
"0000" hashes to 0,
and " Z Z Z Z " hashes to
1,679,615. Note this
formula makes the Bid
attribute a unique
numeric identifier for
the station.
Ship's call sign, if
reported

BATHY report
"JJYY" - FM 63 X Ext.

Yes

Yes

Yes

Yes

Yes

142

Depth

143

"KKXX" - FM 64 IX

"NNXX" - FM 62 TRACKOB
TESAC report-

report
Water depth positive Total water depth at No

number point of
observation

Table 1-8. OMF Attributes for the BTID Element

Attribute

DZ

Rec

ws

Curr-s

Curr-d

AV-T

AV-SAL

Brief
Descrintion
Indicator
for
digitizatio
n

Instrument
type code

Wind speed
units code

~~

Method of
current
speed
measurement

Indicators
for the
method of
subsurface
Current
measurement

Averaging
period for
sea
temperature

Averaging
?eriod for
salinity.

Format

" 7 " or " 8 "
or
omitted

5-digit
code

2 'I I 3 I

" 4 " , or
omitted

3 -digit
numerical
code

l l o " l " l r l l
" 2 " l 1 1 3 " ,
or omitted
(if no
sea
temperatur
e
data are

'I 2 I' I

or omitted
3 II I

-
Description

Indicator for method
of digitization
used in the report (kl

field). See
W O - 3 0 6 Code Table
2 2 6 2 .
Required for BATHY
and TESAC
reports
Code for expendable
bathythermograph
(XBT) instrument
type and fall rate
(W O - 3 0 6 Code
Table 1 7 7 0)
Indicator for units
of wind speed and
type of
instrumentation (iu

field). See
W M O - 3 0 6 , Code Table
1853.
Indicator for the
method of current
measurement (k5 field) .
See W M O - 3 0 6
Code Table 2 2 6 6 .
Indicators for the
method of
subsurface current
measurement

W M O - 3 0 6 , Code Tables
2 2 6 7 , 2 2 6 5 , and 2 2 6 4 .
Code for the
averaging period for
sea temperature (m ~

code). See W M O - 3 0 6 ,
Code Table 2 6 0 4

(r6k4k3 codes) . See

Code for the
averaging period for
sea salinity (m ~ code).

Req
'd?

No

No

No

No

No

No

NO

144

AB-Curr

Sal

Averaging
period for
surf ace
Current
direction
and speed

Method of
salinity/de
Pth
measurement

(if no
salinity
data are
reported)
I1 0 I1 I I

II 1 11

II 2 II I1 3 I1
I I

or omitted
(if no
current
data
are

omitted
(if no
salinity
data are
reported)

See WMO-306, Code
Table 2604 -

Code for the
averaging period for
surface current
direction and speed
(,c code). See WMO-306,
Code
Table 2604

Code for the method
of salinity/depth
measurement (k2 code) .
See WMO- 306, Code
Table 2 2 6 3 .

No

No

145

Table 1-9. O W Attributes for the BTAIR Element

Attribute

D

Attribute

T

Brief Format Description Reg
Description ' d?
Depth Non- Depth of the level in Yes

negative meters -

Wind

S

Brief
Description
Air
temperature

temperature zero, or
negative
number, or
omitted

number, or
omitted

Salinity Positive

Wind vector

Format

Positive ,
zero,
or negative
number, or
omitted
String of
form
"nnn, mm" ,
or
omitted

-
Description

Air temperature just
above the sea
surface, in degrees
Celsius.

Here nnn is a true
direction from which
the wind is blowing,
in degrees, or VAR if
'I the wind is
variable, or all
directions or unknown
or waves confused,
direction
indeterminate. '' This
is an integer number
within [0 , 3 6 0) , with
0 meaning the wind is
blowing from the true
North;, 270 means the
wind is blowing from
the West. Normally
this number has a
precision of 10
degrees.
m is the wind speed
in meters per
second.

No

No

Table 1-10. O W Attributes for the BTLEVEL Element

I number
T I Water I Positive, Water temperature at

the reported
level.

No

Salinity at the

146

C

Description
Time St-p

LatLon

d?
See Table 1-1 -------- Yes <----------

BId
observation
Block

Current
vector
String of
form

pos it ive IWMO Block Station ID Yes

Table 1-11. OMF Attributes for the TAF Element

Call sign SName
station

string Ship's call sign, if Yes

"nnn,mm" ,
or
omitted

I reported

nnn is the true
direction t-oward
which the sea current
is moving, in
degrees, or VAR if
'I the current is
variable, or all
directions or
unknown, direction
indeterminate. 'I This
is an integer number
within [0 , 3 6 0) , with
0 meaning the current
flows toward true
North; 270 means the
current is flowing
toward the West.
Normally this number
has a precision of 10
degrees.
mm is the speed of
current in meters
per second.

I

Attribute

class

TStamp

Description
SIGMET type "CONVECTIVE Identifier for the

11
I type of SIGMET

No

Station ID /integer I of the reporting I I

T a b l e 1-12. OMF Attributes for the SIGMET Element

147

d? I

Yes I

.

'I HOTEL ,
INDIA" I

"UNIFORM" I
"VICTOR" I

Identifier
for a
particular

message
-

advi sorv

Brief

Time Stamp

Bounding
box
for
advisory
area

Format
Description
Type of

advisory; value
depends on the

" AREA I' I

I advisory class.
<---------- See Table 1-1 --------

Control points
(vertices) for a
polygon/polyline
representing the
affected area

->
See Table 1-1 -------- <----------

->

Yes

Table 1-13. OMF Attributes for the EXTENT Element

Attribute

Shape

LatLons

area
specificati
on
List of
latitudes
and
Longitudes
defining
the area

"LIME" I

"POINT"

Positive I

zero, or
Negative
numbers in
lat/lon
pairs

Yes

Yes

Yes

Description 1 Reg'
I d?

Type of area shape I Yes
specified

148

Table 1-14. OMF Attributes for the MSG Element

Attribute

id

TStamp

SName

BBB

Descr

BBox

Brief
Description
Message
identifier

Message
t m e

Time Stamp

Originating
station
name

Annotation
group

Description

Bounding
box

Format

A NMTOKEN,
a
four- to-
six-
character
string
of a form

2-letter
string

T 1 T 2 A 1 A 2 ii

(TIT2)

string

3-character
string

String

Description

Designator for the
message type

area (A1A2) ,

and sequence code
(ii) of the message,
as described in WMO-
386.

and subtype (~ 1 ~ 2) ,

Designator for the
message type
and subtype (T1T2) as
specified in
WMO-386, Tables A and
B1 through B6
See Table 1-1 -------

-->
String containing the
identification
of the station that
originated the
message (normally its
ICAO call
sign)
So-called "BBB
groups" from the
abbreviated message
line. They
indicate that the
message has been
delayed, corrected or
amended. A
BBB group can also be
used for
segmentation. See the

for more detail.
Keywords and other
information
describing the
message.
See Table 1-1 -------

WMO-386

-->

Req
'd?
Yes

Yes

Yes

Yes

No

No

No

149

Table 1-15 Layer Parameter Codes
-

layer
adiabatic-cond

atm-top

cloud-base
cloud- t op
conv-cld-base

Description Example
Adiabatic (layer adiabatic-
condensation level cond)
(parcel lifted from
surf ace)
Level of the top of (layer atm-top)
the
atmosphere
Cloud base level (layer cloud-base)
Cloud top level (layer cloud-top)
Level of bases of (layer conv-cld-

conv-cld-top

entire-atm
entire-ocean
height

height-between

convective base)
clouds
Level of tops of (layer conv-cld-top)
convective
clouds
Entire atmosphere (layer entire-atm)
Entire ocean (layer entire-ocean)
Height above ground (layer height 1500)
(meters)
Layer between two (layer height-
heights above ground between 50
in hundreds meters 3 0)
(followed by top and for layer between
bottom level values) 5000 and 3000

heights above ground,
in feet (followed by
top and bottom level

height-between-ft
be tween- f t-
15000 10000)

meters above ground
Layer between two (layer height-

height-f t
values)
Height above ground (layer height-ft 50)

high-cld-base
(feet)
Level of high cloud (layer high-cld-

base)
(layer high-cld-top) high-cld-top

(layer hybrid 1)

bases
Level of high cloud

(layer hybrid 2 1)

(layer isobar 500)

hybrid

hybrid-between

isobar

1 5 0

tops
Hybrid level
(followed by level
number)
Layer between two
hybrid levels
(followed by top and
bottom level numbers)
Level of an isobaric
surface
(followed by the

isobar-between

I

isobar-between-mp

isobar value
of the surface in
hectoPascals (hPa)
(1000, 975 , 950,
925 ,900 ,850 ,800 ,750 ,7
00,65
0 ,600 ,550 ,500 ,450 ,400
, 350 ,3
00 ,250,200, 150 ,100 ,
70 , 50 ,
30 , 20,lO)
Layer between two (layer isobar-
isobaric surfaces between 50
(followed by top and
bottom isobar values
in kPa, separated by
a space)
Layer between two
isobaric
surfaces, mixed
precis ion
(followed by pressure
of top in kPa and
1100 minus pressure
of bottom in hPa)

100) for layer
between 500 and 1000
hPa

(layer isobar-
between-mp
50 100) for layer
between 500 and 1000
hPa

151

T a b l e 1-15 L a y e r P a r a m e t e r Codes (C o n t .)

L a y e r
isobar-between-xp

isotherm- 0

land-depth

land-depth-between

land-height-cm

land-isobar

land-isobar-
3etween

Low-cld-base

nax-wind
nid-cld-base

nid-cld- top

ns 1
nsl-height

Description
Layer between two
isobaric surfaces,
extra precision
(followed by top and
bottom isobar values
expressed as 1100
hPa-isobar level,
separated by a space)
Level of the zero-
degree (Celsius)
isotherm (or freezing
level)
Depth below land
surface in
centimeters
Layer between two
depths in
ground (followed by
the depth of the top
of the layer and the
depth of the bottom
of the layer
centimeters)
Height level above
ground
(high precision)
(followed by
height in
centimeters)
Pressure above ground
level in hPa
Layer between two
isobars abive levels
(followed by top and
bottom isobaric
levels in hPa)
Level of low cloud
bases
Level of low cloud
tops
Level of maximum wind
Level of middle cloud
3ases
Level of middle cloud
tops
qean sea level
leight above mean sea

-

Exgmple
(layer isobar-
between 600
100) for layer
between 500 and
1000 hPa

(layer isotherm-0)

(layer land-depth
5.0)

(layer land-depth-
between
0 30) for layer
from ground surface
to 30 cm depth

(layer land-height-
cm 50)

(layer land-isobar
500)
(layer land-isobar-
between
500 1000)

(layer low-cld-
base)
(layer low-cld-top)

~~

(layer max-wind)
(layer mid-cld-
base)
(layer mid-cld-top)

(layer msl)
(layer msl-height

1 5 2

level
(in meters)

heights above mean
sea level in hundreds
of meters (followed
by top and bottom
height values)

level
(in feet)

msl-height-between Layer between two

msl-height-ft Height above mean sea

sea-bottom Bottom of the ocean
sea-depth Depth below the sea

surface
(meters)

1/10000
sigma Sigma level in

s igma-between Layer between two
sigma surfaces
(followed by top and
bottom sigma values

separated by a space)
expressed in 1/100,

153

50 1

(layer msl-height-
between
10 5) for layer
between 1000 and
500 meters above
ground
(layer msl-height-
ft 5000)

(layer sea-bottom)
(layer sea-depth
50 1

(layer sigma 9950)
for sigma
level .995
(layer sigma-
between 99.5
1 0 0 . 0) for layer
between -995 and
1.0

-

Table 1-15 Layer Parameter Codes (Cont.)

Layer
sigma-between-xp

surface
theta

theta-between

tropopause

-
Description Exgznple

Layer between two (layer sigma-
sigma levels be tween-xp
(followed by top and . l o 5 .loo) for layer
bottom sigma values between - 9 9 5 and 1.0
expressed as 1.1-

Earth’s surface (layer surf ace)
Isentropic (theta) (layer theta 300)
level (followed by
potential temperature
in degrees K)
Layer between two (layer theta-between
isentropic surfaces 150
(followed by top and 200)
bottom values
expressed as 475-
theta in degrees K)
Level of tropopause (layer tropopause)
(top of troposphere)

sigma)

154

I ActivePresen

PowerPoint API Function Description Table

Description
Represents the
entire Microsoft
Powerpoint
application.
Returns a
Presentation
ob j ec t that
represents the
presentation open
in the active
window. (Read-
only)
Returns a
Presentation
obj ec t that
represents the
presentation in
which the
specified document
window or slide
show window was
created. (Read-
only)

Creates a
presentation.
Returns a
Presentation
object that
represents the new
presentation.

A collection of
all the Slide
objects in the
specified
presentation.

155

Example
MyPath =
Application-Path

Application
.ActivePresentation.Save
A s MyPath

firstPresSlides =
Windows(1) .Presentation.
Slides.Count

Windows (2) . Presentation.
Pagesetup -

.FirstSfideNumber =
firstPresSlides + 1

This example creates a
presentation, adds a
slide to it, and then
saves the presentation.
With Presentations-Add

.Slides.Add 1,
ppLayoutTitle

. SaveAs "Sample" -
End With
Use the Slides property
to return a Slides-
collection:
ActivePresentation.Slide
s.Add 2, ppLayoutBlank

-

Slides-Add

Shapes

Shapes-AddPictur
e

Creates a new
slide and adds it
to the collection
of slides in the
specified
presentation.
Returns a Slide
object that
represents the new
slide.
A collection of
all the Shape
objects on the
specified slide.
Each Shape object
represents an
object in the
drawing layer,
such as an
Autoshape,
freeform, OLE
object, or
picture -
Creates a picture
from an existing
file. Returns a
Shape object that
represents the new
picture.

4

blank slide-at the end
of the active
presentation.
With
ActivePresentation.Slide

.Add .Count + 1,
S

ppLayoutBlank
End With
Use the Shapes property
to return the Shapes
collection. The
following example
selects all the shapes
on myDocument.
Set myDocument =
ActivePresentation.Slide
S(1)
myDocument.Shapes.Se1ect
All

Set myDocument =
ActivePresentation.Slide
s (1)

myDocunent.Shapes.AddPic
ture I'c : \microsof t
office\" & -

"clipart\music .bmp" ,
True, True, 100, 100,
70, 7 0

156

Shapes.PictureFa
rmat

SlideShowTransit
ion

Slideshowsetting

Contains
properties and
methods that apply
to pictures and
OLE objects. The
LinkFormat ob j ec t
contains
properties and
methods that apply
to linked OLE
objects only. The
OLEFormat ob j ec t
contains
properties and
methods that apply
to OLE objects
whether or not
they're linked.
Contains
information about
how the specified
slide advances
during a slide
show.

Represents the
slide show setup
for a
presentation.

Set myDocument =
ActivePresentation.Slide
s (1)
With
myDocument.Shapes(l).Pic
tureFormat

.Brightness = 0.3

.Contrast = 0.7

.ColorType =
msoPictureGrayScale

.CropBottom = 18
End With

With
ActivePresentation.Slide
s (1) . SlideShowTransition

ppTransitionSpeedFast

End With

.Speed =

With
ActivePresentation.Slide
Showsettings

.Rangewe =
ppShowSlideRange
End With

157

THIS PAGE IS INTENTIONALLY LEFT BLANK

158

APPENDIX H. VISUAL BASIC IMPLEMENTATION

1,Configuration GUI (CBcfg)

VERSION 5.00
Begin VB.Form CBform

Backcolor = &H80000004&

ClientHeight = 9195
ClientLeft = 60

Clientwidth = 8490

ScaleHeight = 9195
Scalewidth = 8490
StartupPosition = 3 'Windows Default
Begin VB.TextBox VirtualDirText

Height = 375
Left = 1 0 8 0
TabIndex = 3
Tag -
TOP = 7320
Width = 6375

'I CBc f g " - Caption -

C1 tent Top = 345

LinkTopic - '' Form1 I'
-

I' 3 'I -

End
Begin VB.TextBox TypeText

Height = 375
Left = 1080
TabIndex = 1
TOP = 5160
Width = 6375

End
Begin VB.CommandButton Delete

'' De 1 e t e " - Caption -
Enabled = 0 'False
Beginproperty Font

"MS Sans Serif" - Name -
Size = 9.75
Charse t = o
Weight = 700
Underline = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

Endproperty

Left = 4440
TabIndex = 6
TOP = 8160
Width = 1335

Height = 375

End
Begin VB.ComandButton Add

"Set I'
- Caption -

Enabled = 0 'False
Beginproperty Font

Name - - "MS Sans Serif"
Size = 9.75
Chars e t = o

- I

159

Weight = 700
Underl ine = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

Endproperty
Height = 375
Left = 6120
TabIndex = 7
TOP = 8160
Width = 1335

End
Begin VB.ComandButton Cancel

"Cancel " - Caption -
Beginproperty Font

"MS Sans Serif'' - Name -
Size = 9.75
Charset = o
Weight = 700
Underl ine = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

Endproperty
Height = 375
Left = 2760
TabIndex = 5
TOP = 8160
Width = 1335

End
Begin VB-CommandButton OK

Beginproperty Font
'' OK ' - Cap t i on -

"MS Sans Serif" - Name -
Size = 9.75
Charse t = o
Weight = 700
Underl ine = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

Endproperty
Height = 375
Left = 1080
TabIndex = 4
TOP = 8160
Width = 1335

End
Begin VB-TextBox LocationText

Height = 375
Left = 1080
TabIndex = 2

- I, 3 El Tag -
TOP = 6240
Width = 6375

End
Begin VB-ListBox dataList

Height = 3570
Left = 1080
TabIndex = o
TOP = 720

160

Width = 6375
End -
Begin VB.Labe1 Label2

Caption = "Virtual directory (optional) : 'I
Beginproperty Font

"MS Sans Serif" - Name -
Size = 9.75
Charset = o
Weight = 700
Underl ine = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

Endproperty
Height = 255
Left . = 1080
TabIndex = 11
ToolTipText = "A virtual directo'ry associated

with the key used by the Web server.''
TOP = 6840
Width = 2775

End
Begin VB.Labe1 Label4

Beginproperty Font
" Key : 'I - Caption -

"MS Sans Serif" - Name -
Size = 9.75
Charset = o
Weight = 700
Underl ine = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

Endproperty
Height
Left
TabIndex
ToolTipText

variable name. "

TOP
Width

End
Begin VB.Labe1

Caption

= 255
= 1080
= 10
= "An image type or any other

= 4680
= 615

Label 3
- - "Directory: 'I

Beginproperty Font
Name
Size
Charset
Weight
Underline
Italic
Strikethrough

Endproperty
Height -
Left -
TabIndex -
ToolTipText -

TOP
Width -

-
-
-
-

with the key. " - -
-

- - "MS Sans Serif"
= 9.75
= o
= 700
= 0 'False
= 0 'False
= 0 'False

255
1080
9
"An actual directory associated

5760
1095

161

End
Begin VB.Labe1 Label1

Cap t i on - - Current configuration: $1

Beginproperty Font
Name - - ''MS Sans Serif"
Size = 9.75
Charset = o
Weight = 700
Underline = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

Endproperty
Height = 2 5 5
Left = 1 0 8 0
TabIndex = 8
ToolTipText = "The current setting for

Continuous Brief application."
TOP = 2 4 0
Width = 2 2 9 5

End
End
Attribute VB-Name = "CBform"
Attribute VB-GlobalNameSpace = False
Attribute VB-Creatable = False
Attribute VB-PredeclaredId = True
Attribute VB-Exposed = False

' #
' # File: CBform.frm
' # Date Author Histor
' # 5 / 3 1 / 2 0 0 0 Tam Tran Created.
' #
' # CBcfg is an utility application that provides a
' # Graphical User Interface (GUI) for setting the image
' # type and its location. This application supports the
' # configuration of CBWrapper.
' #

.

.

.
I

' String variables that hold the locations where to find
' the configuation file (cbdata-cfg), and the temporary
'

I * X * * ~ * * * * * * * * * * * * * *

Private cfgfile As String
Private cfgtmp As String
' * * * * * * * * * * * * * * X *

directory for this application during run time.
I

' Unload the CBcfg form when the Cancel button is clicked.
I

, * X * ~

Private Sub Cancel-Click0

End Sub .
Unload Me

162

Display information for each record selected from the
current configuration list box. -

1

.
Private Sub datalist-Click0

Dim listStr As String
Dim typeStr As String
Dim locationstr As String
Dim virtualStr As String

listStr = dataList.Text
Call lineInfo(listStr, typestr, locationstr,

I Display the key name in the Key text box.
TypeText-Text = typeStr

I Directory text box.
LocationText.Text = locationstr

' in the Virtual Directory text box
VirtualDirText.Text = virtualstr
Add-Enabled = False
Delete-Enabled = True

virtualstr)

Display the directory associated with the key in the

Display the virtual directory associated with the key

End Sub
.

1

Tasks done when deleting an item from the list.
' First, copy all lines from the cfgfile to the cfgtmp

file except the line that's being deleted. Then copy
' back to the cfgfile from the cfgtmp.
I

.

Private Sub Delete-Click0
Open cfgfile For Input As #1
Open cfgtmp For Output As #2
Do While Not EOF(1)

Line Input #1, inputstr
If Not (InStr (1, inputStr, TypeText .Text & ' I = " ,

vbTextCompare) > 0) Then
Print #2, inputStr

End If
Loop
Close #1
Close #2

Open cfgtmp For Input As #1
Open cfgfile For Output As # 2
Do While Not EOF(1)

Copy the cfgtmp to the cfgfile

Line Input #1, inputStr
Print #2, inputStr

Loop
Close #1
Close #2
Call updateList

End Sub
l * ~

I

Tasks done when the application is load.

163

' This requires two system environment variables set,
' which are CB-HOME, where the cbdata.cfg is located, and

CB-TMP, where the temporary file is created:
I

.

Private Sub Form-Load()
cfgfile = Environ("CB_HOME") & "\cbdata.cfg"
cfgtmp = Environ ("TEMP'") & \cbdata-. tmp"
Call updateList

End Sub
.

Activate the Add button if new value is enterred from
' the Image type box.

.

Private Sub KeyText-Change()

End Sub

1

Add-Enabled = True

.

' Save the changes (if any), and close the CBcfg form
1

when the OK button is clicked
I

.

Private Sub OK-Click()
If (Add. Enabled) Then

Call Add-Click
End If
Unload Me

End Sub
.

' The lineInfo subroutine parses a line input from the
' configuration file (cbdata-cfg) - It separates information
' of the key, the directory, and the virtual directory
I from the line string input.
' Parameters:
I in :
I searchStr - the string is being parsed.

1 K - a variable that holds the key string
1 D - a variable that holds the directory string
1 V - a variable that holds the virtual directory

1 in/out :

string

.

Private Sub lineInfo(searchStr As String, K As String, D As
String, V As String)

I

istart = 1
istop = 0
istop = InStr(istart, searchstr, "= " , vbTextCompare)
' Get the key string
K = Mid(searchStr, istart, istop - 1)
istart = istop + 1
istop = InStr(istart, searchstr, ' I " , vbTextCompare)
' Get the directory string

164

If istop > istart Then
D = Mid(searchStr, istart, istop - iscart)
istart = istop + 1
'Get the location string
V = Mid(searchStr, istart)

D = Mid(searchStr, istart)
v = It

Else

End If
End Sub
.

I

Tasks done when adding an item to the list. First, check
if there is any line from cfgfile that has the same key

value. Otherwise, add a new line (item) to the cfgfile.
I value as the added item. Then update it with the new

I

.

Private Sub Add-Click()
Add-Enabled = False
Open cfgfile For Input As #1
Open cfgtmp For Output As #2
I Check for whether or not the image type exists.
Do While Not EOF(1)

Line Input #1, inputStr
If Not (InStr (1 , inputStr, TypeText .Text & 1 1 = 1 1 ,

vbTextCompare) > 0) Then
' Write to a temporary file
Print # 2 , inputStr

End If
Loop
If (StrComp (I' I' , VirtualDirText -Text, vbTextCompare) =

Print # 2 , TypeText .Text & "=" & LocationText .Text

Print #2 , TypeText .Text & "=" & LocationText .Text &

0) Then

Else

" I I' & VirtualDirText .Text
End If
Close #1
Close #2

Open cfgtmp For Input As #1
Open cfgfile For Output As #2
Do While Not EOF(1)

Copy the cfgtmp to the cfgfile

Line Input #1, inputStr
Print # 2 , inputStr

Loop
Close #1
Close #2
Call updateList

End Sub
.

I

I Activate the Add button if new value is enterred from
the Key text box.

I

.

Private Sub TypeText-Change0

165

Add-Enabled = True
End Sub -
.
I

' Activate the Add button if new value is enterred from
' the Directory text box.
1

.

Private Sub 1ocationText-Change()

End Sub
Add-Enabled = True

.

I

' Refresh the GUI after adding or deleting an item from
the list.

1

.

Private Sub updatelist0
Dim intFile As Integer
dataList.Clear

intFile = FreeFile()
Open cfgfile For Input As #intFile
Do While Not EOF(intFi1e) ' Check for end of file.

Line Input #intFile, inputStr ' Read line of data.
dataList.AddItem inputStr

Loop
Close #intFile
TypeText-Text = " *
LocationText .Text = " "

VirtualDirText-Text =
Add-Enabled = False
Delete.Enabled = False

End Sub
.

1

' Activate the Add button if new value is enterred from
the Virtual Directory text box.

I

.

Private Sub VirtualDirText-Change()

End Sub
Add.Enabled = True

2.Application Wrapper (CBWrapper)

VERSION 5 .00
Object = "~48E59290-9880-11CF-9754-00~~00C00908}#1.0#0~~;

Begin VB.UserContro1 WebInterface
"MSINET. OCX"

BackCo 1 or = &H80000001&
ClientHeight = 5475
ClientLeft = o
C1 ientTop = o
Clientwidth = 8430
ScaleHeight = 5475
Scalewidth = 8430
Begin 1netCtlsObjects.Inet Inetl

166

Left = 120
TOP = 120
- Ext entX = 1005
- Ext en tY = 1005
Version = 393216

End-
Begin VB-TextBox ImagesText

Beginproperty Font
"Aria1 "

- Name -
Size = 9.75
Charset = o
Weight = 700
Underl ine = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

Endproper ty
Height = 375
Left = 5880
TabIndex = 7 - 1' 2 4 'I Text -
TOP = 1680
Width = 735

End
Begin VB.TextBox HeightText

Beginproperty Font
"Aria1 I'

- Name -
Size = 9.75
Charset = o
Weight = 700
Underl ine = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

Endproperty
Height = 375
Left = 5880
TabIndex = 6
Text -
TOP = 2520
Width = 735

End
Begin VB-TextBox WidthText

" 5 4 0 I' -

Beginproperty Font
"Aria1 I'

- Name -
Size = 9.75
Charset = o
Weight = 700
Underl ine = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

EndProper ty
Height = 375
Left = 5880
TabIndex = 5
Text -
TOP = 3360
Width = 735

End
Begin VB.TextBox DurationText

I' 7 2 0 " -

167

Beginproperty Font
"Aria1 - Name -

Size = 9.75
Chars e t = o
Weight = 700
Under 1 ine = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

EndProperty
Height = 375
Left = 5880
TabIndex = 4

- I1 0 1' Text -
TOP = 4200
Width = 735

Caption -

End
Begin VB.CommandButton Start

"Start" -
Beginproperty Font

"Aria1 I'
- Name -

Size = 9.75
Charset = o
Weight = 700
Under1 ine = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

EndProperty
Height = 495
Left = 720
TabIndex = 3
TOP = 2400
Width = 1215

End
Begin VB.CommandButton Default

Caption - - "Default"
Beginproperty Font

"Aria1 'I
- Name -

Size = 9.75
Charset = o
Weight = 700
Under 1 ine = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

Endproperty
Height = 495
Left = 720
TabIndex = 2
TOP = 4080
Width = 1215

End
Begin VB.ConboBox ImageType

Beginproperty Font
"Aria1 I'

- Name -
Size = 9.75
Charset = o
Weight = 700
Underline = 0 'False
Italic = 0 'False

168

Strikethrough = 0 'False
Endproperty -
Height = 360
Left = 720
TabIndex = 1
Text -
TOP = 1680
Width = 2895

End
Begin VB.CommandButton Stop

"Select an image type'' -

Backcolor = &HOOCOCOCO&

Beginproperty Font
'I stop 'I

- Caption -

"Aria1 I'
- Name -

Size = 9.75
Charse t = o
Weight = 700
Underline = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

Endproperty

Left = 720
Mas kC o 1 or = &H80000004&
TabIndex = o
TOP = 3240
Width = 1215

Height = 495

End
Begin VB.Labe1 images

Backcolor = &H80000001&

Beginproperty Font
" Images : 'I - Cap t i on -

"Aria1 I'
- Name -

Size = 9.75
Chars e t = o
Weight = 700
Under1 ine = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

Endproperty
Forecolor = &H8000000E&
Height = 255
Left = 4800
TabIndex = 14
TOP = 1680
Width = 855

End
Begin VB-Labe, Label1

- Backcolor -
Caption -
Beginproperty Font

-

Name
Size
Chars e t
Weight
Under 1 ine
Italic
Strikethrough

&H80000001&
"Height: 'I

"Aria1 - -
= 9.75
= o
= 700
= 0 'False
= 0 'False
= 0 'False

169

Endproperty
Forecolor = &H8000000E&
Height = 255
Left = 4800
TabIndex = 13
TOP = 2520
Width = 735

End
Begin VB-Label Label2

BackColor = &H80000001&

Beginproperty Font
"Width: I'

- Caption -

"Aria1 - Name -
Size = 9.75
Chars e t = o
Weight = 700
Under 1 ine = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

EndPr op er t y
Forecolor = &H8000000E&
Height = 255
Left = 4800
TabIndex = 12
TOP = 3360
Width = 735

End
Begin VB.Label Label3

BackColor = &H80000001&
Caption - - "Duration: "
Beginproperty Foct

"Arial I'
- Name -

Size = 9.75
Chars e t = o
Weight = 700
Underline = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

Endproperty
Forecolor = &H8000000E&
Height = 255
Left = 4800
TabIndex = 11
TOP = 4200
Width = 855

End
Begin VB.Labe1 Label4

BackColor = &H80000001&
Caption - - " Second (s)
Beginproperty Font

"Arial - Name -
Size = 9.75
Chars e t = o
Weight = 700
Under1 ine = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

Endproperty

170

Forecolor = &H8000000E&
Height = 255
Left = 6840
TabIndex = 10
TOP = 4200
Width = 975

End
Begin VB.Labe1 Label5

A1 i gnmen t = 2 'Center
Backcolor = &H80000001&
Cap t i on - - " CONTINUOUS BRIEF I'
Beginproperty Font

Name - - "MS Sans Serif"
Size = 18
Charset = o
Weight = 700
Underline = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

Endproperty
Forecolor = &H8000000E&
Height = 495
Left = 2280
TabIndex = 9
TOP = 360
Width = 3975

End
Begin VB.Labe1 type

Backcolor = &H80000001&
Caption - - I' Image type : 'I
Beginproperty Font

"Aria1 "
- Name -

Size = 9.75
Charset = o
Weight = 700
Underline = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

Endproperty
Forecolor = &H8000000E&
Height = 255
Left = 720
TabIndex = 8

Width = 1215
TOP = 1200

End
End
Attribute VB-Name = "WebInterface"
Attribute VB-GlobalNameSpace = False
Attribute VB-Creatable = True
Attribute VB-PredeclaredId = False
Attribute VB-Exposed = True

' # File: WebInterface-ctl
' # Date Author History
' # 5/31/2000 Tam Tran Created.
.
Option Explicit

.

171

.

1

' The Continuous Brief wrapper (CBWrapper) isan ActiveX
' Control that represents the Graphical User Interface

' an user to select the type of images that he/she wants
' to view. Also, it allows the user to set the number of

(GUI) via the Web browser (Internet Explorer). It allows

images, the size, and the duration for the display.
I

.
Private mControllerConnector As ControllerConnector
Private donitor As Monitor
Private donitorConnector As PlonitorConnector
Private WithEvents mController As Controller
Attribute mController.VB-VarHelpID = -1
' Get reference to Application object from the PowerPoint

Public myPPT As PowerPoint.Application
Public AppRunning As Boolean
Private Briefstarted As Boolean
Private downloadFolder As String
Private cfgFolder As String
Private ServerURL As String

API .

.
1

' Reset the Continuous Brief GUI to its default values.
' Set slide show to fullscreen size.

' Set duration of the slide show to 0.
Set number of images to 24

1

.

Private Sub Default-Click()
1mageType.Text = "Select an image type"
ImagesText .Text = "24"
HeightText .Text = "540 '
WidthText .Text = "720"
DurationText . Text = " 0 "

End Sub

.

1

' Update the brief.
I Use the GetImageDir method from the Controller object
I to get the location of the files.
' Use the Controller-UpdateBrief method to update the

brief.
I

.

Private Sub Start-Click()
Dim imageloc As String
Briefstarted = True
Call mController-UpdateBrief(1mageType.Text)

End Sub

.

1

' Stop the slide show.

1 7 2

Terminate the background running Powerpoint application

Reset the AppRunning flag to false.
I Free up the un-used object. -

1

.

Private Sub Stop-Click ()
If AppRunning Then

myPPT.ActivePresentation.Close
myPPT.Quit
Set myPPT = Nothing
AppRunning = False
Briefstarted = False

End If
End Sub

.

Initialize references to the Monitor and Controller
objects.

I

.

Private Sub UserControl-Initialize()

Set mControllerConnector = New ControllerConnector
Set mController = mControllerConnector.Control1er
Set mMonitorConnector = New MonitorConnector
Set monitor = mMonitorConnector.Monitor
AppRunning = False
Briefstarted = False

u Add image types to the drop-box in the Continuous

Dim intFile As Integer ' FreeFile variable
Dim inputStr As String
Dim cfgFile As String
Dim typeStr As String
Dim locationstr As String
Dim virtualDirStr As String
Dim tmpFolderStr As String
Dim tmpFileStr As String
Dim downloadFileStr As String

Brief GUI

Set values for the URL, download folder, and a

%
Change config here:

temporary filename

SewerURL = 'I ht tp : / / tampc . spawar. navy. mil /
1 %%;%%%%%"a 0 0 0 o6666%%%%%&%%%%

cfgFile = "cbdata.cfg"
downloadFolder = Environ ("TEMP") & "\cbdownload"
cfgFolder = downloadFolder & "'\cbdata"
tmpFileStr = cfgFolder & " \ " & cfgFile

Download the "cbdata.cfg" file
downloadFileStr = ServerURL & " / " & cfgFile

Create a temporary directory for downloading data
Call createFolder(downloadFo1der)

173

Call createFolder(cfgFo1der)
Call downloadFile(downloadFileStr, tmpFilgStr)

intFile = FreeFile ()
Open tmpFileStr For Input As #intFile
Do While Not EOF(intFi1e)

Line Input #intFile, inputStr
Call linefnfo(inputStr, typestr, locationstr,

ImageType-AddItem typeStr
virtualDirStr)

Loop
Close #intFile

End Sub

.

' Receive Controller event to do the update for the brief.
I Parameters:

1

I in: DataType - the data (images) type
1 in: imageDir - the directory where to find the

images.
I

.

Private Sub mController-UpdateBrief(DataType As String)

'

If (StrComp (ImageType-Text, DataType, vbTextCompare) =

Check for the right type of data that the CBWrapper
is showing.

0) And Briefstarted Then
Dim virtualDir As String
Dim fileListN-e As String
Dim tmpFileStr As String
Dim tmpURLStr As String
Call mController.GetImageInfo(ImageType~Text,

ImagesText-Text, -

f ileListName)
virtualDir,

' Local variables declarations
Dim myArray0 As String
Dim myPres As Presentation
Dim fs, f, fc, fl, i, j, K
Dim s As Slide
Dim LeftVal As Long
Dim TopVal As Long
Dim imageW As Long
Dim imageH As Long
Dim ImgFile As String
Dim intFile As Integer
Dim inputStr As String

' Download the list of image filenames from server
tmpURLStr = ServerURL & virtualDir &

tmpFileStr = cfgFolder & ' \ " & fileListName
Call downloadFile(tmpURLStr, tmpFileStr)

"/CB-listfile/" & fileListName

' Download image files from server
intFile = FreeFileO

174

Open tmpFileStr For Input As #intFile
Do While Not EOF(intFi1e) -

Line Input #intFile, inputStr
tmpURLStr = ServerURL & virtualDir & " / " &

tmpFileStr = downloadFolder & " \ ' I & inputStr
Call downloadFile(tmpURLStr, tmpFileStr)

input S t r

Loop
Close #intFile

I Get reference to the Powerpoint Application

On Error Resume Next
Set myPPT = Getobject(, "PowerPoint.application")
If Err-Number <> 0 Then

object.

Set myPPT =
CreateObject("PowerPoint.app1ication")

End If

Set the AppRunning flag so that it will be
' checked when the STOP button is clicked.
AppRunning = True

Stop the current running slide show (if any)
If myPPT.Presentations.Count <> 0 Then

myPPT.ActivePresentation.Close
End If

' Create new presentation with the new update data
Set myPres = myPPT.Presentations.Add(True)

Create a FileSystemObject for manipulating the

Set fs = Createobject ("Scripting.FileSystemObject")
Set f = f s . GetFolder (downloadFolder)
Set fc = f.Files
i = l
K = l .

file system

' Store all filenames from the image directory

ReDim myArray (1 To f c . Count)
For Each fl In fc

myArray(i) = fl.Name
i = i + l

to an array for sorting purpose.

Next

Call mMonitor.dhBubbleSort(myArray)
Sort the array.

Calculate the positions and dimensions for the

Call GetDimensions(LeftVa1, TopVal, imageW, imageH)
images.

' Add the images to the Powerpoint presentation.
For j = (fc.Count - ImagesText-Text + 1) To

f c -Count
ImgFile = downloadFolder & " \ " & myArray(j)
myPres.Slides.Add K, ppLayoutBlank

175

~~

....

myPres.Slides.Item(K) .Shapes.AddPicture
ImgFile, True, True, -

LeftVal, TopVal, imageW, imageH

Next
'Free up the FileSystemObject when done
Set fs = Nothing
Set f = Nothing
Set fc = Nothing

-

K = K + 1

show
' Configure the slide show properties and run the

For Each s In myPPT.ActivePresentation.Slides
With s.SlideShowTransition

.AdvanceOnTime = True

.AdvanceTime = DurationText-Text
End With

Next

With myPPT.ActivePresentation.SlideShowSettings
.StartingSlide = 1
.Endingslide = 1magesText.Text
.AdvanceMode = ppSlideShowUseSlideTimings
.LoopUntilStopped = True
- Run

End With

' Delete the images when done creating the brief
For i = 1 To fc.Count

If fs.FileExists (downloadFolder & " \ " & myArray(i))
Then

myArray(i), True)
Set f = fs.DeleteFile(downloadFolder & ' I \ " &

End If
Next
End If

End Sub

.

' The GetDimensions subroutine calculates the positions
' (Left, Top), and the dimensions (Height, Width)
' for the images.
I Parameters:
I in/out: L - the Left value
1 T - the Top value
, W - the Width value
I H - the Height value

.

Private Sub GetDimensions(L As Long, T As Long, W As Long,
H As Long)

' Local variables declarations
Dim DeltaX As Long
Dim DeltaY As Long

176

DeltaX = myPPT. ActivePresentation. Pagesetup. Slidewidth

DeltaY = myPPT.ActivePresentation. Pagesetup. SlideHeight

If DeltaX <= 0 Then

Else

End If
If DeltaY <= 0 Then

T = O
Else

T = DeltaY / 2
End If
W = WidthText-Text
H = HeightText.Text
If W > 720 Then W = 720
If H > 540 Then H = 540

- WidthText-Text

- HeightText-Text

L = O

L = DeltaX / 2

End Sub
.

1

The lineInfo subroutine parses a line input from the
configuration file (cbdata-cfg). It separates information
of the key, the directory, and the virtual directory
from the line string input.
Parameters:

I in :
I searchStr - the string is being parsed.
I in/out :
1 K - a variable that holds the key string
I E - a variable that holds the directory string
I V - a variable that holds the virtual directory

string
t

I *

Private Sub lineInfo(searchStr As String, K As String, D As
String, V As String)

Dim istart As Integer
Dim istop As Integer
istart = 1
istop = 0
istop = InStr(istart, searchstr, " = I t , vbTextCompare)
I Get the key string
K = Mid(searchStr, istart, istop - 1)
istart = istop + 1
istop = InStr (istart , searchstr, " I , vbTextCompare)
' Get the directory string
If istop > istart Then

D = Mid(searchStr, istart, istop - istart)
istart = istop + 1
'Get the location string
V = Mid(searchStr, istart)

D = Mid(searchStr, istart)
v = I1 "

Else

End If
End Sub
.

1 7 7

I The downloadFile subroutine uses the OpenURL method to
' download a file from the current open connection using
' HTTP protocol.
' Parameters:
1 in :
1 URLStr - the URL for download the file from.
I saveFile - the filename for storing the
I downloaded file on the client machine.
I

Private Sub downloadFile(URLStr As String, saveFile As
String)

Dim bData0 A s Byte Data variable
Dim intFile As Integer I FreeFile variable
intFile = FreeFile () Set intFile to an unused

file -

The result of the OpenURL method goes into the Byte
' array, and the Byte array is then saved to disk.
bData0 = Inetl.OpenURL(URLStr, icByteArray)
Open saveFile For Binary Access Write As #intFile
Put #intFile, , bData0
Close #intFile

End Sub
.

I

' Creating a folder on client machine.
' Parameter:
1 in: path - a qualify name of the folder being

created.
I

.
Private Sub createFolder(path As String)

Dim fs, f
Set fs = Createobject ("Scripting.FileSystem0bject")
If Not fs.FolderExists(path) Then

Set f = fs . createFolder (path)
End If
Set fs = Nothing
Set f = Nothing

End Sub
.

1

Deleting a folder on a client machine.
' Parameter:
I in: path - a qualify name of the folder being

deleted .

.
Private Sub deleteFolder(path As String)

Dim fs, f
Set fs = CreateObject("Scripting.FileSystemObjectii)
If f s . FolderExists (path) Then

End If
Set fs = Nothing

fs.deleteFolder path, True

End Sub

178

.

I

' Clean up all temporary folder created when exiting.
I

.
Private Sub UserControl-Terminate0

I Delete the download folder
deleteFolder downloadFolder

End sub

3. Object Components (Continuous Brief)

a) Global Variable Declarations

Attribute =-Name = "GlobalDeclarations"
.

* * *

' # File: GlobalDeclarations.bas
' # Date Author History
' # 5/31/2000 Tam Tran Created.
.

Option Explicit
.

1

The cfgInfo type is a record that stores the

' that read from the cvdata-cfg file (i.e., Key,
information

Eirectory ,

the last
Virtual Directory, and the stamped date, which is

I time the data is checked.)
I

.

* * *

* * *

* * *

Public Type cfgInfo
key As String
path As String
virsath As String
stampdate As Date

End Type

1 *

1

'Global variables used by the ControllerConnector
I

.

Public gcontroller As Controller Reference to

Public gControllerUseCount As Long I Global reference
controller object

count

179 I

.

* * * -
I

' Global variables used by the MonitorConnector

.

Public gMonitor As Monitor 'Reference to

Public gMonitorUseCount As Long Global reference

I

* * *

monitor obj ec t

count

.

* * *

Global variables used by the Monitor and Controller
objects.

I

.
* * *

Public gCfgArray0 As cfgInfo
b) Timer

VERSION 5.00
Begin VB.Fom Timing

- 'I Form1 'I Caption -

C1 i entTop = 345

ClientHeight = 3195
ClientLeft = 60

Clientwidth = 4680
LinkTopi c - - " Form1 "
ScaleHeight = 3195
Scalewidth = 4680
StartupPosition = 3 'Windows Default
Begin VB.Timer Clock

Left = 2160
TOP = 1200

End
End
Attribute VB-Name = "Timing"
Attribute VB-GlobalNameSpace = False
Attribute VB-Creatable = False
Attribute VB-PredeclaredId = True
Attribute VB-Exposed = False
.

' # File: Timing-frm
' # Date Author History
' # 5/31/2000 Tam Tran Created.
.

.

* * *

' Set the clock interval to 5 second.
The Monitor component uses this timer event to poll

storage directory for new data (images).
the

180

k
0

l4-4

h

k a,
a,
A

k

u

9
4
z w

a
d

-rl

0 v

a,
m 0

d
0
JJ

0
JJ -4

Id
k

5
a,
rl
A

-rl
JJ tr,

d
a,

9
a,
In

-ti
cd
k

rl
rl
-4
3

JJ -4
k
0
c,
m

h

a,

9
9 a,

m
*rl
Id
k
rl
rl
-rl
3

-rl
3

L)
a,

a i3
da ,

d
0.U

a,
9 m

m
c,
-rl

rl
co
rl c,

$
g
%
a

u k
0 k

g

rl
rl
0
k
0

u

a,
3
d
0

g
c

a,

!2
c,
u - -
i
0
u

=k c
c 0
=k c c,

a,

5
a, c

.

Event UpdateBrief(imageType As String)
* * *

-

Public WithEvents mGlue As Glue
Attribute mG1ue.D-VarHelpID = -1
Private WithEvents donitor As Monitor ' Get Monitor

Attribute mMonitor.VB-VarHelpID = -1
Private mMonitorConnector As MonitorConnector

events

.

* * *
I

' Connect to the Monitor component
1

.

* * *
Private Sub Class-Initialize()

Set mMonitorConnector = New MonitorConnector
Set monitor = WonitorConnector.Monitor

End Sub

.

* * *
1

' Receive the notification from the Monitor component
' The Controller passes the information to the Glue

component
for storing data to the database.
Event ' s paramenter:

I DataType : the data (images) type
I

.

* * *
Private Sub mMonitorMewData(DataType As String)

Set mGlue = Mew Glue
Call mGlue.StoreData(DataType)

End Sub

I*****************k**************************************

* * *
1

Receive the notification from the Glue component
that

' Asynchronous glue component is done.
The Controller notifies the CBWrapper(s) and passes

information for the wrapper(s) to update the
the

brief (s) .
' Event I s paramenter:
1 DataType : the data (images) type

.

* * *
Private Sub mGlue-GlueDone(DataType As String)

182

Set mGlue = Nothing I Free the Glue object

Notify the CBWrapper for updatingthe brief
RaiseEvent UpdateBrief(DataType)

End Sub
.

* * *
I

Get all the image's filenames, which is being

from the CBWrapper, and make the makeFileList
requested

function
' call to store the filenames to the CB-DATA-LST file.
I Parameters:
I in :
I ImageID - the image type
1 filecounts - the number of images

I virtualDir - the virtural directory

I with the images' directory.
I in/out :

I which contains the list of images'

requested.

associated

I fileListName - a variable that holds the
filename,

filenames .
I

.

* * *
Public Sub GetImageInfo(Image1D As String, filecounts

As Integer, -

fileListName As String)
virtualDir As String,

Dim i As Integer
For i = 1 To UBound(gCfgArray)

If (StrComp (ImageID, gCfgArray(i) .key,

virtualDir = gCf gArray (i) . virgath
fileListName = "CB-DATA.LST"
Call makeFileList(fileCounts,

vbTextCompare) = 0) Then

gCfgArray(i).path, fileListName)
End If

Next
End Sub

.

* * *
I

Write all filenames from a specified directory to a

This subroutine is called by GetImageInfoO
Parameters:

file -

I in :
1 filecounts - number of files is being

path - a specified directory for getting
read.

the filenames.
I

183

I filename - the file used for storing the
filenames . -

I

.

* * *
Private

As String, -

String)
Dim
Dim
Dim
Dim

Sub makeFileList(fi1eCounts As Integer, path

filename As

fs, f, fc, fl, i, j , a
mycount As Integer
1istfileStr As String
myArray() As String

Create a FileSystemObject for manipulating the
file system.

CreateObject("Scripting.FileSystemObjectw)
Set fs =

Set f = fs.GetFolder(path)
Set fc = f .Files
mycount = fc.Count
i = l

' Store the name of the files to an array for

ReDim myArray(1 To mycount)
For Each fl In fc

myArray(i) = fl.Name
i = i + l

sorting purpose

Next

filename,

used -

End

Sort the array
Call mMonitor.dhBubbleSort(myArray)
listfilestr = path & " \ " & "CB-listfile"
createFolder listfilestr
Set a = fs.CreateTextFile(listfileStr & " \ ' I &
True)
For j = (mycount - filecounts + 1) To mycount

Next
a. Close
' Free up the objects, which are no longer be

Set fs = Nothing
Set f = Nothing
Set fc = Nothing
Set a = Nothing
Sub

a.Writeline (myArray(j))

.
* * *

1

'

' Parameter:

This createFolder is used for creating a specified
folder.

1 in: path - the qualified name of the folder
being created.

I

184

.

* * *
Private Sub createFolder(path As String)

Dim fs, f
Set fs =

Createobject ("Scripting. FileSys temobj ect ")
If Not fs.FolderExists(path) Then

Set f = f s . createFolder (path)
End If
Set fs = Nothing
Set f = Nothing

End Sub
d) Controller Connector

VERSION 1.0 CLASS
BEGIN

Multiuse = -1 'True
Persistable = 0 'NotPersistable
DataBindingBehavior = 0 'vbNone
DataSourceBehavior = 0 'vbNone
MTSTransactionMode = 0 'NotAnMTSObject

END
At tribute VB-Name = "Control 1erConnector "

Attribute VB-GlobalNameSpace = False
Attribute VB-Creatable = True
Attribute VB-PredeclaredId = False
Attribute VB-Exposed = True
.

' # File: ControllerConnector-cls
' # Date Author History
' # 5/31/2000 Tam Tran Created.
.

Option Explicit

.

I This property allows other components to get

I to the Controller object.
reference

I

.

* **
Public Property Get Controller0 As Controller

End Property
Set Controller = gcontroller

.
* **

1

' Initilize Controller and reference count.
I

.

* * *
Private Sub Class-Initialize0

185

* * *

* * *

If gcontroller Is Nothing Then

End If
gControllerUseCount = gControllerUseCount + 1

Set gcontroller = New Controller

End Sub

1

I Terminate controller when reference count = 0
1

.

Private Sub Class-Terminate()
gControllerUseCount = gcontrollerusecount - 1
If gControllerUseCount = 0 Then

'Set gList = Nothing
Set gcontroller = Nothing

End If
End Sub

e) Monitor

VERSION 1.0 CLASS
BEGIN

Multiuse = -1 'True
Persistable = 0 'NotPersistable
DataBindingBehavior = 0 'vbNone
DataSourceBehavior = 0 'vbMone
MTSTransactionMode = 0 'NotAnMTSObject

END
Attribute VB-Name = "Moniror"
Attribute VB-GlobalNameSpace = False
Attribute VB-Creatable = True
Attribute VB-PredeclaredId = False
Attribute VB-Exposed = True
.

' # File: Plonitor.cls
' # Date Author His tory
' # 5/31/2000 Tam Tran Created -
.

Option Explicit

.

* * *
' The VISStamDate, IRStampDate, and VAPORStampDate

variables
store the created date of the latest stored data.

WithEvents causes the component(s) which raise the
I

event (s)
' to run asynchronously.
' Event's parameter:
I DataType: the data (images) type

' The Monitor component will raise the event to notify

' Controller when the new data come in.
the

186

.

Private VISStampDate As Date
Private IRStampDate As Date
Private VAPORStampDate As Date

* * *
-

Private mTiming As Timing
Private WithEvents mClock As Timer
Attribute mClock.VB-VarHelpID = -1

Event NewData(DataType As String)
.

* * *
1

' The tasks done when a new Monitor object is created.
I

.

* * *
Private Sub Class-Initialize0

Start Monitor Timer and create instance of form
Set mTiming = New Timing
Load mTiming

Connect timers' events to associated event
procedures in Monitor

Set mClock = mTiming .'Clock

Get the config information from the
configuration file

End Sub
Call Getconfig

.

* * *
1

The tasks done when the Monitor object is
terminated.

1

.

* * *
Private Sub Class-Terminate0 Terminate Monitor

Free up the timer object.
Set mClock = Nothing

I Unload and free up the form.
Unload mTiming
Set mTiming = Nothing

End Sub

I *

_ . * * *
1

I Process Timer Event.
' This timer event causes the Monitor to poll the

I directories for new data.
storage

187

' The Monitor will raise the event(s) if it found a
new data. -

I

.

Private Sub mClock-Timer()
* * *

Dim i As Integer
For i = 1 To UBound(gCfgArray)

If IsNewFile(gCfgArray(i) .path, i) Then

End If
RaiseEvent NewData(gCfgArray(i).key)

Next
End Sub

.

* * *
I

I The IsNewFile function is used to determine whether

' not a new data exists.
' Paramenters :

or

1 in: StrDir - the directory where to check for

1 in: StampDate - the created date of the latest
I data from the previous

1 TRUE if there's new data, and FALSE otherwise.

1 new data.

checked.
' Return:

.
* * *

Private Function IsNewFile(StrDir As String,
arrayIndex As Integer) As Boolean

Local variables declarations.
Dim fs, f, fc, fl, i
Dim mystamp As Date
Dim myArray (As String

Create a FileSystemObject for manipulating the
file system.

Createobject ("Scripting.Fi1eSystemObject")
Set fs =

Set f = fs.GetFolder(StrDir)
Set fc = f.Files
i = l

Store the name of the files to an array for
sorting purpose

ReDim myArray(1 To fc-Count)
For Each fl In fc

myArray(i) = fl.Name
i = i + l

Next

' Sort the array
Call dhBubbleSort(myArray)

188

' Check for new file based on the file's created-

mystamp = fs.GetFile(StrDir & " \ " & -

If (DateDiff (" s " , gCfgArray(array1ndex) .stampdate,

gCfgArray(arrayIndex).stampdate = mystamp
IsNewFile = True

IsNewFile = False

date.

myArray(fc.Count)).DateCreated

mystamp) <> 0) Then

Else

End If

' Free up the objects, which are no longer be

Set fs = Nothing
Set f = Nothing
Set fc = Nothing

used.

End Function

l *

* * *

1

1

t

I

1

1

1

I

I

I

I

I

1

1

I

I

Standard bubblesort.
DON'T USE THIS unless you know the data is already
almost sorted! It's incredibly slow for
randomly sorted data.

There are many variants on this algorithm.
There may even be better ones than this.
But it's not even going to win any
speed prizes for random sorts.

From "Visual Basic Language Developer's Handbook''
by Ken Getz and Mike Gilbert
Copyright 2000; Sybex, Inc. All rights reserved.

In :
varItems :

Array of items to be sorted.
out :

VarItems will be sorted.

Public Sub dhBubbleSort(var1tems As Variant)

Dim blnSorted As Boolean
Dim lngI As Long
Dim lngJ As Long
Dim lngItems As Long
Dim varTemp As Variant
Dim 1ngLBound As Long

lngItems = UBound(var1tems)
1ngLBound = LBound(var1tems)

Set lngI one lower than the lower bound.
lngI = 1ngLBound - 1
Do While (IngI < IngItems) And Not blnSorted

blnSorted = True

lngI = lngI + 1
For lngJ = 1ngLBound To lngItems-- lngI

If varItems(1ngJ) > varItems(1ngJ + 1)
Then

varTemp = varItems (1ngJ)
varItems(1ngJ) = varItems(1ngJ + 1)
varItems (IngJ + 1) = varTemp
blnSorted = False

End If
Next lngJ

Loop
End Sub

.

* * *

'
I configuration file (cbdata.cfg). It separates

information

' from the line string input.
' Parameters:

The lineInfo subroutine parses a line input from the

of the key, the directory, and the virtual directory

1 in :
I searchStr - the string is being parsed.
I in/out:
I

I

string

K - a variable that holds the key string
D - a variable that holds the directory

1 V - a variable that holds the virtual
directory string

I

.

* * *
Private Sub lineInfo(searchStr As String, K As String,

D As String, V As String)
Dim istart As Integer
Dim istop As Integer

istart = 1
istop = 0
istop = InStr(istart, searchstr, ' 1 = " ,

' Get the key string
K = Mid(searchStr, istart, istop - 1)
istart = istop + 1
istop = InStr (istart , searchstr, " I ' I ,

' Get the directory string
If istop > istart Then

D = Mid(searchStr, istart, istop - istart)
istart = istop + 1
'Get the location string
V = Mid(searchStr, istart

D = Mid(searchStr, istart
v = It "

vbTextCompare)

vbTextCompare)

Else

End If
End Sub

190

.

* ** -
I

The GetDateArrayIndex function returns an index of

dateArray, where the specified image type (ID) is
the

stored.
I

1 *

* * *
Public Function GetArrayIndex(key As String) As

Integer
Dim tmpInfo As cfgInfo
Dim bFound As Boolean
Dim i As Integer
bFound = False
i = l
Do While Not bFound

tmpInfo = gCfgArray
If (StrComp(tmp1nfo

GetArrayIndex =
bFound = True

End If
i = i + l

Loop
End Function

i)
key, i key) = 0) Then

.

* * *
1

The Getconfig subroutine reads information stored in
the configuration file, and adds them to the link

list.
I

1 *

Private Sub Getconfig()
* **

Dim cfgpath As String
Dim inputStr As String
Dim keyStr As String
Dim dirstr As String
Dim virDirStr As String
Dim intFile As Integer
Dim tmpInfo As cfgInfo

Initialize the size the gCfgArray
ReDim gCfgArray(0)

I Get the path for the configuration file
cfgpath = Environ("CB-HOME") & "\cbdata.cfg"

' Store the configured info to the array
intFile = FreeFile ()
Open cfgpath For Input As #intFile
Do While Not EOF(intFi1e)

Line Input #intFile, inputStr
Call lineInfo(inputStr, keyStr, dirStr,

With tmpInfo
virDirStr)

191

.key = keyStr

.path = dirStr -

.vir_path = virDirStr

.stampdate = -1 initialize the date
to before Dec. 30, 1899

* * *

End With
ReDim Preserve gCfgArray(UBound(gCfgArray) +

gCfgArray(UBound(gCfgArray)) = tmpInfo
Loop
Close #intFile

End Sub
Monitor Connector

VERSION 1.0 CLASS
BEGIN

Multiuse = -1 'True
Persistable = 0 'NotPersistable
DataBindingBehavior = 0 'vbNone
DataSourceBehavior = 0 'vbNone
MTSTransactionMode = 0 'NotAnMTSObject

END
Attribute VB-Name = "MonitorConnector"
Attribute VB-GlobalNameSpace = False
Attribute VB-Creatable = True
Attribute VB-PredeclaredId = False
Attribute VB-Exposed = True
.

I # File: MonitorConnector.cls
' # Date
' # 5/31/2000 Tam Tran Created.
.

Author History

Option Explicit
.

This property allows other components to get
reference

' to the Monitor object.
I

.
* * *

* * *

* * *

Public Property Get Monitor() As Monitor

End Property
.

Set Monitor = gMonitor

1

' Initialize Monitor and reference count.

.

1

Private Sub Class-Initialize0
If gMonitor Is Nothing Then

192

' Creates a new link list for holding the

Set gMonitor = New Monitor
configuration info. -

End If
gMonitorUseCount = gMonitorUseCount + 1

End Sub
1 *

* **
I

' Terminate Monitor when reference count = 0

.

Private Sub Class-Terminate0

I

* **

gMonitorUseCount = gMonitorUseCount - 1
If gMonitorUseCount = 0 Then

Set gMonitor = Nothing
End If

End Sub
g) Glue

VERSION 1.0 CLASS
BEGIN

Multiuse = -1 'True
Persistable = 0 'NotPersistable
DataBindingBehavior = 0 'vbNone
DataSourceBehavior = 0 'vbNone
MTSTransactionMode = 0 'NotAnMTSObject

END
Attribute VB-Name = "Glue"
Attribute VB-GlobalNameSpace = False
Attribute VB-Creatable = True
Attribute VB-PredeclaredId = False
Attribute VB-Exposed = True
.

* * *

' # File: Glue-cls
' # Date Author History
' # 5 / 3 1 / 2 0 0 0 Tam Tran Created.
.

Option Explicit
1 *

I

' The Glue component uses this event to notify the
' Controller when done with its task.
' Event's parameter:
I DataType: the data (images) type -
I

1 *

Event GlueDone(DataType As String)

.

193

' Notify the Controller when done storing data.
I

.

Public Sub StoreData(DataType As String) ' Start glue
* * *

task
' <Insert glue task here>

RaiseEvent GlueDone(DataType1
1 . . .

End Sub

194

INITIAL DISTRIBUTION LIST -

1.

2.

3.

4.

5.

6.

7.

8.

Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Road
Monterey, California 93943-5101

Chairman, Code CSl
Naval Postgraduate School
Monterey, California 93943-5118

Dr. Luqi, CS/Lql
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5118

Dr. Valdis Berzins, CS/Be 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5118

Dr. Mantak Shing, CS/Sh 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5118

Tam M. Tran. .. 1
SPAWAR SYS CEN, San Diego
53140 Systems St.
San Diego, CA 92152-7555

James 0. Allen. 1
SPAWAR SYS CEN, San Diego
53140 Systems St.
San Diego, CA 92152-7555

195

