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Preface & Acknowledgements 

Welcome to our Tenth Annual Acquisition Research Symposium! We regret that this 
year it will be a “paper only” event. The double whammy of sequestration and a continuing 
resolution, with the attendant restrictions on travel and conferences, created too much 
uncertainty to properly stage the event. We will miss the dialogue with our acquisition 
colleagues and the opportunity for all our researchers to present their work. However, we 
intend to simulate the symposium as best we can, and these Proceedings present an 
opportunity for the papers to be published just as if they had been delivered. In any case, we 
will have a rich store of papers to draw from for next year’s event scheduled for May 14–15, 
2014! 

Despite these temporary setbacks, our Acquisition Research Program (ARP) here at 
the Naval Postgraduate School (NPS) continues at a normal pace. Since the ARP’s 
founding in 2003, over 1,200 original research reports have been added to the acquisition 
body of knowledge. We continue to add to that library, located online at 
www.acquisitionresearch.net, at a rate of roughly 140 reports per year. This activity has 
engaged researchers at over 70 universities and other institutions, greatly enhancing the 
diversity of thought brought to bear on the business activities of the DoD.  

We generate this level of activity in three ways. First, we solicit research topics from 
academia and other institutions through an annual Broad Agency Announcement, 
sponsored by the USD(AT&L). Second, we issue an annual internal call for proposals to 
seek NPS faculty research supporting the interests of our program sponsors. Finally, we 
serve as a “broker” to market specific research topics identified by our sponsors to NPS 
graduate students. This three-pronged approach provides for a rich and broad diversity of 
scholarly rigor mixed with a good blend of practitioner experience in the field of acquisition. 
We are grateful to those of you who have contributed to our research program in the past 
and encourage your future participation. 

Unfortunately, what will be missing this year is the active participation and 
networking that has been the hallmark of previous symposia. By purposely limiting 
attendance to 350 people, we encourage just that. This forum remains unique in its effort to 
bring scholars and practitioners together around acquisition research that is both relevant in 
application and rigorous in method. It provides the opportunity to interact with many top DoD 
acquisition officials and acquisition researchers. We encourage dialogue both in the formal 
panel sessions and in the many opportunities we make available at meals, breaks, and the 
day-ending socials. Many of our researchers use these occasions to establish new teaming 
arrangements for future research work. Despite the fact that we will not be gathered 
together to reap the above-listed benefits, the ARP will endeavor to stimulate this dialogue 
through various means throughout the year as we interact with our researchers and DoD 
officials.  

Affordability remains a major focus in the DoD acquisition world and will no doubt get 
even more attention as the sequestration outcomes unfold. It is a central tenet of the DoD’s 
Better Buying Power initiatives, which continue to evolve as the DoD finds which of them 
work and which do not. This suggests that research with a focus on affordability will be of 
great interest to the DoD leadership in the year to come. Whether you’re a practitioner or 
scholar, we invite you to participate in that research. 

We gratefully acknowledge the ongoing support and leadership of our sponsors, 
whose foresight and vision have assured the continuing success of the ARP:  
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Abstract 
This paper introduces a mixture distribution approach to modeling the probability density 
function for lead time demand (LTD) in problems where a continuous review inventory system 
is implemented. The method differs from the typical “moment-matching” approach by 
focusing on building up an accurate, closed-form approximation to the LTD distribution from 
its components by using mixtures of truncated exponential (MTE) functions. First, 
construction of the LTD is illustrated and the approach is compared to two other possible 
LTDs. This distribution is then utilized to determine optimal order policies in cases where a 
buyer makes its decisions alone, and later in a situation where members of a two-level supply 
chain coordinate their actions.  

Introduction 

Numerous probability models have been suggested for representing uncertain 
demand during lead time (LT) in continuous-review inventory management systems when 
both LT and demand per unit time (DPUT) are variable. A common approach to finding a 
distribution for lead time demand (LTD) involves modeling LT and DPUT with standard 
probability density functions (PDFs). Based on the distributions assigned, a compound 
probability distribution is determined for demand during lead time, or LTD. The latter 
distribution is used to determine reorder point and safety stock policies, and may be used to 
estimate inventory costs. In some cases, analytical formulas for optimal reorder point, safety 
stock, or stockout costs are available in terms of the compound distribution’s parameters, 
while in other situations the values associated with certain percentiles of the compound LTD 
distribution are estimated to provide these values. Although the problem of finding an 
appropriate LTD distribution has been well studied, papers written in recent years have 
continued to pursue methods that overcome unrealistic distributional assumptions (Ruiz-
Torres & Mahmoodi, 2010; Vernimmen, Dullaert, Willimé, & Witlox, 2008).  

This paper illustrates an approach for constructing a mixture distribution for LTD that 
allows the LT and DPUT distributions to be state-dependent. This method also allows input 
distributions that take any standard or empirical form. Use of the mixture distribution 
technique is first demonstrated in the context described by Cobb (2013), which is a single-
item continuous-review inventory model for one buyer. For single-firm operating in a 
continuous-review inventory system, the mixture distribution method for modeling the LTD 
distribution differs from the typical “moment-matching” approach. The method focuses on 
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building up an accurate, closed-form approximation to the LTD distribution from its 
components by using mixtures of truncated exponential (MTE) functions. 

After the mixture distribution approach is described, a two-level supply chain model 
where the buyer operates under uncertain demand and utilizes a continuous review 
inventory system will be considered. In this two-echelon supply chain model, credit terms 
(Chaharsooghi & Heydari, 2010), quantity discounts (Li & Liu, 2006; Chaharsooghi, Heydari, 
& Kamalabadi, 2011), and rebates (Cobb & Johnson, 2013) have been suggested as 
coordinating incentives that allow the supply chain members to divide the cost savings 
resulting from coordinating their order quantity and reorder point decisions. In each of these 
cases, LTD is assumed to be normally distributed. This assumption is not always realistic, 
particularly when DPUT and LT are each random variables such that LTD has a compound 
probability distribution (Eppen & Martin, 1988; Lau & Lau, 2003; Lin, 2008). This paper will 
incorporate the previously described model (Cobb, 2013) into the two-echelon supply chain 
problem to show that this model can obviate the need to assume that demand for the entire 
LT period is normally distributed. 

The next section describes LTD distributions and uses an example dataset to show 
how standard PDFs can be used as approximations to the LTD distribution. The mixture 
distribution method is also used for the example problem. Next, the different approximations 
to the LTD distribution are used to find optimal inventory order quantity and reorder point 
policies. This is followed by an illustration of how the mixture distribution approach can allow 
more complicated LTD distributions to be incorporated into such problems. The two-level 
supply chain model is then introduced, and the mixture distribution approach is used to 
model LTD in the context of decentralized, centralized, and coordinated supply chains. The 
final section concludes the paper. 

Lead Time Demand Distributions 

LTD in a continuous-review inventory system is often assumed to follow a compound 
probability distribution. Suppose L is a random variable for lead time (LT) and D represents 
random demand per unit of time (DPUT). LTD is a random variable X determined as 

ܺ ൌ ଵܦ  ଶܦ ⋯ ܦ ⋯  .     (1)	ܦ
Therefore, X is a sum of random, independent, and identically distributed (i.i.d.) 

instances of demand. The mean and variance of X can be calculated as 

ሺܺሻܧ ൌ ሻܮሺܧ ∙ ሺܺሻݎܸܽ		and		ሻܦሺܧ ൌ ሻܮሺܧ ∙ ሻܦሺݎܸܽ  ሾܧሺܦሻሿଶ ∙  ሻ.  (2)ܮሺݎܸܽ

Suppose the data in Table 1 is available to estimate an LTD distribution. This table 
contains 50 observations of daily demand for an inventory item and 10 observations for LT 
on orders of the same item. The expected value of daily demand is E(D)=2.88, and the 
variance of this random variable is Var(D)=2.84. LT has an expected value and variance of 
E(L)=5.3 and Var(L)=6.9, respectively. According to the formulas in Equation 2, the 
expected value and variance of LTD are E(X)=15.26 and Var(X)=72.3, respectively. 

The remainder of this section will illustrate three possible methods for approximating 
the LTD distribution underlying the data in Table 1. 

Normal Approximation 

The service level is defined as the percentage of replenishment order cycles where 
demand during LT is satisfied. To determine the reorder point (R) required to achieve a 
desired service level, a typical textbook approach is to assume the LTD distribution is 
normal and use normal distribution tables or Excel formulas. For example, to find the R 
needed to achieve a 95% service level for the LTD distribution with expected value and 
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variance described in Table 1, the Excel formula NORM.INV(0.95,15.26,72.3^0.5) can be 
used to find R = 29.25. 

 Observations for Daily Demand and Lead Time 

Daily demand (DPUT) 1 2 2 1 4 1 1 1 1 1 
 3 5 3 2 5 4 2 2 3 2 
 2 3 3 3 1 3 6 3 6 2 
 5 1 5 3 2 6 1 2 4 1 
 3 2 2 2 6 5 5 1 3 7 
Lead time (LT) 3 5 3 4 4 5 5 10 5 10 

The normal approximation to the LTD distribution and the reorder point R=29.25 are 
illustrated graphically in Figure 1. By implementing this policy, we would expect to stockout 
on 5% of replenishment order cycles. 

 

 LTD Distribution and Reorder Point 

Negative Binomial Approximation 

Although the normal approximation to the LTD distribution is popular, there are 
numerous other approximations that have been suggested in the literature. For example, 
Taylor (1961) suggested using the negative binomial (NB) distribution for the case where the 
Poisson distribution is a good fit for DPUT and LT has a gamma distribution. We denote the 
approximate LTD distribution by መ݂. Here we assume the NB(r,p) distribution for LTD is 

 መ݂ሺݔ; ,ݎ ሻ ൌ ሺ௫ାሻ

௫!∙ሺሻ
ሺ1 െ ݔ				௫ሻ ൌ 0,1,2,…    (3) 

where (·) is the gamma function. Given this formulation, E(X)=rp/(1-p) and Var(X)=E(X)/(1-
p). There are two ways of finding a reorder point that will provide an appropriate service 
level with this NB formulation. Taylor (1961) provided a formula to calculate stockout 
probabilities as a function of the underlying Poisson and gamma distributions. These can be 
calculated for possible reorder point values until a suitable value that meets the service level 
objective is found. Excel can also be used to enumerate the probabilities of achieving a 
certain service level with various possible values of R. Unfortunately, the built-in 
NEGBINOM.DIST function only accepts integer values of the r parameter, so these 
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probabilities must be calculated using the formula in Equation 3 and the GAMMALN 
function.  

For the data in Table 1, we can use the empirical expected value and variance to 
solve two equations and two unknowns and obtain r = 4.08 and p = 0.79. This NB 
distribution is shown in Figure 2. The value of R that provides approximately a 95% service 
level is R = 31. 

 

 Negative Binomial Distribution for Lead Time Demand 

This solution is essentially the same as the one found using Taylor’s (1961) 
analytical formulas. In this case, the Poisson daily demand assumption may be reasonable 
because E(D) and Var(D) are very similar, a feature of the Poisson distribution. 

Mixtures of Truncated Exponentials Approximation 

The functional form of some PDFs, such as the negative binomial PDF in Equation 3, 
does not permit integration in closed-form. The means that the result of an expected value 
calculation with such a PDF does not have a functional form that can be used for further 
computation. These calculations could include, for example, building a cost function to 
perform nonlinear optimization to find optimal inventory policies. One approach suggested to 
overcome this limitation is the MTE model (Moral, Rumí, & Salmerón, 2001). 

An example of a four-piece, two-term (ignoring the constant) MTE function that can 
be used to model LTD given an LT of L = 3 for the problem in the previous section is 

መ݂
|ሼୀଷሽሺݔሻ ൌ

ە
۔

ۓ
െ0.7148  0.6681 expሼ0.0325ݔሽ  0.000048	exp	ሼ0.989ݔሽ if	2.5  ݔ ൏ 5
െ96.721 െ 318.54 expሼെ1.945ݔሽ  96.76	exp	ሼ0.000128ݔሽ if	5  ݔ ൏ 8
0.1383 െ ሺ1.63ܧ െ 06ሻ expሼݔሽ  ሺ2.89ܧ െ 09ሻexp	ሼ1.5ݔሽ if	8  ݔ ൏ 11.5
െ0.0252  0.9786	exp	ሼെ0.205ݔሽ if	11.5  ݔ  17.5

   (4) 

This function was found by simulating 500 series of three observations for daily 
demand from values in Table 1 using a bootstrapping approach. The constants—coefficients 
on the exponential terms and coefficients on the variable X—were determined by fitting a 
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function to the simulated histogram. There is an established literature on fitting MTE 
functions to historical data; in this case, the method suggested by Moral et al. (2002) was 
utilized. A graphical view of the MTE function overlaid on the simulated histogram is shown 
in Figure 3. 

 

 Mixtures of Truncated Exponentials Distribution for Lead Time Demand Given 
a Lead Time of Three Days 

Similar functions መ݂|ሼୀሽ can be constructed for the other possible LT values, L = 4, 
5, and 10. From the data on LT observations in Table 1, we can estimate P(L=3) = P(L=4) = 
P(L=10) = 0.2 and P(L=5) = 0.4. A mixture distribution approach (Cobb, 2013) can be 
employed to find the LTD distribution. Here, the LTD distribution is determined as 

												 መ݂ሺݔሻ ൌ ܲሺܮ ൌ 3ሻ ∙ 	 መ݂|ሼୀଷሽሺݔሻ  ܲሺܮ ൌ 4ሻ ∙ 	 መ݂|ሼୀସሽሺݔሻ  ܲሺܮ ൌ 5ሻ ∙ 	 መ݂|ሼୀହሽሺݔሻ  (5)	
							ܲሺܮ ൌ 10ሻ ∙ 	 መ݂|ሼୀଵሽሺݔሻ. 

The MTE function is shown in Figure 4, overlaid on the previously described NB 
distribution. This MTE function has 17 pieces and up to six terms in each piece. For 
illustrative purposes, a continuous NB parameterization is displayed. Because the class of 
MTE functions is closed under addition, multiplication, and integration (Moral et al., 2001), 
the mixture distribution resulting from the calculation above is also an MTE function. Thus, it 
retains the same desirable mathematical properties. 

We can perform closed-form integrations of the MTE LTD distribution to find a 
reorder point that achieves a desired service level. In this case,  

 መ݂
ሺݔሻ	݀ݔ

ଷଷ.ଷ
 ൎ 0.95	,       (6) 

so we can set R = 33.3 to obtain a 95% service level. 
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 Mixtures of Truncated Exponentials Lead Time Demand Distribution Overlaid 
on a Negative Binomial Approximation 

The next section discusses the use of the MTE function for finding inventory policies 
in a continuous-review inventory system. 

Finding Inventory Policies 

Suppose that we want to determine an optimal order quantity and reorder point in a 
continuous-review inventory system (a “(Q,R)” policy). We consider four models that could 
be used to find the best policy given the data available (see Table 1): (1) a normal 
approximation to the LTD distribution; (2) the NB approximation to the LTD distribution; (3) 
the MTE mixture distribution; and (4) a simulation-optimization model that simulates LT and 
LTD values from the empirical distributions developed from Table 1. We term the latter 
model the “actual” solution. 

A simple cost function with no backordering allowed (Johnson & Montgomery, 1974) 
for this problem is 

,ሺܳܥܶ ܴሻ ൌ ܭ ∙ 
ொ
 గ∙∙ௌೃ

ொ
 ݄ ∙ ሺ0.5ܳ  ܴ െ  ሺܺሻሻ . (7)ܧ

In this equation, K is the fixed cost per order, Y is the expected annual demand, h is 
the holding cost per unit per year, and π is the stockout cost per unit. The average inventory 
includes safety stock of R-E(X). The shape of the distribution for LTD determines the 
expected shortage per cycle, SR. For a given reorder point,  

ܵோ ൌ  ሺݔ െ ܴሻ ∙ መ݂ሺݔሻ	݀ݔ.
ஶ
ோ          (8) 

Suppose Y=E(D) · 250 working days = 720, K=30, h=4, and 5=ߨ. The key to finding 
an optimal (Q,R) combination is to evaluate SR as part of constructing the total cost function 
in Equation 7. With the MTE function, the calculation in Equation 8 can be performed in 
closed-form, and the result substituted into Equation 7 to obtain a closed-form total cost 
function. The expected shortage per cycle as a function of R is an eight-piece expression, 
with selected terms shown below: 
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መܵோሺݎሻ ൌ            

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ
െ3876.5  4.66 expሼെ0.205ݎሽ  6.31	exp	ሼെ0.172ݎሽ
3888.1 expሼ0.005ݎሽ െ ݎ21.82 െ ଶݎ0.04 if	16.15  ݎ ൏ 16.5
െ3890.6  4.66 expሼെ0.205ݎሽ  6.31	exp	ሼെ0.172ݎሽ
3888.1 expሼ0.005ݎሽ  20.6 expሼെ0.140ݎሽ െ ݎ20.64 െ ଶݎ0.07 if	16.5  ݎ ൏ 17.5
െ3889.2  6.31	exp	ሼെ0.172ݎሽ  3888.1 expሼ0.005ݎሽ
20.6 expሼെ0.140ݎሽ െ ݎ20.76 െ ଶݎ0.07 if	17.5  ݎ ൏ 23.5

⋮
െ8.74  29.87exp	ሼെ0.78ݎሽ  ݎ0.28 െ ଶݎ0.002 if	31  ݎ ൏ 46.5	.

  

(9) 

Optimization over the resulting cost function is fast. The example here was solved in 
Mathematica 9.0 by using the ArgMin function. The results obtained using the four methods 
under consideration are shown in Table 2. An iterative approach (Hadley & Whitin, 1963) in 
combination with numerical integration was implemented to find the solutions using the 
normal or NB approximations. The table shows the values Q* and R* which—when 
implemented simultaneously—minimize annual total cost. The computing (CPU) times 
required to obtain the solutions are also shown. The simulation-optimization solution was 
simply stopped after running for several hours, and the values obtained were assumed to be 
the best possible solution. 

 Results for Inventory Policies Determined Using Four Approaches 

Method Q* R* TC CPU (sec.) 
Normal Approximation 108 25 482.99 3.57 
NB Approximation 110 25 482.89 3.76 
MTE Mixture Distribution 110 27 481.10 1.26 
Simulation-Optimization 108 27 480.82 ∞ 

Table 2 shows that the MTE mixture distribution works equally as well as the other 
approaches when implemented to obtain an optimal (Q,R) policy. The next section illustrates 
that the mixture distribution approach can be used to model more complicated LTD 
distributions. 

State-Dependent Variables 

The advantage of the mixture distribution approach (Cobb, 2013) in inventory 
management problems is that more complex LTD distributions can be constructed by 
building the model from its components while still maintaining a closed-form representation. 
In some cases, expert knowledge can be used to assign state-dependent distributions for 
DPUT and/or LT.  

As an illustration, suppose the first row of 10 observations in Table 1 can be 
associated with replenishment orders where a significant number of missions were canceled 
due to weather, creating reduced demand. This reduced demand is assumed to occur on 
20% of replenishment orders; thus, demand can be considered to have two states: regular 
(with 80% probability) and low (20% of the time). 

To demonstrate another approach to finding MTE approximations, the dataset in 
Table 1 will be used in this example to first determine a standard PDF that best fits the 
empirical data for each demand state. In this case, the log-normal distribution with μ ൌ 1.03 
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and ߪଶ ൌ 0.31 is selected for the regular state, and the LN(0.27,0.19) is chosen for state 2. 
The demand in each state for a given LT period is then a sum of i.i.d. log-normal random 
variables. This sum has no known distribution, but approximations for the PDF of a sum of 
log-normal random variables exist. Following Cobb et al. (2013), the Fenton-Wilkinson 
approximation (Fenton, 1960) is implemented, and MTE distributions are fit to these 
approximations for each state and each possible LT value. For state 1 and state 2, these 

functions are denoted by መ݂|ሼୀሽ
ሺଵሻ 	and መ݂|ሼୀሽ

ሺଶሻ , respectively. The conditional PDF for LTD 

given ܮ ൌ ݈ is then calculated as 

መ݂
|ሼୀሽሺݔሻ ൌ 0.8 ∙ መ݂|ሼୀሽ

ሺଵሻ ሺݔሻ  0.2 ∙ መ݂|ሼୀሽ
ሺଶሻ ሺݔሻ.   (10) 

The PDF for LTD is constructed as in Equation 5. The new LTD distribution is bi-
modal, as shown in Figure 5.  

 

 Mixture Distribution for Lead Time Demand With State-Dependent Demand 

Suppose the state-dependent, bi-modal distribution shown in Figure 5 is the correct 
PDF for LTD. Using this distribution as part of the total cost function to find the optimal (Q,R) 
policy results in a 21% savings when compared to implementing the policies found earlier 
using the MTE distribution shown in Figure 4 (or one of the other approximations). The 
mixture distribution approach still yields a closed-form function for SR and the optimization is 
still fast. 

Coordinated Supply Chains 

In this section, we consider a two-echelon supply chain, as depicted in Figure 6. A 
buyer experiencing random demand places its orders for inventory with the supplier.  

 

 Two-Echelon Supply Chain 
(Chaharsooghi & Heydari, 2010) 
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The cost function for the buyer in this problem is as follows: 

,ሺܳܥܶ ܴ, ܸሻ ൌ ሺܭ െ ܸሻ ∙ 
ொ
 గ∙∙ௌೃ

ொ
 ݄௦ ∙ ሺ0.5ܳ  ܴ െ  ሺܺሻሻ.    (11)ܧ

Most of the notation is the same as for the cost function defined in Equation 7. The 
subscript b has been added to the fixed cost per order, annual unit holding cost, and total 
cost to identify this amount with the buyer. The subscript s will similarly represent the seller. 
The quantity V is a rebate provided by the seller to the buyer on a per order basis as an 
incentive for the buyer to adopt policies that benefit both parties (Cobb & Johnson, 2013). 
As discussed in the introduction, credit options and price discounts have also been 
considered in this two-level supply chain as coordination incentives (Chaharsooghi & 
Heydari, 2010; Chaharsooghi et al., 2011; Li & Liu, 2006). 

The cost function for the supplier in this problem is 

,ܰ,௦ሺܳܥܶ ܸሻ ൌ ቀೞ
ே
 ܸቁ ∙ 

ொ
 ݄௦ሺܰ െ 1ሻ0.5ܳ.       (12) 

In this two-level supply chain model, the buyer selects an order quantity and reorder 
point. The supplier receives orders of size Q from the buyer and purchases inventory from 
its vendors in a quantity that is an integer multiple N of the buyer’s order size.  

The supply chain can operate in one of three modes. First, the buyer can select Qd 
and Rd without considering the effect of its selection on the supplier’s costs. In response, the 
supplier selects Nd to minimize its own costs. This is referred to as the decentralized mode, 
and because there is no coordination, the rebate amount is V = 0. Total costs in the supply 
chain are TCd = TCb(Qd,Rd,0) + TCs(Qd,Nd,0). Second, the buyer and supplier can agree on 
values for Qc, Rc, and Nc that minimize the sum of the cost functions in Equations 11 and 12. 
Because the members cooperate fully and are centralized, there is again no requirement for 
the supplier to provide a coordination incentive and V = 0. Total costs in this mode are 
denoted by TCc = TCb(Qc,Rc,0) + TCs(Qc,Nc,0).  

If the parties are not centralized but can coordinate their policies, the potential exists 
to divide cost savings of TC+ = TCd -TCc. An interval [Vmin,Vmax] can be calculated (Cobb & 
Johnson, 2013) such that any value for the rebate V in the interval reduces the total costs in 
the supply chain to centralized levels. The smallest value of the rebate the buyer will accept 
can be found by solving TCb(Qc,Rc,V) = TCb(Qd,Rd,0) for V. This value is denoted by Vmin. 
The largest value of the rebate the seller will accept can be found by solving TCs(Qc,Nc,V) 
=TCs(Qd,Nd,0) for V. This value is denoted by Vmax. For the example in this paper, we 
assume that if the parties agree to coordinate their policies (and implement Qc, Rc, and Nc), 
the value of the rebate they select is തܸ 	= (Vmin+Vmax)/2. 

All of the two-echelon supply chain models referenced previously assume that 
demand for the entire LT period is normally distributed. For the case where both Q and R 
are selected to minimize total costs, Charharsooghi and Heydari (2010) derived expressions 
that state the optimal value for Q (in either the decentralized or centralized mode) as a 
function of the optimal value for R (and vice versa) and the standard normal cumulative 
density function. The optimal values can be found by iterating between these two 
expressions. The supplier selects the integer value for N that minimizes its costs subject to 
the choices of the buyer. 

By implementing the mixture distribution approach, we can develop closed-form 
expressions for the cost functions in Equations 11 and 12 and find optimal solutions in the 
same manner as the solutions presented earlier in the paper for the (Q,R) inventory model. 
For illustration, assume Y = E(D) · 250 working days = 720, Ks = Kb = 30, hs = hb = 4, and π = 
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5. These parameters are the same as used in the earlier example and the supplier has the 
same cost structure as the buyer (obviously, this may not always be true in practice). 

For the previous example, employing the MTE mixture distribution in Figure 4 gives 
the same results in Table 2 for the decentralized case—Qd = 110 and Rd = 27. In this mode, 
the supplier selects the multiple of the buyer’s order quantity that minimizes its costs. 
Because TCs(110,1,0) = 197 and TCs(110,2,0) = 316, the supplier selects Nd = 1. Total 
supply chain costs in the decentralized mode are TCd = 678. 

In the centralized mode, we find the optimal order quantity and reorder point that 
minimizes TCb(Q,R,0)+TCs(Q,N,0) for several possible values of N, then choose the optimal 
values that give the lowest combined supply chain cost. Again, using the MTE mixture 
distribution allows the construction of a closed-form total cost function, and optimization over 
this function in Mathematica is fast. Using the MTE mixture distribution, we find that Qc=154, 
Rc=24, and Nc=1. Total supply chain costs in the centralized mode are TCd= 648. Table 3 
summarizes the optimal values for the decision variables in each mode and the total costs 
for each party and the supply chain. The answers obtained with the mixture distribution 
approach are compared with those obtained by using the solutions shown by Chaharsooghi 
and Heydari (2010). 

 Optimal Solutions and Total Costs for the Supply Chain in Three Modes 
of Operation 

Normal Q R N V TCb TCs TC 

Decentralized 108 25 1 0 483 200 683 

Centralized 151 23 1 0 506 143 649 

Coordinated 151 23 1 8.53 466 183 649 

        

MTE Mixture Q R N V TCb TCs TC 

Decentralized 110 27 1 0 481 197 678 

Centralized 154 24 1 0 507 141 648 

Coordinated 154 24 1 8.51 467 181 648 

A comparison of the solutions in the decentralized and centralized models shows 
that the costs in the entire supply chain can be reduced by TC+ = TCd - TCc = 30 if the 
centralized order quantity and reorder point are implemented. However, these policies 
increase costs for the buyer by 507 - 481 = 26. By using the solutions in Cobb and Johnson 
(2013) to find the value തܸ  that divides the cost savings of operating in the centralized mode 
between the buyer and the seller, the buyer is adequately compensated for increasing its 
order quantity. The rebate amount for this problem is 8.51 per order cycle. Both members 
experience costs that are lower than in the decentralized mode. 

Conclusions 

This paper serves as an introduction to using a mixture distribution approach to 
modeling the probability density function for LTD in problems where a continuous review 
inventory system is implemented. First, construction of the lead time distribution was 
illustrated. This distribution was then utilized to determine optimal order policies in cases 
where a buyer makes its decisions alone, and then when members of a two-level supply 
chain coordinate their actions.  
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This paper represents the first stage of the research to be conducted for the project 
entitled “Modeling Uncertainty in Military Supply Chain Management Decisions,” which has 
been funded under BAA Number NPS-BAA-12-002 through the Naval Postgraduate School 
(Grant N00244-13-1-0014). For the expanded project, inventory requisition data for a five-
year period has been obtained from the Air Force Standard Base Supply System for a 
power supply unit used on F-15 and F-16 aircraft. The techniques presented in this paper 
will be compared to an approach currently used by the Air Force that employs a negative 
binomial approximation to the lead time demand distribution. The comparison will be similar, 
but the hypothetical data in this paper will be replaced by the actual historical data provided 
by the Air Force.  
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